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ABSTRACT

This paper addresses the problem of generating volumetric
data for solid texture synthesis. We propose a compact, mem-
ory efficient, convolutional neural network (CNN) which is
trained from an example image. The features to be repro-
duced are analyzed from the example using deep CNN filters
that are previously learnt from a dataset. After training the
generator is capable of synthesizing solid textures of arbitrary
sizes controlled by the user. The main advantage of the pro-
posed approach in comparison to previous patch-based meth-
ods is that the creation of a new volume of data can be done
in interactive rates.

Index Terms— Texture synthesis, convolutional neural
networks, volumetric data generation, solid textures.

1. INTRODUCTION

Motivation and context Besides imaging problems which
deal with volumetric data (such as MRI in medical imag-
ing, or 3D seismic geological data), the main application of
solid texture synthesis originates from computer graphics.
Since [1, 2], this approach has been proposed to create 3D
objects as an alternative to texture mapping or synthesis onto
3D meshes. It is an efficient and elegant way of dealing with
many problems that arise with the later approaches, such as
time consuming artist design, mapping distorsion and seams,
etc. Once the volumetric information is generated, surfaces
can be carved inside without further parametrization no mat-
ter how intricate they are. However, several reasons still limit
the use of such techniques in practice: i) storing volumetric
data is prohibitive (HD quality requires several GB of mem-
ory); ii) learning to generate such data is a difficult task as
there is no 3D examples; iii) previous synthesis approaches
based on optimizing a matching criterion do not achieve
real-time performance.

In this work, we investigate the use of Convolutional Neu-
ral Networks (CNN) for solid texture synthesis. The general
principle of CNN is first to off-line train a network to achieve
a specific task, usually by optimizing its parameters given a
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loss function. Then, at run-time, the network is applied to
new images to perform the task which is often achieved in
real-time.

Contributions We introduce a solid texture generator based
on convolutional neural networks that is capable of synthe-
sizing solid textures from a random input at interactive rates.
Taking inspiration from previous work on image texture syn-
thesis with CNN, a framework is proposed for the training of
this solid texture generator. A volumetric loss function based
on deep CNN filters is defined by comparing multiple view-
point slices of the generated textures to a single example im-
age. This model ensures that each cross-section of the gener-
ated solid shares the same visual characteristics as the input
example. To the best of our knowledge, there is no such archi-
tecture proposed in the literature to generate volumetric color
data.

Outline The paper is organized as follows: Section 2 gives a
short overview of the literature about solid texture synthesis
methods and 2D texture synthesis using neural networks, Sec-
tion 3 describes the proposed generative model and Section 4
gives the implementation details and some visual results.

2. RELATED WORKS ON TEXTURE SYNTHESIS

Let us give a quick review on example-based texture synthe-
sis, first with a focus on solid texture synthesis and second on
convolutional networks for image generation.

2.1. Solid texture synthesis

Procedural texture synthesis Procedural methods are a very
special category which consists of evaluating a specific noise
function depending on the spatial coordinates to achieve real-
time synthesis with minimal memory requirements [2, 3]. Un-
fortunately, these methods often fail at reproducing real-world
examples with structured features.

Example-based solid texture synthesis Most successful
methods focus on generating volumetric color data (grids of
voxels) whose cross-sections are visually similar to a respec-
tive input texture example.



In [4, 5] an analog “slicing” strategy is used, where the
texture is generated iteratively, alternating between indepen-
dent 2D synthesis of the slices along each of the three or-
thogonal axes of the cartesian grid, and 3D aggregation by
averaging. The main difference between the two approaches
is the features to be considered: steerable filters coefficients
and laplacian pyramid in [4] and spectral information in [5].

Generalizing some previous work on texture synthesis,
Wei [6] designed an algorithm which consists of modifying
the voxels of a solid texture initialized randomly by copying
the average color values from an image in a raster scan order
based on the most similar neighborhood extracted along each
axis. This strategy has been refined and accelerated by Dong
et al. [7] by pre-processing compatible 3D neighborhoods ac-
cordingly to the examples given along some axis.

