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Abstract

Learning the structure of Bayesian Networks
from data is a NP-Hard problem that involves
an optimization task on a super-exponential
sized space. In this work, we show that in
most real life datasets, a number of the arcs
contained in the final structure can be pre-
screened at low computational cost with a
limited impact on the global graph score. We
formalize the identification of these arcs via
the notion of quasi-determinism, and propose
an algorithm exploiting the screening that re-
duces the structure learning on a subset of
the original variables. We show, on diverse
benchmark datasets, that this algorithm ex-
hibits a significant decrease in computational
time for little decrease in performance score.

1 INTRODUCTION

Bayesian Networks are probabilistic graphical models
that can present interest both in terms of knowledge
discovery and density estimation. However, the prob-
lem of Bayesian Network learning from data has been
proven to be NP-Hard by Chickering (1996).
There has been extensive work on tackling the ambi-
tious problem of Bayesian Network structure learning
from observational data. Algorithms fall under two
main categories: constraint-based and score&search.

Constraint-based structure learning algorithms rely on
testing for conditional independencies that hold in the
data in order to reconstruct a Bayesian Network en-
coding this independencies. The PC algorithm by
Spirtes et al. (2000) was the first practical application
of this idea, followed by several optimized approaches

as the fast incremental association (Fast-IAMB) algo-
rithm from Yaramakala and Margaritis (2005).

Score&search structure learning, relies on the defini-
tion of a network score, then on the search for the best-
scoring structure among all possible directed acyclic
graphs (DAGs). There are 2O(n2) possible DAG struc-
tures containing n nodes, which prevents exhaustive
search for n typically bigger than 30.
Most of the score&search algorithms therefore rely on
heuristics, as the original approach from Cooper and
Herskovits (1992) which supposed a prior ordering of
the variables to perform parent set selection, or Bouck-
aert (1995) who proposed to search through the space
of possible DAGs using greedy hill climbing with ran-
dom restarts. Since these first algorithms, different
approaches have been proposed : some based on the
search for an optimal ordering as Chen et al. (2008)
or Teyssier and Koller (2012), others on pruning the
search space in accordance to a given score (usually
BIC) as de Campos and Ji (2011) and de Campos
et al. (2017), and others on optimizing the search task
through the DAG space as Scanagatta et al. (2015).
Some exact methods have also been presented, as the
ones by Yuan et al. (2011), Yuan and Malone (2012)
Yuan et al. (2013) Silander and Myllymaki (2012)
which are however unable to tackle datasets with more
than 30 variables.

Moreover, real-world data now originate more and
more from computer-based processes that by essence
cause deterministic relationships to appear between
variables. This is notably true when the data is stored
in relational databases that compress the information
using keys (TODO: deter read). Determinism has
been shown to interfere with Bayesian Network struc-
ture learning, notably constraint-based methods, as
mentioned by Luo (2006). Newer articles also tackle
the problem of learning Bayesian Networks in a deter-
ministic context, as de Morais et al. (2008) or Mabrouk
et al. (2014).

In this paper, we focus on score&search algorithms.
After reminding notations and state of the art con-
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cerning Bayesian Network structure learning in sec-
tion 2, we state and show some theoretical results in
section 3, that enable to bridge the gap between de-
terminism and Bayesian Networks scoring.
In section 4, exploiting the intuition brought by these
theoretical results, we propose and study the com-
plexity of the quasi deterministic screening algorithm,
based on the idea that some of the arcs contained in
the wanted Bayesian Network can be learned during
a quick screening phase where quasi-deterministic re-
lationships are detected, thus reducing the learning
phase to a subset of the original variables.
In practice on benchmark datasets, not only does this
algorithm accelerate the overall learning procedure
with very low performance loss, but it also leads to
sparser and therefore more interpretable graphs than
state of the art methods, as shown in section 5.
Finally, section 6 is dedicated to the discussion and to
numerous perspectives emerging from this work.

2 BAYESIAN NETWORK
STRUCTURE LEARNING

2.1 Bayesian Networks

Let X1, . . . , Xn be n categorical random variables,
with respective value sets V al(X1), . . . , V al(Xn). We
note X = (X1, . . . , Xn) and V al(X) = V al(X1)×· · ·×
V al(Xn). The joint distribution of X1, . . . , Xn is de-
noted by, for every x = (x1, . . . , xn) ∈ V al(X),

p(x) = P (X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = {Xi}i∈I , and we
also use the notation p(.) and p(.|.) to refer to the
marginals and conditionals of any subset of variables:
∀(xI ,xJ) ∈ V al(XI)× V al(XJ), p(xI |xJ) = P (XI =
xI |XJ = xJ).
Moreover, we suppose we have a dataset D containing
M i.i.d. instances of (X1, . . . , Xn). We will use the
notation xi [m] to denote the mth observation of vari-
able Xi in the dataset D.
Finally, all quantities written with an exponent D refer
to these quantities empirically computed from D (e.g.
pD refers to the empirical distribution with respect to
D).

