Bayesian Nonparametric Subspace Estimation
Résumé
Principal component analysis is a widely used technique to perform dimension reduction. However, selecting a finite number of significant components is essential and remains a crucial issue. Only few attempts have proposed a probabilistic approach to adaptively select this number. This paper introduces a Bayesian nonparametric model to jointly estimate the principal components and the corresponding intrinsic dimension. More precisely, the observations are projected onto a random orthogonal basis which is assigned a prior distribution defined on the Stiefel manifold. Then the factor scores take benefit of an Indian buffet process prior to model the uncertainty related to the number of components. The parameters of interest as well as the nuisance parameters are finally inferred within a fully Bayesian framework via Monte Carlo sampling. The performances of the proposed approach are assessed thanks to experiments conducted on various examples.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...