Closely related to these methods, patch-based approaches
[8, 9] iteratively modify the local 2D neighborhood of a voxel
to match similar neighborhoods in examples, under statistical
constraints on colors or spatial coordinates.

While recent methods achieve state-of-the-art results,
their main limitation is the required computation time due
to iterative update of each voxel, (several minutes except for
[7]) thus prohibiting real-time applications.

2.2. Neural networks on texture synthesis

Several methods based on deep CNN have been recently
proposed for 2D texture synthesis that outperform previ-
ous ones based on more “shallow” representation (wavelets,
neighborhood-based representations, etc). In the following,
we present and discuss the most successful of such architec-
tures.

Image optimization Gatys et al. [10] proposed a variational
framework inspired from [11] to generate an image which
aims at matching the features of an example image. The
most important aspect of this framework is that the discrep-
ancy is defined as the distance between Gram matrices of the
input and the example images; these matrices encode the fil-
ters’ responses of an image at some layers of a deep convo-
lutional neural network which is pretrained on a large image
dataset [12]. Starting from a random initialization, the in-
put image is then optimized using back-propagation and a
stochastic gradient descent algorithm.

Since then, several variants have been using this frame-
work to improve the quality of the synthesis: for structured
textures by adding a Fourier spectrum discrepancy [13];
for non-local patterns by considering spatial correlation and
smoothing [14]; for stability by considering a histogram
matching loss and smoothing[15].

The main drawback of such strategy comes from the opti-
mization process itself, as it requires several minutes to gen-
erate one image.

Feed-forward texture networks The principle introduced
by Ulyanov et al. [16] to circumvent this issue is to train a

network to generate texture samples from random inputs that
produce the same visual features as the texture example. As in
the previous framework, the objective loss function to be min-
imized relies on the comparison between feature activations in
a pre-trained discriminative CNN from the output and the tex-
ture example. However, this time, instead of optimizing the
generated output image the training aims at tuning the param-
eters of the generative network. Such optimization is more in-
tensive as much more variables are now involved, but it only
needs to be done once and for all. This is achieved in prac-
tice using back propagation and a gradient-based optimization
algorithm using batches of random inputs. Once trained, the
generator is able to quickly generate samples similar to the in-
put example by forward evaluation. Feed-forward texture net-
works methods generally produce results with slightly lower
quality than the image optimization using CNN ones but it
exhibits computation times extremely shorter.

Originally these methods train one network per texture
sample. Li et al. [17] proposed a training scheme to allow
one network to have the capacity to generate and mix several
different textures. In order to prevent the generator from pro-
ducing identical images, they also incorporate in the objec-
tive function a term that encourages diversity in synthesized
batches, similarly to [18].

Aside from texture synthesis, other computer vision appli-
cations dealing with volumetric benefit from CNN. As an ex-
emple, [19] proposed recently a GAN for 3D shape inpainting
and [20] proposed Octree Networks for 3D shapes generation.

In the more specific problem of generating 3D objects
from several 2D view images which is close to the problem
considered in this work, deep learning methods have also
been recently introduced, including [21] for dynamic facial
texture, and [22, 23, 24] for 3D object generation from 2D
views.

3. SOLID TEXTURE NETWORKS

Similar to the 2D feed-forward texture networks, our method
consists of a solid texture generator and a training framework
incorporating a descriptor network and a 3D loss. One gener-
ator is to be trained for each input example, with most of the
computations occurring in that process. Once the generator
is trained it can be used to quickly generate new solid sam-
ples of arbitrary sizes (only limited by the available memory).
Here we describe each element of the framework.