A Bayesian network is an object B = (G, θ) where

• G = (V,A) is a directed acyclic graph (DAG) struc-
ture with V the set of nodes and A ⊂ V × V the
set of arcs. We suppose V = J1, nK where each node
i ∈ V is associated with the random variable Xi,
and πG(i) = {j ∈ V s.t. (j, i) ∈ A} is the set of i’s
parents. The exponent G may be dropped for clarity
when the referred graph is obvious.

• θ = {θi}i∈V , where each θi is the set of pa-
rameters defining the local conditional distribution
P (Xi|Xπ(i)).
More precisely for categorical variables, θi =
{θxi|xπ(i)

} where for i ∈ V, xi ∈ V al(Xi) and
xπ(i) ∈ V al(Xπ(i)), we have

θxi|xπ(i)
= p(xi|xπ(i)).

A Bayesian Network B = (G, θ) encodes the follow-
ing factorization of the joint distribution of variables
X1, . . . , Xn:

pX(x1, . . . , xn) =

n∏
i=1

p(xi|xπG(i)) =

n∏
i=1

θxi|xπG(i)
.

Such a factorization implies a set of conditional inde-
pendencies: each variable is independent of its non-
descendents given its parents.

2.2 Score&search approach to Bayesian
Network structure learning

We suppose we have a scoring function s : DAGV →
R, where DAGV is the set of all possible DAG struc-
tures with node set V . Score&search Bayesian Net-
work structure learning comes down to solving the fol-
lowing combinatorial optimization problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1)

It can be shown that 2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1)

where |V | = n. There are therefore 2O(n2) possible
DAG structures containing n nodes (we say the size
of DAGV is super-exponential in |V |) which prevents
exhaustive search when n gets typically bigger than
30.
Most scoring functions used in practice are based on
the Max log Likelihood sore, that we now present.

The Max log-Likelihood score Let l(θ : D) =
log(pθ(D)) be the log-Likelihood of the dataset D
given the set of parameters θ. We define the Max
Log Likelihood (MLL) score of a graph G ∈ DAGV
associated with a dataset D as:

sMLL(G : D) = max
θ∈ΘG

l(θ : D).

where ΘG is the set of all θ’s such that B = (G, θ) is a
Bayesian Network.
The MLL score is intuitive, but it favorizes denser
structures: if G1 = (V,A1) and G2 = (V,A2) are two
graph structures such that A1 ⊂ A2, we can show that:
sL(G1 : D) ≤ sL(G2 : D).
There are two main (non-exclusive) approaches to
solve this problem:
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• Constraint the structure space to avoid learning
overly complex graphs, which is the idea of hy-
brid structure learning algorithms such as the sparse
candidate algorithm presented by Friedman et al.
(1999), or the Max-Min Hill Climbing (MMHC) al-
gorithm introduced by Tsamardinos et al. (2006).

• Use a penalized version of the MLL score, as the
BIC score which is used in in many recent papers on
score&search structure learning as de Campos and
Ji (2011), Yuan et al. (2011) or Scanagatta et al.
(2016).

The BIC score We define the BIC score of G ∈
DAGV as follows: (it can vary from a −2 factor, we
chose to follow the definition of Koller and Friedman
(2009) coherent with the implementation by Scutari
(2009)):

sBIC(G : D) = sL(G : D)− log(M)

2
P(G)

where M is the number of observations in D, and
P(G) is the number of free parameters needed in the
definition of a Bayesian Network B = (G, θ), i.e.
P(G) =

∑n
i=1(|V al(Xi)| − 1) |V al(XπG(i))|, where by

convention, |V al(X∅)| = 1.

3 THEORETICAL RESULTS ON
DETERMINISM AND BAYESIAN
NETWORKS

3.1 Definitions

We first propose a definition of determinism using the
notion of conditional entropy. In this paper, deter-
minism (and later on quasi-determinism) will always
be meant empirically (with respect to a dataset D).

Definition 1 Determinism wrt D
The relationship Xi → Xj is deterministic with respect
to D iff HD(Xi|Xj) = 0
where HD(Xi|Xj) = −

∑
xi,xj

pD(xi, xj) log(pD(xi|xj))

is the empirical conditional Shannon entropy.

It is straightforward to prove that Definition 1 relates
to a common and intuitive perception of determinism,
as presented by Luo (2006)) for example. Indeed,

HD(Xi|Xj) = 0

⇔ ∀xj ∈ V al(Xj),∃!xi ∈ V al(Xi) s.t. p
D(xi|xj) = 1.

Definition 2 Deterministic DAG wrt D
G ∈ DAGV is said to be deterministic with respect to
D iff:

∀i ∈ V | π(i) 6= ∅, HD(Xi|XπG(i)) = 0

3.2 Deterministic trees and MLL score

We first recall a lemma that relates the MLL score
presented in section 2 to the notion of empirical con-
ditional entropy. This result is well known and notably
stated by Koller and Friedman (2009).

