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Büchi Automata Recognizing Sets of Reals
Definable in First-Order Logic

with Addition and Order

Arthur Milchior1

LACL, Université Paris-Est Créteil arthur.milchior@lacl.fr

Abstract. This work considers encodings of non-negative reals in a fixed
base, and their encoding by weak deterministic Büchi automata. A Real
Number Automaton is an automaton which recognizes all encodings of
elements of a set of reals. We explain in this paper how to decide in linear
time whether a set of reals recognized by a given minimal weak determin-
istic RNA is FO[IR;+, <, 1]-definable. Furthermore, it is explained how
to compute in quasi-quadratic (respectively, quasi-linear) time an exis-
tential (respectively, existential-universal) FO[IR;+, <, 1]-formula which
defines the set of reals recognized by the automaton.
As an additional contribution, the techniques used for obtaining our
main result lead to a characterization of minimal deterministic Büchi
automata accepting FO[IR;+, <, 1]-definable set.

Introduction

This paper deals with logically defined sets of numbers encoded by weak de-
terministic Büchi automata. The sets of tuples of integers whose encodings in
base b are recognized by a finite automaton are called the b-recognizable sets.
By [?], the b-recognizable sets of vectors of integers are exactly the sets which
are FO [IN;+, <, Vb]-definable, where Vb(n) is the greatest power of b dividing n.
It was proven in [?,?] that the FO [IN;+, <]-definable sets are exactly the sets
which are b- and b′-recognizable for every b ≥ 2.

Those results naturally led to the following problem: deciding whether a finite
automaton recognizes a FO [IN;+, <]-definable set of d-tuples of integers for some
dimension d ∈ IN>0. In the case of dimension d = 1, decidability was proven in
[?]. For d > 1, decidability was proven in [?]. Another algorithm was given in
[?], which solves this problem in polynomial time. For d = 1, a quasi linear time
algorithm was given in [?].

The above-mentioned results about sets of tuples of natural numbers and finite
automata have then been extended to sets of tuples of reals recognized by a
Büchi automaton. The notion of Büchi automata is a formalism which describes
languages of infinite words, also called ω-words. The Büchi automata are similar
to the finite automata. The main difference is that finite automata accept finite
words which admit runs ending on accepting state, while Büchi automata accept
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infinite words which admit runs in which an accepting state appears infinitely
often.

One of the main differences between finite automata and Büchi automata is
that finite automata can be determinized while deterministic Büchi automata
are less expressive than Büchi automata. For example, the language Lfin(a) of
words containing a finite number of times the letter a is recognized by a Büchi
automaton, but is not recognized by any deterministic Büchi automaton. This
statement implies, for example, that no deterministic Büchi automaton recog-
nizes the set of reals of the form nbp with n ∈ IN and p ∈ ZZ, that is, the set of
reals whose encoding ends with 0 or (b− 1) repeated infinitely many times.

A main difference between the two classes of deterministic automata is that
the class of languages recognized by deterministic finite automata is closed under
complement while the class of languages recognized by deterministic Büchi au-
tomata is not. For example, Lfin(a) is not recognized by any deterministic Büchi
automaton while its complements Linf(a) is recognized by a deterministic Büchi
automaton.

However, the set of weak deterministic Büchi automata is closed under com-
plement. A weak deterministic Büchi automaton is a deterministic Büchi au-
tomaton whose set of accepting states is a union of strongly connected compo-
nents. Handling weak Büchi automata is similar to manipulating finite automata.
A set is said to be weakly b-recognizable if it is recognized by a weak automaton
in base b. The class of weak deterministic Büchi automata is less expressive than
the class of deterministic Büchi automata. For example, as mentionned above,
the language Linf(a) is recognized by a deterministic Büchi automaton, but this
language is not recognized by any weak deterministic Büchi automaton. This
implies that, for example, no weak deterministic Büchi automaton recognizes
the set of reals which are not of the form nbp with n ∈ IN and p ∈ ZZ, since
those reals are the ones whose encoding in base b contains an infinite number
of non-0 digits. Furthermore, by [?], weak deterministic Büchi automata can be
efficiently minimized.

A Real Vector Automaton (RVA, See e.g. [?]) of dimension d is a Büchi
automaton A over alphabet {0, . . . , b− 1}d ∪ {?}, which recognizes the set of
encodings in base b of the elements of a set of vectors of reals. Equivalently, for
w an infinite word encoding a vector of dimension d of real (r0, . . . , rd−1), if w
is accepted by A, then all encodings w′ of (r0, . . . , rd−1) are accepted by A. In
the case where the dimension d is 1, those automata are called Real Number
Automata (RNA, See e.g. [?]).

The sets of tuples of reals whose encoding in base b is recognized by a RVA are
called the b-recognizable sets. By [?], they are exactly the FO [IR, IN;+, <,Xb, 1]-
definable sets. The logic FO [IR, IN;+, <,Xb, 1] is the first-order logic over reals
with a unary predicate which holds over integers, addition, order, the constant
one, and the function Xb(x, u, k). The function Xb(x, u, k) holds if and only if
u is equal to some bn with n ∈ ZZ and there exists an encoding in base b of x
whose digit in position n is k. That is, u and x are of one of the two following
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forms:

u = 0 . . . 0 ? 0 . . . 0 1 0 . . .
x = . . . ? . . . k . . .

or u = 0 . . . 0 1 0 . . . 0 ? 0 . . .
x = . . . k . . . ? . . .