3.1. Generator

The generator is a feed-forward network that takes a noise

input z ∈ R
Nx
2k
×Ny

2k
×Nz

2k
×Nc , and produces a solid texture

sample g(z) ∈ RNx×Ny×Nz×3. The proposed architecture
is illustrated in Figure 1, it consists of k + 1 filter blocks,
k up-sampling operators and a final single volumetric con-
volutional layer that maps the number of channels to three.



Fig. 1. Architecture of the generator network.

The filter blocks depict three volumetric convolutional lay-
ers, each one of them followed by a batch normalization layer
and a ReLU activation function. The sizes of the filters are
3 × 3 × 3, 3 × 3 × 3 and 1 × 1 × 1 similar to what previous
methods do for 2D textures. up represents an up-sampling of
the solid by a factor of 2 using a nearest neighbor interpola-
tion. The first filter block uses f filters and the central pair
filter block - up is applied k times with f

2i , i = 1, ..., k filters.
The architecture of the generator is particularly useful for

texture synthesis because the size of the output only depends
on the size of the noise input used. This allows us to train
a generator with a given size of input image and afterwards
generate solids of different sizes.

3.2. 3D slice-based loss

As each slice (cross-section) of the generated solid should
capture the visual characteristics of the 2D input example it is
straightforward to define a slice-based 3D loss. The proposed
loss simply aggregates the 2D losses produced by each one of
the slices of the solid. For a color solid v ∈ RNx×Ny×Nz×3

we consider D slicing directions with the corresponding Nd
number of slices. We then define a slice of the solid vd,n as
the 2D slice n of v orthogonal to the direction d. Given the
input image u we propose the following slice based loss:

L(v|u) =
∑

d∈{1..D}

1

Nd

Nd∑
n=1

L2(vd,n, u) (1)

where L2(·, u) is a 2D loss that computes the similarity be-
tween an image and the input image u.

3.3. Descriptor network

We reproduce the strategy of previous methods of using a pre-
trained neural network to compute and back-propagate a 2D
loss that successfully compares the image statistics. A pop-
ular way is to consider the Gram matrix loss computed on a
descriptor network between the input example u and a slice
vd,n is defined as:

L2(vd,n, u) =
∑
l∈L

∥∥Gl(vd,n)−Gl(u)∥∥2

F
(2)

Fig. 2. Architecture of the training framework.

where Gl is the Gram matrix computed as the scalar product
Gli,j(x) = 〈F li (x), F lj(x)〉RΩ` between the ith and jth feature
maps, and F : x ∈ RΩ×3 7→ {F `i (x) ∈ RΩ`}`∈L,i∈W`

is
the feature map associated to x and L is a set of layers on the
descriptor network that are taken in account for the loss.

3.4. Training

We train the generator network g to generate solid textures
whose cross-sections are similar to the corresponding input u.
The training of the generator g(z, θ) with parameters θ con-
sists in minimizing the expectation of the loss in Equation 1
given the example u :

θu ∈ argmin
θ

EZ∼Z [L(g(Z, θ), u)] (3)

where Z is a white noise sample from a certain distribution
Z . However, since the distribution of Z is invariant by trans-
lation and the generative network is (approximatively) invari-
ant by translation (disregarding border effects and the non
strict stationarity of the upscaling), for each slicing direction
d ∈ {1..D}, the Nd slices g(Z, θ)d,n have the same distribu-
tion. Hence, for all fixed slice index n0 ∈ {1..Nd},

EZ∼Z [L(g(Z, θ), u)]

=
∑

d∈{1..D}

1

Nd

Nd∑
n=1

EZ∼Z [L2(g(Z, θ)d,n, u)]

=
∑

d∈{1..D}

EZ∼Z [L2(g(Z, θ)d,n0 , u)] .

(4)

This means that thanks to the stationarity of the generative
model, minimizing in expectation the loss of Equation 1 that
has D × Nd terms can be done by only computing one loss
term per slicing direction. In practice we use the central slice
index n0 = Nd/2 to avoid boundary issues. Note that com-
puting the loss for all slices requires more memory.