Lemma 1 For G ∈ DAGV associated with variables
X1, . . . , Xn observed in a dataset D,

sL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

where by convention HD(Xi|X∅) = HD(Xi).

Proof: First let us rewrite the MLL score in terms
of data counts. For a given G ∈ DAGV and θ ∈ ΘG,

l(θ : D) =

M∑
m=1

log(pθ(x1 [m] . . . , xn [m])︸ ︷︷ ︸∏n
i=1 θxi[m]|xπ(i)[m]

)

=

M∑
m=1

n∑
i=1

log(θxi[m]|xπ(i)[m])

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θxi|xπ(i)
)

where CD(.) is the count function associated with D:

∀I ⊂ V , CD(xI) =
M∑
m=1

IxI [m]=xI = MpD(xI).

Moreover, it is well known that for categorical vari-
ables, the maximum likelihood estimator θMLE is
given by the local empirical frequencies i.e.

θMLE
xi|xπ(i)

= pD(xi|xπ(i)) =
CD(xi,xπ(i))

CD(xπ(i))
.

Therefore we get:

sL(G : D) = max
θ∈ΘG

l(θ : D)

= l(θMLE : D)

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θMLE
xi|xπ(i)

)

=

n∑
i=1

∑
xi,xπ(i)

MpD(xi,xπ(i)) log(pD(xi|xπ(i)))

= −M
n∑
i=1

HD(Xi|Xπ(i)).

�

The next proposition follows then straightforwardly.
We remind that a tree is a DAG in which each node
but one (the root node) has exactly one parent.
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Proposition 1 If T is a deterministic tree with re-
spect to D then

sL(T : D) = max
G∈DAGV

sL(G : D).

Before proving this proposition, it is worth noticing
that dense DAGs also maximize the MLL score. The
main interest of proposition 1 resides in the fact that,
under a strong hypothesis, we are able to explicit a
sparse solution of (1), with n − 1 arcs compared to
n(n−1)

2 for a dense DAG.

Proof: Let G ∈ DAGV with V = J1, nK and D con-
taining observations of X1, . . . , Xn respectively associ-
ated with nodes in V .
First, we notice that sL(G : D)is upper-bounded by
the score of a dense DAG. We have shown in Lemma
1 that:

sL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i)).

It is commonly known that all DAGs are compatible
with at least one ordering of the nodes, i.e. that ∃σ ∈
Sn such that

∀i, j ∈ V s.t. j ∈ πG(i), σ(j) < σ(i).

In other words, σ represents an ordering in which each
node comes after its parents.
Let σ ∈ Sn be an ordering compatible with G. Using
the fact that for any variables X,Y, Z, HD(X|Y ) ≥
HD(X|Y,Z) we then get that ∀i ∈ V \ {σ−1(1)},

HD(Xi|Xπ(i)) ≥ HD(Xi|Xσ−1({1,...,σ(i)−1})).

Plugging this inequality in the first equation, reorder-
ing the sum according to σ, and using the chain rule
for entropies, we get:

−s
L(G : D)

M
≥

n∑
i=1

HD(Xi|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+

n∑
σ(i)=2

HD(Xσ−1(σ(i))|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+HD(Xσ−1(2)|Xσ−1(1)) + . . .

+HD(Xσ−1(n)|Xσ−1(1), . . . , Xσ−1(n−1))

= HD(Xσ−1(1), . . . , Xσ−1(n))

= HD(X1, . . . , Xn),

which gives

sL(G : D) ≤ −M HD(X1, . . . , Xn).

Let T be as in the hypothesis of Proposition 1, we are
now going to prove that this bound is reached for T
which will give us the wanted result.
Without any loss of generality, let us suppose that T ’s
root is 1. Then,

sL(T : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

= −M

HD(X1) +

n∑
i=2

HD(Xi|Xπ(i))︸ ︷︷ ︸
=0


≥ −M HD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�

3.3 Deterministic forests and the MLL score

The deterministic tree hypothesis of Proposition 1 is
very restrictive. In this section, it is extended to de-
terministic forests, defined as follows:

Definition 3 Deterministic forest wrt D F ∈
DAGV is said to be a deterministic forest with re-

spect to D iff F =
p⋃
k=1

Tk, where
⋃

is the canonical

union for graphs: G∪G′ = (VG ∪VG′ , AG ∪AG′), and
T1, . . . , Tp are p disjoint deterministic trees wrt D such

that
p⋃
k=1

VTk = V .

Moreover, for a given deterministic forest F wrt D, we
define R(F ) ⊂ V to be the set of F ’s roots (the union
of the roots of each of its trees), and note DR(F ) the
restriction of D to the observations of XR(F ).

Proposition 2 We suppose F is a determinisitc for-
est wrt D. Let G∗R(F ) be a solution of the struc-

ture learning optimization problem (1) for variables
X1, . . . , Xp and the MLL score i.e.

sL(G∗R(F ) : DR(F )) = max
G∈DAGR(F )

sL(G : DR(F )).