.

By [?], a set is FO [IR, IN;+, <]-definable if and only if its set of encodings is
weakly b-recognizable for all b ≥ 2.

By [?], the logic FO [IR;+, <, 1] admits quantifier elimination. By [?, Sect. 6],
the set of reals which are FO [IR;+, <, 1]-definable are finite unions of intervals
with rational bounds. Those sets are called the simple sets.

Standard definitions are recalled in Sect. ??. Sets of states of automata reading
reals are studied in Sect. ??. Furthermore, a method to efficiently solve au-
tomaton problem is introduced. In Sect. ??, given a simple set, an automaton
accepting it is constructed. A characterization of minimal deterministic Büchi
automata accepting a FO [IR;+, <, 1]-definable set is given in Sect. ??. This char-
acterization is similar to the insight given in [?] and leads to a linear time al-
gorithm deciding whether a minimal RNA recognizes a FO [IR;+, <, 1]-definable
set. This algorithm does not return any false positive on weak deterministic
Büchi automata which are not RNA. A false negative is exhibited at the end
of Sect. ??. Given a minimal weak RNA automaton accepting a simple set,
it is shown in Sect. ?? that an existential (respectively, existential-universal)
FO [IR;+, <, 1]-formula which defines R is computable in quasi-quadratic (re-
spectively quasi-linear) time.

1 Definitions

The definitions used in this paper are given in this section. Some basic lemmas
are also given. Most definitions are standard.

Let IN, ZZ, Q and IR denote the set of non-negative integers, integers, ra-
tionals and reals, respectively. For R ⊆ IR, let R≥0 and R>0 denote the set of
non-negative and of positive elements of R, respectively. For n ∈ IN, let [n] rep-
resent {0, . . . , n}. For a, b ∈ IR with a ≤ b, let [a, b] denote the closed interval
{r ∈ IR | a ≤ r ≤ b}, and let (a, b) denote the open interval {r ∈ IR | a < r < b}.
Similarly, let (a, b] (respectively, [a, b)) be the half-open interval equals to the
union of (a, b) and of {b} (respectively, {a}). For r ∈ IR let brc be the greatest
integer less than or equal to r.

1.1 Finite and Infinite Words

An alphabet is a finite set, its elements are called letters. A finite (respectively
ω-) word over alphabet A is a finite (respectively infinite) sequence of letters of
A. That is, a function from [n] to A for some n ∈ IN (respectively from IN to
A). A set of finite (respectively ω-) words over alphabet A is called a language
(respectively, an ω-language) over alphabet A. The empty word is denoted ε.
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Let w be a word, its length is denoted |w|, it is either a non-negative integer
or the cardinality of IN. For n < |w|, let w[n] denote the n-th letter of w. For v a
finite word, let u = vw be the concatenation of v and of w, that is, the word of
length |v|+ |w| such that u[i] = v[i] for i < |v| and u[|v|+ i] = w[i] for i < |w|.
Let w [< n] denote the prefix of w of length n, that is, the word u of length n
such that w[i] = u[i] for all i ∈ [n− 1]. Similarly, let w [≥ n] denote the suffix of
w without its n-th first letters, that is, the word u of length |w| − n such that
u[i] = w[i+ n] for all i ∈ [|w| − n]. Note that w = w [< i]w [≥ i] for all i < |w|.

Let L be a language of finite words and let L′ be either a ω-language or
a language of finite words. Let LL′ be the set of concatenations of the words
of L and of L′. For i ∈ IN, let Li be the concatenations of i words of L. Let
L∗ =

⋃
i∈IN L

i and L+ =
⋃
i∈IN>0 Li. If L is a language which does not contain

the empty word, let Lω be the set of infinite sequences of elements of L.

Encoding of Real Numbers. Let us now consider the encoding of numbers
in an integer base b ≥ 2. Let Σb be equal to [b − 1]; it is the set of digits. The
base b is fixed for the rest of this paper.

The function sending words to the number they encode are now introduced.
Let w be an ω-word with exactly one ?. It is of the form w = wI ? wF , with
wI ∈ Σ∗b and wF ∈ Σω

b . The word wI is called the natural part of w and the
ω-word wF is called its fractional part. Let [wI ]

I
b =

∑|w|−1
i=0 b|w|−1−iwI [i], let

[wF ]
F
b =

∑
i∈IN b

−i−1wF [i] and finally, let [wI ? wF ]
R
b = [wI ]

I
b + [wF ]

F
b . Some

properties of concatenation and of encoding of reals are now stated.

Lemma 1. Let v ∈ Σ∗b , v′ ∈ Σ
+
b , w ∈ Σω

b and a ∈ Σb. Then:

[w]
F
b = [0 ? w]

R
b , [aw]

F
b =

(
a+ [w]

F
b

)
/b,

[va]
I
b = b [v]

I
b + a and [vω]

F
b = [v]

I
b /
(
b|v| − 1

)
.

