Uniform decomposition of probability measures: quantization, clustering and rate of convergence - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Probability Année : 2018

Uniform decomposition of probability measures: quantization, clustering and rate of convergence

Résumé

The study of finite approximations of probability measures has a long history. In (Xu and Berger, 2017), the authors focus on constrained finite approximations and, in particular, uniform ones in dimension d = 1. The present paper gives an elementary construction of a uniform decomposition of probability measures in dimension d ≥ 1. This decomposition is then used to give upper-bounds on the rate of convergence of the optimal uniform approximation error. These bounds appear to be the generalization of the ones obtained in (Xu and Berger, 2017) and to be sharp for generic probability measures.
Fichier principal
Vignette du fichier
v2.pdf (345.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01677877 , version 1 (08-01-2018)
hal-01677877 , version 2 (13-11-2018)

Identifiants

Citer

Julien Chevallier. Uniform decomposition of probability measures: quantization, clustering and rate of convergence. Journal of Applied Probability, 2018, 55 (4), pp.1037-1045. ⟨10.1017/jpr.2018.69⟩. ⟨hal-01677877v2⟩
326 Consultations
498 Téléchargements

Altmetric

Partager

More