Fast Bayesian Network Structure Learning using Quasi-determinism Screening - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Fast Bayesian Network Structure Learning using Quasi-determinism Screening

Résumé

Learning the structure of Bayesian Networks from data is a NP-Hard problem that involves an optimization task on a super-exponential sized space. In this work, we show that in most real life datasets, a number of the arcs contained in the final structure can be pre-screened at low computational cost with a limited impact on the global graph score. We formalize the identification of these arcs via the notion of quasi-determinism, and propose an algorithm exploiting the screening that reduces the structure learning on a subset of the original variables. We show, on diverse benchmark datasets, that this algorithm exhibits a significant decrease in computational time for little decrease in performance score.
Fichier principal
Vignette du fichier
qdsBNSL.pdf (359.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01691217 , version 1 (23-01-2018)
hal-01691217 , version 2 (24-01-2018)
hal-01691217 , version 3 (12-03-2018)
hal-01691217 , version 4 (04-01-2019)

Identifiants

  • HAL Id : hal-01691217 , version 1

Citer

Thibaud Rahier, Sylvain Marié, Stéphane Girard, Florence Forbes. Fast Bayesian Network Structure Learning using Quasi-determinism Screening. 2018. ⟨hal-01691217v1⟩
741 Consultations
615 Téléchargements

Partager

More