Some basic facts about rationals are recalled (see e.g. [?]). The rationals are
exactly the numbers which admit encodings in base b of the form u ? vwω with
u, v ∈ Σ∗b and w ∈ Σ+

b . Rationals of the form nbp, with n ∈ IN and p ∈ ZZ,
admit exactly two encodings in base b without leading 0 in the natural part. If
p < 0, the two encodings are of the form u ? va(b− 1)ω and u ? v(a+ 1)0ω, with
u, v ∈ Σ∗b and a ∈ [b− 2]. Otherwise, if p ≥ 0, the two encodings are of the form
ua(b − 1)q ? (b − 1)ω and u(a + 1)0q ? 0ω with u ∈ Σ∗b , a ∈ [b − 2] and q ∈ IN.
The rationals which are not of the form nbp admit exactly one encoding in base
b without leading 0 in the natural part.

Encoding of Sets of Reals. Relations between languages and sets of reals are
now recalled. Given a language L which is a subset of Σ∗b ? Σ

ω
b , let [L]

R
b be the

set of reals admitting an encoding in base b in L. The language L is said to be an
encoding in base b of the set of reals [L]Rb . Reciprocally, given a set R ⊆ IR≥0 of
reals, Lb(R) is the set of all encodings in base b of elements of R. For L a subset
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of Σω
b , [L]

F
b is the set of d-tuples of reals, belonging to [0, 1]d, which admits an

encoding in base b in L.
Following [?], a language L is said to be saturated if for any number r which

admits an encoding in base b in L, all encodings in base b of r belong to L. The
saturated languages are of the form Lb(R) for R ⊆ IR≥0. Note that [Lb(R)]

R
b = R

for all sets R ⊆ IR≥0. Note also that L ⊆ Lb([L]Rb ), and the subset relation is an
equality if and only if L is saturated.

All non-empty sets of reals have infinitely many encodings in base b. For
example, for I ⊆ IN an arbitrary set, 0∗ ? {0, 1}ω \

{
0i1ω | i ∈ I

}
is an encoding

in base 2 of the simple set [0, 1]. This language is saturated if and only if I = ∅.

1.2 Deterministic Büchi Automata

This paper deals with deterministic Büchi automata. This notion is now defined.
A Deterministic Büchi automaton A is a 5-tuple (Q,A, δ, q0, F ), where Q is

a finite set of states, A is an alphabet, δ : Q×A→ Q is the transition function,
q0 ∈ Q is the initial states and F ⊆ Q is the set of accepting states. A state
belonging to Q \ F is said to be a rejecting state.

From now on in this paper, all automata are assumed to be deterministic.
The function δ is implicitly extended on Q × A∗ by δ(q, ε) = q and δ(q, wa) =
δ(δ(q, w), a) for a ∈ A and w ∈ A∗.

Let A be an automaton and w be an infinite word. A run π of A on w is
a mapping π : IN 7→ Q such that π(0) = q0 and δ(π(i), w[i]) = π(i+ 1) for all
i < |w|. The run is accepting if there exists a state q ∈ F such that there is an
infinite number of i ∈ IN such that π(i) = q. Let A be a finite automaton. Let
Lω (A) be the set of infinite words w such that a run of A on w is accepting.

Accessibility and Recurrent States. Some definitions related to the under-
lying labelled graph of Büchi automata are introduced in this section. A state q
is said to be accessible from a state q′ if there exists a finite non-empty word w
such that δ(q′, w) = q. Following [?], a state q is said to be recurrent if it is ac-
cessible from itself and transient otherwise. Transient states are called trivial in
[?]. The strongly connected component of a recurrent state q is the set of states q′
such that q′ is accessible from q and q is accessible from q′. A strongly connected
component C is said to be a leaf if for all a ∈ A, for all q ∈ C, δ(q, a) ∈ C. Let
C be a strongly connected component. It is said to be a cycle if for each q ∈ C,
there exists a unique sq ∈ A such that δ(q, sq) ∈ C.

The transient states of the automaton pictured in Figure ?? are q1, q10, q11,
q10? and q11?. All other states are recurrent. The cycles are {q0}, {q0?, q0?0},
{q10?0}, {q10?1, q10?10}, {q11?0} and {q11?1, q11?10}. The strongly connected com-
ponents which are not cycles are

{
q∅,A

}
, {q∞,A} and

{
q[0,1],A

}
.

For q ∈ Q, let Aq be (Qq, A, δ, q, Fq), where Qq is the set of states of Q
accessible from q, and Fq = F ∩Qq. Note that, if there is no finite word w such
that δ(q0, w) = q0, then Qq ( Q for all q 6= q0.
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Quotients, Morphisms and Weak Büchi Automata The Büchi automaton
A = (Q,A, δ, q0, F ) is said to be minimal if, for each distinct states q and q′ of
A, Lω (Aq) 6= Lω (Aq′). Let A = (Q,A, δ, q0, F ) be a Büchi automaton and
A′ = (Q′, A, δ′, q′0, F

′) be a minimal Büchi automaton. A surjective function
µ : Q→ Q′ is a morphism of Büchi automata if and only if µ(q0) = q′0 and, for
all q ∈ Q, Lω (Aq) = Lω

(
A′µ(q)

)
.

