Büchi Automata Recognizing Sets of Reals Definable in First-Order Logic with Addition and Order - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2017

Büchi Automata Recognizing Sets of Reals Definable in First-Order Logic with Addition and Order

Résumé

This work considers encodings of non-negative reals in a fixed base, and their encoding by weak deterministic Büchi automata. A Real Number Automaton is an automaton which recognizes all encodings of elements of a set of reals. We explain in this paper how to decide in linear time whether a set of reals recognized by a given minimal weak determin-istic RNA is FO[IR; +, <, 1]-definable. Furthermore, it is explained how to compute in quasi-quadratic (respectively, quasi-linear) time an exis-tential (respectively, existential-universal) FO[IR; +, <, 1]-formula which defines the set of reals recognized by the automaton. As an additional contribution, the techniques used for obtaining our main result lead to a characterization of minimal deterministic Büchi automata accepting FO[IR; +, <, 1]-definable set.
Fichier principal
Vignette du fichier
tamc2017.pdf (446.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01676466 , version 1 (05-01-2018)

Identifiants

Citer

Arthur Milchior. Büchi Automata Recognizing Sets of Reals Definable in First-Order Logic with Addition and Order. Lecture Notes in Computer Science, 2017, Theory and Applications of Models of Computation, 10185, pp.440-454. ⟨10.1007/978-3-319-55911-7_32⟩. ⟨hal-01676466⟩

Collections

LACL UPEC
58 Consultations
146 Téléchargements

Altmetric

Partager

More