Then, defining G∗ = F ∪G∗R(F ), we have

sL(G∗ : D) = max
G∈DAGV

sL(G : D).

Proof: Let F =
p⋃
k=1

Tk and G∗r(F ) be as in the Propo-

sition’s hypotheses. Without loss of generality, we
consider i to be the root of the tree Ti. Therefore,
R(F ) = J1, pK.
Let us also define the following root function that as-
sociates to each node the root of the tree it belongs
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to:

r :

∣∣∣∣ V −→ R(F )
i 7−→ k s.t. Xi ∈ VTk .

Let G∗R(F ) ∈ DAGR(F ) such that:

G∗R(F ) ∈ argmax
G∈DAGR(F )

sL(G : D)

and G∗ = F ∪G∗R(F ) i.e.

• VG∗ = V

• AG∗ = (
⋃p
k=1ATk) ∪AG∗

R(F )

We will show as in the proof of Proposition 1 that

sLDAGV (G∗ : D) ≥ max
G∈DAGV

sLDAGV (G : D)

which implies that G∗ ∈ argmax
G∈DAGV

sLDAGV (G : D).

We write:

sLDAGV (G∗) = −M
n∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(a)

−M
n∑

i=p+1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(b)

We then compute separately the terms (a) and (b):

• Computation of (a)
The first term corresponds to the score of the graph
G∗R(F ) as an element of DAGR(F ).
Indeed, by construction of G∗,

∀i ∈ R(F ), πG
∗
(i) = πG

∗
R(F )(i).

Moreover, G∗R(F ) maximizes the MLL score on
DAGR(F ). We can now write:

(a) = −M
p∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|X
π
G∗
R(F ) (i)

)

= sL(G∗R(F ) : D)

= max
G∈DAGR(F )

sL(G : DR(F ))

= −MHD(X1, . . . , Xp).

• Computation of (b)
By construction of G∗,

∀i ∈ V \R(F ), πG
∗
(i) = πTr(i)(i).

Moreover since the Tk’s are deterministic trees, it
follows that

∀i ∈ V \R(F ), HD(Xi|Xπ
Tr(i) (i)

) = 0.

Therefore we can write

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)

= 0.

Collecting the above results yields

sLDAGV (G∗) = (a)

= −MHD(X1, . . . , Xp)

≥ −MHD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�
The idea of the proof relies on the fact that
HD(X1, . . . , Xp) = HD(X1, . . . , Xn), i.e. that the in-
formation relative to the variables X1, . . . , Xn is en-
tirely contained in the roots X1, . . . , Xp.
Even if this means reordering the variables, the as-
sumptions of Proposition 2 are always verified: if there
is no determinism in the dataset D, then p = n,
R(F ) = V , and every tree Tk is reduced to its root
k. In that case solving problem (1) for G∗R(F ) is the
same as solving it for G∗.

The main issue with the MLL score for structure learn-
ing is that it favors dense graphs (as seen in section 2).
However, a deterministic forest containing p trees is
very sparse (n−p edges), and even if the graph G∗R(F )

is quite dense, the graph G∗ may still satisfy sparsity
conditions.
Let us state a specific example: suppose that we reg-
ularize the structure learning problem (1) with the
MLL score by restricting the learning space DAGV
to {G ∈ DAGV | max

i∈V
|πG(i)| ≤ P} for P ∈ N sig-

nificantly smaller than n. Assume that we have F a
deterministic forest on X1, . . . , Xn containing p ≤ P
trees. In that case, G∗ = F ∪ GdenseR(F ) (with GdenseR(F ) a

fully connected DAG ∈ DAGR(F )) will be a solution
of problem (1) (from Proposition 2), while still satisfy-
ing the regularizing condition max

i∈V
|πG(i)| ≤ P . This

idea is the inspiration for the algorithm presented in
the next section.
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4 STRUCTURE LEARNING WITH
QUASI DETERMINISTIC
SCREENING

4.1 Quasi-determinism

When it comes to Bayesian Network structure learning
algorithms, even heuristics are computationally inten-
sive. We would like to use the theoretical results pre-
sented in section 3 to simplify the structure learning
problem.
Our idea is to reduce the problem to a subset of
the variables: the roots of the deterministic forest,
and therefore significantly decrease overall computa-
tion time: this is the idea of deterministic relationship
screening.
However, in many datasets, we do not observe real em-
pirical determinism (HD(X|Y ) = 0), although there
are very strong relationships between some of the vari-
ables. Our second idea is to relax the aforementioned
deterministic screening to quasi-deterministic screen-
ing, where quasi is meant with respect to a parameter
ε: we will talk about ε−quasi-deterministic relation-
ships.
There are several ways to measure how close a rela-
tionship is from deterministic. Huhtala et al. (1999)
considers the minimum number of observations that
must be discarded from the data for the relationship
to be considered deterministic.
We will rather use ε as a threshold on the empirical
conditional entropy.

Definition 4 ε−quasi-determinism (epsilon−qd)
Given a dataset D containing observations of variables
X and Y , the relationship X → Y is ε−qd wrt D iff
HD(Y |X) ≤ ε.