The Büchi automaton A is said to be weak if for each recurrent accepting
state q of A, all states of the strongly connected components of q are accepting.
An ω-language is said to be (weakly) recognizable if it is a set of word accepted by
a (weak) Büchi automaton. An example of weak deterministic Büchi automaton
is now given. This example is used through this paper to illustrate properties of
Büchi automaton reading set of real numbers.

Example 1. Let R =
(
1
3 , 2
]
∪
(
8
3 , 3
]
∪
(
11
3 ,∞

]
. The set of encodings in base 2 of

reals of R is (weakly) recognized by the automaton pictured in Fig. ??. The run

q0 q1 q10 q11 q∞,A

q11?

q11?1 q11?10

q11?0q10?

q10?1 q10?10

q10?0q0?

q0?0 q[0,1],A

0

1

?

0

1 0,1

?

0,1

?

0,1

?

0 1

0

1

0

0

1

1

0

0

0

1

0,1

?

11

1

Fig. 1. Automaton AR of Ex. ??

of A on the ω-word 011 ? (10)ω is (q0, q0, q1, q3, q11?, q11?1, q11?10, . . . ), with the
two last states repeated infinitely often. The Büchi automaton A does not accept
011 ? (10)ω since this run does not contain any accepting state. The run of A on
ω-word ?1ω is

(
q0, q0?, q[0,1],A, . . .

)
with the last state repeated infinitely often.

The Büchi automaton A accepts ?1ω since the accepting state q[0,1],A appears
infinitely often in the run.

The main theorem concerning quotient of weak Büchi automata is now recalled.

Theorem 1 ([?]). Let A = (Q,A, δ, q0, F ) be a weak Büchi automaton with n
states such that all states of A are accessible from its initial state. Let c be the
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cardinality of A. There exists a minimal weak Büchi automaton A′ such that
there exists a morphism of automaton µ from A to A′. The automaton A′ and
the morphism µ are computable in time O (n log(n)c) and space O (nc).

The Büchi automaton AR pictured in Figure ?? is weak and is not minimal.
Its minimal quotient is pictured in Figure ??. The following lemma states that

q0 q10 q∞,R q1

q10? q10?0q0?q0?0 Q[0,1],R

0
1

?

0,1

?

0,1

?

0,1

?

0 1

1

1
0

0

0,1

Fig. 2. Minimal quotient of automaton AR of Figure ??

each strongly connected component of a quotient by a morphism µ from an
automaton A is the image of a strongly connected component of A. It allows to
prove that some properties, such as being a cycle, is closed under taking quotient.

Lemma 2. Let A = (Q,A, δ, q0, F ) and A′ = (Q′, Σb, δ
′, q′0, F

′) be two Büchi
automata. Let µ be a morphism from A to A′. Let C ′ be a strongly connected
component of A′. There exists a strongly connected component C ⊆ Q such that
µ(C) = C ′ and such that, for all q ∈ Q \ C accessible from C, µ(q) 6∈ C ′.

Real Number Automata. For A a Büchi automaton over alphabet Σb ∪{?},
let [A]Rb denote [Lω (A)]Rb . It is said that A recognizes [A]Rb . Following [?], a Büchi
automaton over alphabetΣb∪{?} is said to be a Real Number Automaton (RNA)
if it recognizes a subset of Σ∗b ?Σ

ω
b and if the language Lω (A) is saturated. The

Büchi automata pictured in ?? and ?? are RNA. Clearly, the RNAs are the
Büchi automata which recognize saturated languages.

1.3 Logic

The logic FO [IR;+, <, 1] used in this paper is introduced in this section. FO
stands for first-order. The first parameter IR means that the (free or quantified)
variables are interpreted by non-negative real numbers. The + and < symbols
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mean that the addition function and the binary order relation over reals can
be used in formulas. Finally, the last term, 1, means that the only constant
is 1. The logic FO [IR;+, <, 1] is denoted by L in [?], where it is proven that
this logic admits quantifier elimination. In this paper, all results deal with the
quantifier-free, the existential fragment and the existential-universal fragment
of FO [IR;+, <, 1] denoted by Σ0 [IR;+, <, 1], Σ1 [IR;+, <, 1] and Σ2 [IR;+, <, 1]
respectively.

In the rest of the paper, rationals are also used in the formulas. Admit-
ting rationals does not change the expressivity since all rational constants are
Σ0 [IR;+, 1]-definable. The length of a formula φ is denoted by |φ|. It is such
that each symbol takes one bit of space, apart from integers n and rationals
n/m which take log(1 + |n|) and log(1 + |n|+ |m|) bits of space respectively.

First-Order Definable Sets of Reals. In this section, notations are intro-
duced for the kind of sets studied in this paper: the FO [IR;+, <, 1]-definable sets.
Following [?, Sect. 6], the FO [IR;+, <, 1]-definable sets are called the simple sets.
By [?, Sect. 6], those sets are the finite unions of intervals with rational bounds.
It implies that there exists an integer tR such that for all x, y ≥ tR, x belongs to
R if and only if y belongs to R. The least such integer tR is called the threshold
of R.

Note that every closed and half-closed intervals is the union of an open inter-
val and of singletons, hence it can be assumed that any simple set R is of the form
R =

⋃I−1
i=0 (ρi,L, ρi,R) ∪

⋃J−1
i=0 {ρi,S}, with ρi,L, ρi,S ∈ Q and ρi,R ∈ Q ∪ {∞}.

