A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression - Archive ouverte HAL Access content directly
Journal Articles Computational Optimization and Applications Year : 2019

A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression

Abstract

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas-Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach leverages the proximity operator of the logistic loss, which is expressed with the generalized Lambert W function. Experiments carried out on standard datasets demonstrate the efficiency of our approach w.r.t. stochastic gradient-like methods.
Fichier principal
Vignette du fichier
main_optim_LB3.pdf (562.53 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01672507 , version 1 (25-12-2017)

Identifiers

Cite

Luis Briceño-Arias, Giovanni Chierchia, Emilie Chouzenoux, Jean-Christophe Pesquet. A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression. Computational Optimization and Applications, 2019, 72 (3), pp.707-726. ⟨10.1007/s10589-019-00060-6⟩. ⟨hal-01672507⟩
381 View
199 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More