We have seen in Proposition 2 that deterministic
forests are part of an optimal DAG with respect to
the MLL score. Moreover, forests have a very low com-
plexity in terms of number of arcs, which also implies
a low complexity in terms of number of parameters if
max

1≤i≤n
|V al(Xi)| is reasonably bounded.

We are therefore confident that a DAG built from the
union of a deterministic forest and an optimized root
DAG will have good performance in terms of penalized
log-likelihood scores as BDe (Heckerman et al. (1995))
or its asymptotical equivalent BIC (). Combining this
intuition with the ε−qd criteria presented in Defini-
tion 4, we propose the quasi-determinism screening
approach to Bayesian Network structure learning, de-
fined in the next subsections.

4.2 Quasi-determinism screening algorithm

The following algorithm details how to find the sim-
plest ε−qd forest Fε from a dataset D and a threshold
ε. Here simplest refers to the complexity in terms of
number of parameters P(Fε).

Algorithm 1 Quasi-determinism screening (qds)

Input: D dataset containing M instances of vari-
ables X1, . . . , Xn, ε quasi determinism threshold

1: Compute empirical conditional entropy matrix
HD =

(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do # identify the set of potential
ε−qd parents for each i

3: compute πε(i) = {j ∈ J1, nK \ {i} | HDij ≤ ε}
4: for i = 1 to n do # check for cycles in ε−qd

relations
5: if ∃j ∈ πε(i) s.t. i ∈ πε(j) then
6: if Hij ≤ Hji then
7: πε(i)← πε(i) \ {j}
8: else
9: πε(j)← πε(j) \ {i}

10: for i = 1 to n do # choose the simplest among all
potential parents

11: π∗ε (i)← argmin
j∈πε(i)

|V al(Xj)|

12: Compute forest Fε = (VFε , AFε) where VFε =
J1, nK and AFε = {(π∗ε (i), i) | i ∈ J1, nK s.t. π∗ε (i) 6=
∅}
Output: Fε

The next result is nontrival for ε > 0, its proof is given
in the supplementary material.

Proposition 3 For any input D and ε, the output of
Algorithm 1 is a forest (i.e. a directed acyclic graph
with at most node parent per node).

Proof: Let D and ε be objects that satisfy the input
constraints of Algorithm 1, and let Fε be the object
that is returned by Algorithm 1 with inputs D and ε.
Fε is a directed graph, by definition. Moreover, it is
built so that all of its nodes had at most one parent
(line 12).
To conclude, we therefore only have to prove that Fε
does not contain cycles.
Let us suppose that there is a cycle i1, . . . ip in Fε.
There are two cases:

1. Either all associated variables have the same en-
tropy: HD(Xi1) = HD(Xi2) = · · · = HD(Xip).
In which case, there is necessarily two succesive
nodes in the cycle il, il+1 such that il > il+1.
However, HD(Xil |Xil+1

) = HD(Xil+1
|Xil) ≤ ε,

which means that when the algorithm reaches
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line 4, il+1 ∈ πε(il) and il ∈ πε(il+1). Since il+1 is
treated before il in the for loop, this would result
in il being removed from πε(il+1), thus preventing
for il to ever be il+1’s parent: we have a contra-
diction.

2. Either there exist at least two variables in
the cycle that do not have the same entropy:
HD(Xik) 6= HD(Xik′ ), for k, k′ ∈ J1, pK.
In this case, there also exist two successive nodes
il, il+1 such that HD(Xil) 6= HD(Xil+1

).
Let us suppose that HD(Xil+1

) > HD(Xil). In
that case:

HD(Xil |Xil+1
) = HD(Xil+1

|Xil)

+HD(Xil)−HD(Xil+1
)︸ ︷︷ ︸

<0

< HD(Xil+1
|Xil)

≤ ε.

Therefore when the algorithm reaches line 4,
il+1 ∈ πε(il). But when treating either il or
il+1 during the for loop of lines 4-9, the test on
line 6 necessarily implies that il is removed from
πε(il+1) (since HD(Xil |Xil+1

) < HD(Xil+1
|Xil)).

This is in contradiction with the fact that il is
il+1’s parent.

Therefore, HD(Xil+1
) < HD(Xil), and arcs

in AFε follow nonincreasing entropies, with at
least one decrease since we suppose that all
entropies are not equal. This is not possible in a
cycle: there is a contradiction.

We conclude that there is no cycle in Fε. �

4.3 Learning Bayesian Networks using the
quasi deterministic screening

We now present an algorithm that uses quasi-
determinism screening to accelerate Bayesian Network
structure learning. This algorithm takes the following
input:

• D: a dataset

• ε: a threshold for quasi-determinism

• sota-BNSL: a state of the art structure learning al-
gorithm, taking for input a dataset, and giving for
an output a Bayesian Network structure. This al-
gorithm is typically hill-climbing with tabu list and
random restarts, associated with a penalized score
like BDe or BIC.