The ρi,L’s are the left bounds, the ρi,R’s are the right bounds and the ρi,S’s are
the singletons.

For example, let R =
(
1
3 , 2
]
∪
(
8
3 , 3
]
∪
(
11
3 ,∞

]
as in Ex. ??. Then tR is 4,

I = 3, J = 2, ρ1,L = 1
3 , ρ2,R = 2, ρ2,L = 8

3 , ρ2,R = 3, ρ3,L = 11/3, ρ3,R = ∞,
ρ1,S = 2 and ρ2,S = 3.

2 Some Sets of states of Automata Reading Reals

We now introduce five sets of states used in the algorithms of this paper.

Definition 1 (Q∅,A, Q[0,1],A, Q∞,A, QI,A and QF,A). Let A = (Q,A, δ, q0, F ).

– Let Q∅,A be the set of states q such that Aq recognizes the empty language.
– Let Q[0,1],A be the set of states q such that Aq recognizes Σω

b .
– Let Q∞,A be the set of states q such that Aq recognizes the language Σ∗b ?Σω

b .
– Let QI,A be the set of states q such that Aq recognizes a subset of Σ∗b ? Σ

ω
b .

– Let QF,A be the set of states q such that Aq recognizes a subset of Σω
b .

In [?], the strongly connected components included in Q∅,A are called empty and
the ones included in Q[0,1],A are called universal.

Intuitively the states belonging to QI,A and to QF,A are the states which can
be visited while the automaton read the natural and the fractional part of the
number respectively.
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LetA be the automaton pictured in Figure ??. Let q∅,A be the state δ(q10?0, 1),
which is not pictured in Figure ??. Then Q[0,1],A =

{
q[0,1],R

}
, Q∞,A = {q∞,R}

and Q∅,A =
{
q∅,A

}
. Furthermore, the states of QI,A are pictured in the top row

of Figure ??, they are q0, q1, q10, q∞,R and q∅,R. Finally, the states of QF,A are
pictured in the second row of Figure ??, they are q10?, q10?0, q0?, q0?0, Q[0,1],R

and q∅,R.
In a minimal weak Büchi automaton A, let q∅,A, q[0,1],A and q∞,A denote

the only state q such that Aq recognizes the languages ∅, Σω
b and Σ∗b ? Σ

ω
b

respectively. The following lemma states that the five sets introduced in Def. ??
are linear time computable.

Lemma 3. Let A be a weak Büchi automaton with n states. Then the sets Q∅,A,
Q[0,1],A, q∞,A, QI,A and QF,A are computable in time O (nb).

It is explained how to compute Q∅,A. The other sets are computed similarly.

Proof. Tarjan’s algorithm [?] can be used to compute the set of strongly con-
nected component in time O (nb), and therefore the set of recurrent states. By
definition, q ∈ Q∅,A if and only if Aq accept no ω-word. It is equivalent to the
fact that no recurrent state accessible from q are accepting. Equivalently, Q∅,A
is the greatest set of states q such that, q is not a recurrent accepting state, and
furthermore, for all a ∈ Σb ∪ {?}, δ(q, a) ∈ Q∅,A. This naturally leads to the
following greatest fixed-point algorithm.

Two sets PotentiallyEmpty and ToProcess are used by the algorithm.
The algorithm initializes the set PotentiallyEmpty to Q and initializes the
set ToProcess to the empty set. The algorithm runs on each recurrent state q.
For each state q, if q is accepting, then q is removed from PotentiallyEmpty and
added to ToProcess. The algorithm then runs on each element q of ToProcess.
For each state q, the algorithms removes q from ToProcess and runs on each
predecessors q′ of q. For each q′, if q′ is in PotentiallyEmpty, then q′ is removed
from PotentiallyEmpty and added to ToProcess. Finally, when ToProcess is
empty, the algorithm halts and Q∅,A is the value of PotentiallyEmpty.

3 From simple sets to automata

Let us fix a simple non-empty set R ( R≥0. In this section a weak RNA AR
which recognize Lω (R) is constructed. Since R is a simple set, there exists an
integer tR ∈ N≥0 such that [tR,∞) is either a subset of R or is disjoint from
R. Without loss of generality, it is assumed that tR ≥ b. As seen in Section ??,
R can be expressed as

⋃I−1
i=0 (ρi,L, ρi,R) ∪

⋃J−1
i=0 {ρi,S} with ρi,j ∈ Q ∩ [0, tR].

Without loss of generality, it can be assumed that all integers n belonging to
[0, tR] are of the form ρi,j for some i, j. It suffices either to assume that there is
some i ∈ IN such that n is of the form ρi,S if n ∈ R and of the form ρi,L and
ρi,R otherwise.

Since the ρi,j are rationals, their encodings in base b are of the form ui,j,kv
ω
i,j,k

with ui,j,k ∈ Σ∗b ? Σ
∗
b such that ui,j,k[0] 6= 0 and vi,j,k ∈ Σ+

b . Since there are
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at most two encodings, a third index, k, is also required. Up to replacing the
words ui,j,k by ui,j,kvni,j,k, it can be assumed without loss of generality that, for all
i, j, k, i′, j′, k′, the word ui,j,k is not a strict prefix of ui′,j′,k′ and if ui,j,k = ui′,j′,k′

then vi,j,k = vi′,j′,k′ . The formal definition of AR is now given.

