On Demand Solid Texture Synthesis Using Deep 3D Networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

On Demand Solid Texture Synthesis Using Deep 3D Networks

Jorge Gutierrez
  • Fonction : Auteur
  • PersonId : 1006617
Julien Rabin
Bruno Galerne
  • Fonction : Auteur
  • PersonId : 924934
Thomas Hurtut
  • Fonction : Auteur
  • PersonId : 864515

Résumé

This paper addresses the problem of generating volumetric data for solid texture synthesis. We propose a compact, memory efficient, convolutional neural network (CNN) which is trained from an example image. The features to be reproduced are analyzed from the example using deep CNN filters that are previously learnt from a dataset. After training the generator is capable of synthesizing solid textures of arbitrary sizes controlled by the user. The main advantage of the proposed approach in comparison to previous patch-based methods is that the creation of a new volume of data can be done in interactive rates.
Fichier principal
Vignette du fichier
SOLID TEXTURE GENERATIVE NETWORK FROM A SINGLE IMAGE.pdf (3.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01678122 , version 1 (08-01-2018)
hal-01678122 , version 2 (30-12-2018)
hal-01678122 , version 3 (20-12-2019)

Identifiants

  • HAL Id : hal-01678122 , version 1

Citer

Jorge Gutierrez, Julien Rabin, Bruno Galerne, Thomas Hurtut. On Demand Solid Texture Synthesis Using Deep 3D Networks. 2018. ⟨hal-01678122v1⟩
1541 Consultations
751 Téléchargements

Partager

More