Algorithm 2 Bayesian Network structure learn-
ing with quasi deterministic screening (qds-
BNSL)

Input: D: dataset containing M instances of vari-
ables Xn = X1, . . . , Xn

ε quasi-determinism threshold
sota−BNSL state of the art structure learning

algorithm
1: Compute Fε by running Algorithm 1 with inputs
D and ε

2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set
of Fε’s roots.

3: Compute G∗R(Fε)
by running sota-BNSL on XR(Fε)

4: G∗ ← Fε ∪G∗R(Fε)

Output: G∗

One of the interests of Definition 3 for considering
quasi-determinism is that it straightforwardly gives
the following guarantee concerning the graph G∗ re-
turned by Algorithm 2:

Lemma 2 Let ε, D and sota-BNSL be rightful inputs
to Algorithm 2, and G∗ the associated output.
Then, if sota-BNSL is exact (i.e. always returns an
optimal solution) with respect to the MLL score, we
have the following lower bound for sL(G∗ : D):

sL(G∗ : D) ≥
(

max
G∈DAGV

sL(G : D)

)
−Mnε.

Proof: The structure of the proof is the same as the
one from Proposition 2. The only difference lies in the
computation of term (b):

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)︸ ︷︷ ︸
≤ε

≥ −M(n− p)ε
≥ −Mnε.

plugging this in the separated expression of the MLL
score of G∗ in terms (a) and (b) yields the wanted re-
sult.
�
In practice, this bound is not very tight and this re-
sult therefore has few applicative potential. However,
it shows that for ε → 0, we are guaranteed to find
the best overall graph (assuming optimality of sota-
BNSL), going back to the setting of Proposition 2.
This algorithm is therefore promising, notably if for
small ε we can significantly reduce the number of vari-
ables to be considered by sota-BNSL. We would in
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this case have a much faster algorithm for only a small
performance loss.

4.4 Complexity analysis

Complexity of the state of the art algorithm
The number of possible DAG structures being super
exponential in the number of nodes, state of the art
is heuristics that do not entirely explore the structure
space but which use smart caching and pruning meth-
ods to have a good performance & computation time
trade-off.
Let sota-BNSL be a state of the art Bayesian Net-
work structure learning algorithm and Csota(M,n) be
its complexity.
Csota(M,n) should typically be thought of as linear in
M and exponential, or at least high degree polynomial,
in n for the best algorithms.

Complexity of Algorithm 1 We have the follow-
ing decomposition of the complexity of Algorithm 1:

1. Lines 1-3: O(Mn2). Computation of H: we need
counts for every couple (Xi, Xj) for i < j (each
time going through all rows of D), which implies

M n(n−1)
2 operations.

2. lines 4-9: O(n2). Going through H once.

3. lines 10-12: O(n2). Going through H once.

Overall we have that CAlg1(M,n) = O(Mn2).

Complexity of Algorithm 2 For a given dataset
D and threshold parameter ε, we define

nε = |{i ∈ J1, nK | πFε(i) = ∅}|

the number of roots of the forest Fε returned by Algo-
rithm 1. The complexity of Algorithm 2 then decom-
poses as:

1. Line 1: O(Mn2). Run of Algorithm 1.

2. Lines 2-4: Csota(M,nε). Run of sota-BNSL on
reduced dataset DR(F ) with nε columns.

This gives CAlg2(M,n) = O(Mn2)+Csota(M,nε). We
are interested in how much it differs from Csota(M,n),
which depends on two main elements:

• How nε compares to n,

• How Csota(M,n) varies with respect to n.

For example, if Csota(M,n) = O(np) with p ≥ 3
(which is realistic) and if nε = n

2 , we can expect an im-
portant decrease of computation time from sota-BNSL
to qds-BNSL (Algorithm 2). If moreover this is true
for small ε, then we also have the guarantee that the
performance of the Bayesian Networks learnt will not
differ too much.

It is hard to obtain a theoretical difference in com-
putation time, since it is not clear how to estimate
the complexity of state-of-the-art learning algorithms
often based on local search heuristics. In the next sec-
tion, we use benchmark datasets to run both a state of
the art algorithm and Algorithm 2, in order to confirm
our intuitions.

5 RESULTS

5.1 Setting

Data : Table 1 summarizes the data we used in our
experiments.
We chose open-source1 datasets presented by Davis
and Domingos (2010) which contained more than
30 variables: 20 Newsgroup, Abalone, Adult, Book
(Ziegler et al. (2005)), Covertype, KDDCup 2000,
MSNBC, MSWeb, Plants and Reuters-52, some of
which are also accessible on the UCI machine learn-
ing repository Lichman (2013). Moreover, we chose
the largest Bayesian Networks available in the litera-
ture2, for each of which we simulated 10000 observa-
tions: Alarm, Hailfinder, Hepar 2, Link, Munin 1-4.