Definition 2 (AR). Let R ( [0,∞) be a simple non-empty set. Note that
tR > 0. Let AR be the automaton (Q,Σb ∪ {?} , δ, q0, F ) where:

– Q contains the states q∅,A, q[0,1],A, q∞,A, and a state qw for each strict prefix
w of a word ui,j,kvi,j,k.

– F contains q[0,1],A, and the qw’s, for w ∈ Σ∗b ?Σω
b some non-empty prefix of

some ui,S,kvi,S,k.
– and the transition function is such that, for each word w and for each letter
a:
• δ(qε, 0) = qε.
• For wa a strict prefix of some ui,j,kvi,j,k, δ(qw, a) = qwa.
• For wa of the form ui,j,kvi,j,k, δ(qw, a) = qui,j,k

.
It is now assumed that wa is not a prefix of or equal to any ui,j,kvi,j,k.
• If wa ∈ Σ∗b , then δ(qw, a) is q∞,A if [tR,∞) ⊆ R and q∅,A otherwise.
• For wa ∈ Σ∗b ?Σ∗b , δ(qw, a) is q∅,R if [wa0ω]Rb 6∈ R and q[0,1],A otherwise.
• For q being q[0,1],R, q∞,R or q∅,R, δ(q, a) = q.
• δ(q∞,R, ?) = q[0,1],R.
• For q being q[0,1],A or q∅,A or qw for w ∈ Σ∗b ? Σ∗b , δ(q, ?) = q∅,A.

It can be shown that AR recognizes R. Let R =
(
1
3 , 2
]
∪
(
8
3 , 3
]
∪
(
11
3 ,∞

]
as

in Example ??. The automaton AR is pictured in Figure ??, without the non
accepting state q∅,A. Its minimal quotient is pictured in Figure ??.

A second example is now given, which shows that the minimal number of
intervals of a simple set may be exponential in the number of state of the minimal
Büchi automaton accepting this set. For every non-negative integer n, let Rn be{
m2−(n−1) | m ∈ [2n−1]

}
. It is the set of reals which admit an encoding w in

base 2 whose suffixes w [≥ n] are either equal to 0ω or to 1ω. This set can not be
described with less than 2n−2 intervals and is recognized by the automaton An:

An =
(
{qi | i ∈ [n]} ∪

{
qn+1,0, qn+1,1, q∅,A

}
, Σb, δ, q0, {qn+1,0, qn+1,1}

)
,

where the transition function is such that, for a ∈ Σ2, and i ∈ [n − 1] \ {0},
δ(q0, ?) = q1, δ(qi, a) = qi+1, δ(qn, a) = qn+1,a, δ(qn+1,a, a) = qn+1,a. For each
state q and letter a such that δ(q, a) is not defined above, δ(q, a) = q∅,A.

4 Deciding Whether an Automaton Recognizes a Simple
Set

It is explained in this section how to decide whether a minimal weak RNA accepts
a simple set. The first main theorem of this paper is now given.

Theorem 2. It is decidable in time O (nb) and space O (n) whether a minimal
weak Büchi RNA with n states recognizes a simple set.
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In order to prove this theorem, a proposition is is now given. This property is a
general method used to efficiently decide properties of automata. This method
is similar to the method used in [?] and in [?].

Proposition 1. Let A′ be a class of weak Büchi automata and let L′ be the class
of languages {Lω (A) | A ∈ A′}. Let L be a class of languages over an alphabet
such that there exists a class A of weak Büchi automata such that:

1. there exists an algorithm α which decides in time t(n, b) and space s(n, b)
whether a Büchi automaton belongs to A, for n the number of states and b
the number of letters,

2. for each L ∈ L ∩ L′, there exists an automaton A ∈ A which recognizes L,
3. the minimal quotient of any automaton of A belongs to A and
4. every language recognized by an automaton belonging to A belongs to L.

The algorithm α decides in time t(n, b) and space s(n, b) whether a minimal
automaton of A′ recognizes a language of L. Furthermore, the algorithm α applied
to an automaton belonging to A′ \ A may not return a false positive.

Proof. Let A be an automaton which recognizes a language L. Let us assume
that α accepts A, by Prop. (??), A ∈ A, hence by Prop. (??), L ∈ L.

Let us now assume that A ∈ A′ and that L ∈ L. By definition of L′, L ∈ L′,
hence L ∈ L∩L′, thus by Prop ??, there exists A′ ∈ A which recognizes L. Since
A′ and A recognize the same language, they have the same minimal quotient,
which is A. By Prop. ??, A ∈ A. Thus, by Prop. (??), α accepts A.

In this paper, A′ is the set of RNAs, hence L′ is the class of saturated recognizable
languages. The class of languages L is the class of base b encoding of non-empty
sets R ( R≥0. The cases of R = R≥0 and of R = ∅ being special cases. The class
A of automata is now introduced.

