Extending K-means to Preserve Spatial Connectivity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Extending K-means to Preserve Spatial Connectivity

Sampriti Soor
  • Fonction : Auteur
  • PersonId : 1026774
Aditya Challa
Sravan Danda
B S Daya Sagar
  • Fonction : Auteur
  • PersonId : 1026775

Résumé

Clustering is one of the most important steps in the data processing pipeline. Of all the clustering techniques, perhaps the most widely used technique is K-Means. However, K-Means does not necessarily result in clusters which are spatially connected and hence the technique remains unusable for several remote sensing, geoscience and geographic information science (GISci) data. In this article, we propose an extension of K-Means algorithm which results in spatially connected clusters. We empirically verify that this indeed is true and use the proposed algorithm to obtain most significant group of wa-terbodies mapped from multispectral image acquired by IRS LISS-III satellite.

Mots clés

Fichier principal
Vignette du fichier
KMeansGraph_IGARSS2018V4.pdf (483.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01686321 , version 1 (17-01-2018)

Identifiants

  • HAL Id : hal-01686321 , version 1

Citer

Sampriti Soor, Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman. Extending K-means to Preserve Spatial Connectivity. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2018, Valencia, Spain. ⟨hal-01686321⟩
294 Consultations
831 Téléchargements

Partager

More