Table 1: Dataset presentation

DATASET n M

20ng 930 11293
abalone 31 3134
adult 125 36631
book 500 8700
covertype 84 30000
kddcup2000 64 180092
msweb 294 29441
plants 69 17412
r52 941 6532
webkb 843 4874
wine 48 1728
alarm 37 10000
andes 223 10000
hailfinder 56 10000
hepar2 70 10000
link 724 10000
munin1 186 10000
munin2 1003 10000
munin3 1041 10000
munin4 1038 10000
pathfinder 109 10000

1http://alchemy.cs.washington.edu/papers/
davis10a/

2urlhttp://www.bnlearn.com/bnrepository/

http://alchemy.cs.washington.edu/papers/davis10a/
http://alchemy.cs.washington.edu/papers/davis10a/
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Algorithm Evaluation We will evaluate the algo-
rithms using 3 axes of performance:

• Bayesian Network BIC score: this corresponds to the
sBIC(. : D) presented in section 2. It is the most
straightforward penalized-likelihood score, used in
several recent papers as de Campos and Ji (2011),
Yuan et al. (2011), Scanagatta et al. (2015), Scana-
gatta et al. (2016). It is quickly computable, with
efficient caching, and does not require the tuning of
a hyperparameter.

• Bayesian Network number of arcs. The complexity
of Bayesian Networks is included in the aforemen-
tioned BIC score through the number of parame-
ters. But it is interesting to look at the number of
arcs, since this is closer in practice to how complex
a Bayesian Network structure appears to a human
being, and therefore to its interpretability.

• computing time trun of the structure learning algo-
rithm, ran on a cluster TODO specs Alexis.

Code and selected state-of-the-art algorithm
Most of the code associated with this project was done
in R, enabling an optimal exploitation of the bnlearn

package from Scutari (2009), which is a very good ref-
erence among open-source package on Bayesian Net-
works structure learning.
We need a state-of-the-art Bayesian Network structure
learning algorithm, both to use inside Algorithm 2
after the quasi-determinism screening phase, and to
run separately on the full dataset to use as a refer-
ence for evaluating qds-BNSL. After carefully evalu-
ating several algorithms implemented in the bnlearn

package, we chose to use Greedy Hill Climbing with 20
random restarts as it consistently outperformed other
algorithms both in time and score.

Choice of ε for qds-BNSL An approach to choos-
ing ε in the case of the qds-BNSL algorithm is to pick
values for nε, and reverse engineer the values of ε that
enable those nε’s.
It must be noted that since H is already computed
and stored, evaluating the function nbroots : ε 7→ nε is
done in constant time, and finding one of its quantiles
is doable in at most O(log(n)) operations (dichotomy),
which is negligible compared to the overall complexity
of the screening phase.
For this exploratory analysis, we picked the follow-
ing values for nε: 0.9n, 0.75n and 0.5n. For a given
dataset, we write εx = nbroots−1(bxnc) where x ∈
[0, 1].

In the next section, we present the obtained results for
our selected state of the art algorithm sota, and 3 ver-
sions of qds-BNSL which we refer to by their associated
values of ε: ε0.9, ε0.75 and ε0.5.

5.2 Empirical results on benchmark datasets

For the BIC score table, we display in bold every result
that is in a 5% range of the state of the art algorithm
score.

Table 2: normalized negative BIC score

dataset sota qd(ε0.9) qd(ε0.75) qd(ε0.5)

20ng 144.22 145.02 146.86 150.23
abalone 5.65 6.37 7.17 8.73
book 35.93 36.07 36.28 37.23
covertype 13.89 13.91 14.03 15.33
kddcup2000 2.40 2.41 2.42 2.48
msnbc 6.22 6.24 6.36 6.48
msweb 9.90 9.90 9.90 9.94
plants 13.22 13.52 14.14 15.84
r52 97.44 98.03 98.99 102.40
webkb 14.48 15.35 18.97 21.52
alarm 10.66 10.80 11.17 12.07
andes 93.28 93.73 99.07 108.69
hailfinder 49.85 49.87 51.18 54.86
hepar2 32.63 32.72 33.06 33.65
link 218.87 220.53 222.47 256.99
munin1 43.49 43.51 43.56 47.86
munin2 171.49 171.85 171.85 175.25
munin3 172.44 172.44 172.44 173.97
munin4 194.77 194.90 194.90 200.87
pathfinder 28.60 28.64 28.62 29.82

We see that qds-BNSL consistently requires less com-
putational time that sota-BNSL, like suggested by the
complexity study of the previous section. Moreover,
the models learned with qds-BNSL are sparser and
therefore more interpretable. This phenomenon
increases as nε decreases.

For most of the datasets, the decrease in BIC score
for qds-BNSL with ε0.9 and ε0.75 is smaller than 5%.
This is even true for ε0.5 when the data contains a lot
of very strong relationships as in msweb. Moreover,
we observe a decrease in computational time and
model complexity for qds-BNSL, which consistently
intensifies when ε gets bigger.
In the best cases, we have both a small decrease in
BIC score (less than 5%), and an important decrease
in computational time ( (msweb, TODO, even 30%
for TODO..).

