On the maximal dilatation of quasiconformal minimal Lagrangian extensions - Archive ouverte HAL
Article Dans Une Revue Geometriae Dedicata Année : 2019

On the maximal dilatation of quasiconformal minimal Lagrangian extensions

Andrea Seppi

Résumé

Given a quasisymmetric homeomorphism ϕ of the circle, Bonsante and Schlenker proved the existence and uniqueness of the minimal Lagrangian extension f_ϕ : H^2 → H^2 to the hyperbolic plane. By previous work of the author, its maximal dilatation satisfies log K(f_ϕ) ≤ C||ϕ||_cr, where ||ϕ||_cr denotes the cross-ratio norm. We give constraints on the value of an optimal such constant C, and discuss possible lower inequalities, by studying two one-parameter families of minimal Lagrangian extensions in terms of maximal dilatation and cross-ratio norm.
Fichier principal
Vignette du fichier
Maximal dilatation arxiv revised.pdf (383.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01675476 , version 1 (04-01-2018)
hal-01675476 , version 2 (31-01-2019)

Identifiants

Citer

Andrea Seppi. On the maximal dilatation of quasiconformal minimal Lagrangian extensions. Geometriae Dedicata, 2019, 203, pp.25-52. ⟨10.1007/s10711-019-00422-8⟩. ⟨hal-01675476v2⟩
90 Consultations
119 Téléchargements

Altmetric

Partager

More