Article Dans Une Revue Applied Mathematics and Optimization Année : 2017

An iterated projection approach to variational problems under generalized convexity constraints

Résumé

The principal-agent problem in economics leads to variational problems subject to global constraints of $b$-convexity on the admissible functions, capturing the so-called incentive-compatibility constraints. Typical examples are minimization problems subject to a convexity constraint. In a recent pathbreaking article, Figalli et al. (J Econ Theory 146(2):454–478, 2011) identified conditions which ensure convexity of the principal-agent problem and thus raised hope on the development of numerical methods. We consider special instances of projections problems over $b$-convex functions and show how they can be solved numerically using Dykstra’s iterated projection algorithm to handle the $b$-convexity constraint in the framework of (Figalli et al. in J Econ Theory 146(2):454–478, 2011). Our method also turns out to be simple for convex envelope computations.
Fichier principal
Vignette du fichier
CarlierDupuis_Dykstra-bconvexity.pdf (1.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01676136 , version 1 (27-08-2024)

Identifiants

Citer

Guillaume Carlier, Xavier Dupuis. An iterated projection approach to variational problems under generalized convexity constraints. Applied Mathematics and Optimization, 2017, 76 (3), pp.565-592. ⟨10.1007/s00245-016-9361-5⟩. ⟨hal-01676136⟩
153 Consultations
12 Téléchargements

Altmetric

Partager

More