The training framework is illustrated in Figure 2. In short
it consists of extracting the central slice of a generated solid
v = g(Z, θ) and sum theD 2-D losses to compute a stochastic
gradient estimation of the full 3-D loss of Equation 1. This
framework allows the simple back propagation of the gradient
to the generator network, and each slice of the volume model
is impacted since the convolution weights are shared by all
slices.



u vx,N1/4 vy,N2/4 vz,N3/4 v v′ ⊂ v

Fig. 3. Three examples of solid generation. From left to right:
example, slices of the solid along each axis at n = Nd/4,
full solid cube v and a subset v′ of v. From top to bottom:
f = 64, 48, 64. The sizes are 1283 for the first row and then
643 for the others.

4. RESULTS AND DISCUSSION

4.1. Experimental setting

Our framework is based on the code for [16], using Torch7.
For our experiments, we restrict the number of slicing direc-
tions to three orthogonal axes (D = 3 for each example) and
for simplicity we set Nx = Ny = Nz . We train our genera-
tor with textures of 642 and 1282 pixels. During training we
generate cubic solids with the same width as the example.

Generator We use a network with two up-samplings (k = 2).
Each convolution is applied with a step of 1 and when the fil-
ter is bigger than 1 × 1 × 1 we use replicating padding to
preserve the size of the sample and lessen boundary artifacts.
We sample the noise inputs Z from a uniform distribution
with 323 values, therefore the number of channels Nc is ad-
justed to the training size Nx ×Ny ×Nz of the solid and k.

Discriminator We use the VGG19 [12] as discriminator
network with the set of loss layers L = {relu1 1, relu2 1,
relu3 1, relu4 1, relu5 1} similar to [16]. Before feeding the
input example to the discriminator it has to be pre-processed
by subtracting the mean of the dataset the discriminator was
trained with. Likewise, we need to post-process the generated
samples by adding the same mean values.

Training We train the generator using stochastic gradient
descent, at each iteration sampling a batch {zb}b=1..B with
B = 2. We use 3000 iterations with a learning rate starting
at 0.01 and decreasing by ×0.8 each 200 iterations after 500
iterations.

4.2. Results

Figure 3 shows some examples of solid texture generation us-
ing our method. We show one slice of the generated solid for
each orthogonal axis, the whole generated cube and a subset
of the cube showing an oblique cut. The generator is able

to synthesize color information that is coherent through the
whole volume. The structure elements of the generated solids
take a plausible shape. However note that for some cases
it might not exist a good structure given the input example.
The computation time is respectively around 0.1, 1 and 5 sec-
onds for a 643, 1283, and 2003 texture with a generator of
f = 64 using a GPU Tesla K40M 2880 Cores 12G RAM.
While some of the aforementionned methods report having
issues with generating samples that are different from each
other [17, 18], our model generates output with satisfying di-
versity (see Figure 4).

Fig. 4. Diversity of the generated solids with the same gen-
erator (size 643) and different inputs. This time, the genera-
tor is learnt using odd slices (n ∈ {1, 3..63} instead of only
n0 = 32), showing that the model does not rely on the number
of slices, as demonstrated in Eq. 4.

As mentioned before, once the generator is trained, the
size of the sample can be controlled by the size of the input
noise. In Figure 5 we show two samples of different size gen-
erated with the same network.

Fig. 5. Solid textures synthesized with the same trained gen-
erator (f = 48) with size 643 or 2003.

4.3. Discussion

We have proposed a new approach to solid texture genera-
tion that may become an important tool for computer graphics
applications requiring fast processing. Our approach moves
the computational burden to an off-line learning stage to pro-
vide a compact network containing only the information re-
quired to generate a volumetric data of an arbitrary size hav-
ing the desired visual features. Moreover, contrarily to patch-
based approaches, the synthesized texture is not based on lo-
cal copies of the input. Finally, the quality of the generated
textures depends mostly on the computing resources (e.g lim-
iting the number of filters stored in memory).
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