Definition 3 (A). Let A be the set of weak Büchi automata A, of the form
(Q,Σb ∪ {?} , δ, q0, F ), such that, for each strongly connected component C ⊆
QF,A\(Q[0,1],A∪Q∅,A), there exists β<,C and β>,C , two states of Q[0,1],A∪Q∅,A,
such that, for all q ∈ C:

1. C is a cycle. Recall that sq is the only letter such that δ(q, sq) ∈ C.
2. For all a > sq, δ(q, a) is β>,C .
3. For all a < sq, δ(q, a) is β<,C .
4. There exists an accepting and a rejecting strongly connected component, ac-

cessible from the initial state, belonging to QF,A.
5. The set Q∅,A contains exactly one recurrent state, denoted q∅,A.
6. The set Q∞,A contains at most one recurrent state, denoted q∞,A.
7. δ(q0, 0) = q0.
8. δ(q0, a) 6= q0 for all 0 < a < b.
9. If q∞,A exists, then δ(q, a) 6= q∅,A for all q ∈ QI,A \

{
q∅,A

}
and a ∈ Σb.

10. The recurrent states of QI,A are q∅,A, q0 and potentially q∞,A.

The automata of A admits the following property.
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Lemma 4. Let A ∈ A be an automaton with n states recognizing a set R. If
A contains a state q∞,A, as in Definition ??, then (bn−1,∞) ⊆ R, otherwise
(bn−1,∞) ∩R = ∅.

Proof (Sketch of proof of Theo. ??). Using Lem. ??, the algorithms checks
whether A accepts a subset L of Σ∗b ? Σ

ω
b , if it is not the case, the algorithm

rejects. The algorithms also checks whether L is ∅ or Σ∗b ? Σω
b . If it is the case,

the algorithm accepts. It is now assumed that A accepts a non-empty language
L ( Σ∗b ? Σ

ω
b . Let L′ be the set of saturated languages and A′ be the set of

RNAs. Let L be the set of encoding of simple non-empty sets R ( IR≥0. In order
to prove this theorem, it suffices to show that A admits the four properties of
Proposition ??.

Each property of Def. ?? is testable in time O (nb) and space O (n). Therefore,
it is decidable in time O (nb) and space O (n) whether a weak Büchi automaton
A with n states belongs to A. Hence Property (??) of Prop. ?? holds.

For R ( R≥0 a non-empty simple set, the automaton AR of Def. ?? belongs
to A. Therefore Property (??) of Prop. ?? holds.

Let A ∈ A be a RNA. Let A′ be its minimal quotient. It can be proven that
A′ satisfies the properties of Def. ??, hence A′ ∈ A. Therefore Property (??) of
Prop. ?? holds.

Property (??) of Prop. ?? is now considered. Automata satisfying Properties
(??), (??) and (??) of Def. ?? are studied in [?]. It is shown that automata
satisfying those properties accepts a set R such that R∩ [i, i+1] is a finite union
of intervals with rationals boundaries for all i ∈ IN. Lemma ?? ensures that
furthermore, there is some t ∈ IN such that [t,∞) is either a subset of R or is
disjoint from R. Thus, an automaton of A recognize a finite union of interval
with rational boundaries, i.e. a simple set. Therefore Property (??) of Prop. ??
holds. ut

The algorithm of Theo. ?? takes as input a minimal weak RNA and runs
in time O (nb). It should be noted that it is not known whether it is decidable
in time O (nb) whether a minimal Büchi automaton is a RNA. However, if the
algorithm of Theo. ?? is applied to a weak Büchi automaton which is not a Real
Number Automaton, the algorithm returns no false positive. An example of false
negative is now given. The not-saturated language L = (00)

∗
(01 + 2)Σ∗3 ? Σ

ω
3

encode the simple set of reals R>0. However, the minimal automaton recognizing
L it is not accepted by the algorithm of Theo. ??.

5 From Automata to Simple Set

It is explained in this section how to compute a first-order formula which defines
the simple set accepted by a weak RNA. The exact theorem is now stated.

Theorem 3. Let A = (Q,Σb∪{?} , δ, q0, F ) be a be a minimal weak RNA with n
states which recognizes a simple set. There exists a Σ1 [IR;+, <, 1]-formula com-
putable in time O

(
n2b log(nb)

)
which defines [A]Rb . There exists a Σ2 [IR;+, <, 1]-

formula computable in time O (nb log(nb)) which defines [A]Rb .
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The proof of Theo. ?? consists mostly in encoding in a first-order formula φ(x)
the run of A over an encoding w of x. The following lemma allows to consider
two distinct part of the run on the fractional part of w. The first part of the run
is of length at most n. The second part on the run begins on a state belonging
to a restricted set of states.

Lemma 5. Let A ∈ A be minimal with n states and q ∈ QF,A. Let wI ∈ Σ∗b and
wF ∈ Σω

b . Let Q ⊆ QF,A be a set containing exactly one state of each strongly
connected component. Then, there exists s ∈ [n] such that δ(q, wI?wF [< s]) ∈ Q.

The following lemma allows to reduce the size of a formula by adding quantifi-
cations.

Lemma 6. Let ψ(x, x′) be a formula of length l and (xi)i∈[n−1] be n vari-
ables. Then

∧
i∈[n−2] ψ(xi, xi+1) is equivalent to the following formula of length

O (n+ l):

∀y, y′.

 ∨
i∈[n−2]

[y
.
= xi ∧ y′

.
= xi+1]

 =⇒ ψ(y, y′).