The following plot shows the relative change in
BIC score, computation time and number of arcs,
for sota-BNSL and qds-BNSL for ε0.9, ε0.75 and ε0.5,
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Table 3: Computation time (seconds)

dataset sota qd(ε0.9) qd(ε0.75) qd(ε0.5)

20ng 17193 13991 10005 4341
abalone 11 10 8 5
book 3851 3396 2939 1618
covertype 540 483 342 147
kddcup2000 1530 1424 958 447
msnbc 216 170 90 28
msweb 2710 2906 2863 1540
plants 227 188 137 57
r52 17193 13991 10005 4341
webkb 36 34 23 15
alarm 113 187 19 7
andes 4590 857 588 257
hailfinder 241 45 37 19
hepar2 391 72 45 23
link 32869 6045 5731 2252
munin1 2499 437 355 282
munin2 33403 6328 5541 2801
munin3 43040 6481 6963 3719
munin4 37982 6720 6656 4152
pathfinder 1141 193 148 65

averaged over all datasets.

6 DISCUSSION

The quasi-deterministic screening phase enables a
decrease in computational time for a small decrease in
graph performance. This tradeoff gets more and more
advantageous when there actually are very srong 1
to 1 relationships in the data, that can be detected
during the screening phase, and enable a decrease in
the number of variables to be considered by the state
of the art structure learning algorithm of the second
phase.
Optimal cases for this algorithm happen when we
get a huge decrease in the number of variables to
consider after the screening phase for ε reasonably
small (e.g. datasets msweb, TODO). We have tested
our algorithm on industrial datasets corresponding to
descriptive metadata, for which most of the variables
possess empirically-deterministic parents: in this case
we have nε=0 very small with respect to n (typically
nε=0 ≈ 2 − 3 and n ≈ 80), and qds-BNSL is up to
two orders of magnitude faster for no performance loss.

The main axis of research is to anticipate how
good the tradeoff may be before running any al-
gorithm all the way through, thus preventing us
from using qds-BNSL on datasets for which there

Table 4: Model complexity (number of arcs)

dataset sota qd(ε0.9) qd(ε0.75) qd(ε0.5)

20ng 3136 2995 2669 2136
abalone 86 85 76 56
book 1296 1237 1173 973
covertype 337 334 299 210
kddcup2000 217 214 188 148
msnbc 96 89 67 36
msweb 464 460 461 475
plants 291 265 237 170
r52 2713 2614 2465 2031
webkb 157 147 130 114
alarm 54 50 55 42
andes 336 333 312 259
hailfinder 64 63 63 55
hepar2 92 89 72 64
link 1137 1116 1150 885
munin1 208 208 210 188
munin2 874 879 879 761
munin3 898 898 898 828
munin4 905 903 903 826
pathfinder 161 154 147 122

are absolutely no strong 1 on 1 relationships, and
enabling us to choose the perfect value of ε in cases
where there is a lot of potential for computational
time win with controlled performance loss. A first
idea would be to used the bound presented in Lemma
2 TODO, even though this bound concerns the MLL
score (and not the BIC score), and that it is far from
tight in practice. Ideally, we would like to find a tight
bound on BIC score to estimate the BIC loss of our
graph, which would enable a good estimation of ε
realizing the best tradeoff.

On the implementation’s side, we still have potential
to better the qds-BNSL algorithm, by paralellizing the
computation of H, and implement it in C instead of R.

Finally, we have some ideas of how to generalize even
more our quasi-detrministism screening idea: The
proof of Proposition 2 suggests that the result still
holds when F is any kind of deterministic DAG (and
not only a forest). We could use rule induction, tech-
niques that detect determinism in a broader sense that
1 to 1 to make the screening more efficient. For this
purpose we could take inspiration from papers of the
knowledge discovery in databases (KDD) community,
as Huhtala et al. (1999), Dechter and Mateescu (2004),
Liao et al. (2005) or more recently Papenbrock et al.
(2015) which compares different functional dependen-
cies discovery methods. We also could broaden our
definition of quasi-determinism: we choose to consider
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the information-theoretic quantity HD(Y |X) to de-
scribe the strength of the relationship X → Y , since it
is consistent with the rewriting of the MLL score given
by Lemma 1. However, one could choose other quan-
tities for this definition. For example, we could prefer

considering X → Y to be ε−qd when HD(X|Y )
HD(X)

≤ ε

(i.e. MID(X,Y )
H(Y ) ≥ 1 − ε) which gives another appreci-

ation of the strength of the relationship: for a given
variable Y , this comes down to finding a variable X
such that MID(X,Y ) is high. This is connected to
the ideas of Chow and Liu (1968) or Cheng et al.
(1997) where pairwise empirical mutual information
is central. Choosing this approach instead of the one
given by Definition 3 does not change the upcoming
algorithms and complexity considerations. Finally, we
could use other definitions of entropy, as Renyi en-
tropies presented by Rényi et al. (1961).
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