A sketch of the proof of Theo. ?? can now be given.

Proof (Proof of Theo. ??). Let R = [A]Rb . As shown in Sect. ??, it can be
assumed that A belongs to A. By Lem. ??, in order to construct a formula which
defines R it suffices to construct a formula φ(x) which defines R∩ [0, bn−1). The
formula φ(x) is the conjunction of four subformulas of size O

(
n2b log(nb)

)
. Let

x ∈ [0, bn−1) and let w be an encoding of x without leading 0 in the natural
part.

The first formula, ψ(x, xI , xF ), states that x = xI + xF and that xI ∈ IN.
Since xI < bn−1, in order to state that xI ∈ IN, it suffices to state that xI is of
the form

∑n−2
i=0 aib

i for ai ∈ [b − 1]. More precisely, it suffices to state that xI
is of the form (cn + b(cn−1 + b(· · ·+ b(c0) . . . ))) with the ci belonging to [b− 1].
This can be stated by existentially quantifying the 2n partial sums and products
and taking disjunctions over each ci. This can be done by a formula ψ(xI) of
size O (nb log(b)).

Let q be the state δ(q0, wI). The second formula, φI(xI , q), states that the
state δ(q0, wI?) is equal to q. This formula existentially quantifies 2n variables.
Those variables encode the n first steps of the runs and the values of wI [< i] for
i < n. Each step of the computation can be encoded by a Σ0 [IR;+, <, 1]-formula
of length O (nb log(b)), using the equalities of Lem. ??. Since xI < bn−1, |wI | < n,
the formula φI(xI , q) have to consider at most n steps of the computation. The
formula φI(xI , q) is a conjunction of n formulas of size O

(
n2b log(b)

)
and thus

the size of φI(xI , q) is O
(
n2b log(b)

)
.

Let Q be a set of states as in Lem. ?? and let q′ be the first state of Q in
the run of A on w. The third formula, φF (q, xF , q′, x′F ) states that there exists
i ∈ [n] such that δ(q, wF [< i]) = q′, that q′ ∈ Q and that x′F = [wF [≥ i]]Fb . By
Lem. ??, i is at most n. Hence, similarly to φI(xI , q), the size of the formula
φF (q, xF , q

′, x′F ) is O
(
n2b log(b)

)
.
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Finally, the fourth formula φ′F (q
′, x′F ), states that Aq′ accepts wF [≥ i]. Let

c be the number of strongly connected components in A. For C a strongly con-
nected components, let nC be its number of state and qC the only state of
C ∩ Q. Let us assume that, for each strongly connected component C, there
exists a formula φ′C(q

′, x′F ) of length O (nCb log(nCb)) which states that Aq′
accepts wF [≥ i]. Then the formula φ′F (q

′, x′F ) is a disjunction of c formulas
q′
.
= qC ∧ φ′C(q′, x′F ) and its length is O (

∑
C nCb log(nCb)) = O (nb log(nb)).

It is now explained how to construct φ′C(q
′, x′F ). Since A ∈ A, by Prop.

?? of Def. ??, strongly connected components of automata included in QF,A
are either

{
q∅,A

}
,
{
q[0,1],A

}
, or a cycle. In the first two cases, φ′C(q

′, x′F ) is the
formula False or True respectively. Let us consider the third cases. Let vq′ be the
word of size nC such that δ(q′, vq′) = q′. Since C is cycle, this word exists and
is a unique. Then let y =

[
vωq′
]F
b

= [vq′ ]
I
b / (b

nC − 1). Recall that the notations
β<,C and β>,C are introduced in Def. ??. Then the formula φ′C(q

′, x′F ) states
that q′ ∈ C ′ and that either (x′F < y and β<,C ∈ Q[0,1],A), either (x′F = y
and q′ ∈ F ), or (x′F > y and β>,C ∈ Q[0,1],A). It is indeed a formula of length
O (nCb log(nCb)).

Finally, in order to reduce the size of the formula to O (nb log(nb)), it suffices
to replace the conjunctions of φI(xI , q) and of φF (q, xF , q′x′F ) by a universal
quantifications, as explained in Lem. ??. ut

6 Conclusion

In this paper, we proved that it is decidable in linear time whether a minimal
weak Büchi Real Number Automaton A reading a set of real number R recog-
nizes a finite union of intervals. It is proven that a quasi-linear sized existential-
universal formula defining R exists. And that a quasi-quadratic sized existential
formula defining R also exists.

The theorems of this paper lead us to consider two natural generalization. We
intend to adapt the algorithm of this paper to similar problems for automata
reading vectors of reals instead of automata reading reals. We also intend to
solve the similar problem of deciding whether an RNA accepts a FO [IR, IN;+, <]-
definable set of reals. Solving this problem requires to solve the problem of de-
ciding whether an automaton reading natural number, beginning by the most-
significant digit, recognizes an ultimately-periodic set. Similar problems has al-
ready been studied, see e.g [?,?] and seems to be difficult. Finally, we also intend
to consider how to efficiently decide whether an automaton is a Real Number
Automaton or a Real Vector Automaton.

The author thanks Bernard Boigelot, for a discussion about the algorithm of
Theo. ??, which led to a decrease of the computation time. He also thanks the
anonymous referees of for their remarks and suggestion to improve the paper.


