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Abstract In this paper, we propose a new optimization algorithm for sparse logistic
regression based on a stochastic version of the Douglas-Rachford splitting method.
Our algorithm sweeps the training set by randomly selecting a mini-batch of data at
each iteration, and it allows us to update the variables in a block coordinate manner.
Our approach leverages the proximity operator of the logistic loss, which is expressed
with the generalized Lambert W function. Experiments carried out on standard
datasets demonstrate the efficiency of our approach w.r.t. stochastic gradient-like
methods.

Keywords Proximity operator · Douglas-Rachford splitting · Block-coordinate
descent · Logistic regression

1 Introduction

Sparse classification algorithms have gained much popularity in the context of su-
pervised learning, thanks to their ability to discard irrelevant features during the
training stage. Such algorithms aim at learning a weighted linear combination of
basis functions that fits the training data, while encouraging as many weights as
possible to be equal to zero. This amounts to solving an optimization problem that
involves a loss function plus a sparse regularization term. Different types of classifiers
arise by varying the loss function, the most popular being the hinge and the logistic
losses [1, 2].

This work was partly supported by the the CNRS MASTODONS project under grant
2016TABASCO.

L. M. Briceño-Arias
Departamento de Matemática, Universidad Técnica Federico Santa María, Av Espanã 1681,
Valparaíso, Chile.

G. Chierchia (corresponding author) and E. Chouzenoux
Université Paris Est, LIGM, CNRS UMR 8049, ESIEE Paris, UPEM, Noisy-le-Grand, France.

E. Chouzenoux and J.-C. Pesquet
Center for Visual Computing, INRIA Saclay, CentraleSupélec, University Paris-Saclay, Gif sur
Yvette, France.



2 Luis M. Briceño-Arias et al.

In the context of supervised learning, sparse regularization traces back to the work
of Bradley and Mangasarian [3], who showed that the `1-norm can efficiently perform
feature selection by shrinking small coefficients to zero. Other forms of regularization
have also been studied, such as the `0-norm [4], the `p-norm with p > 0 [5], the
`∞-norm [6], and other nonconvex terms [7]. Mixed-norms have been investigated as
well, due to their ability to impose a more structured form of sparsity [8–13].

Many efficient learning algorithms exist in the case of quadratic regularization,
by benefiting from the advantages brought by Lagrangian duality [14]. This is
unfortunately not true for sparse regularization, because the dual formulation is as
difficult to solve as the primal one. Consequently, sparse linear classifiers are usually
trained through the direct resolution of the primal optimization problem. Among
the possible approaches, one can resort to linear programming [15], gradient-like
methods [8,16], proximal algorithms [7,17,18], and other optimization techniques [19].

Nowadays, it is well known that random updates can significantly reduce the
computational time when a quadratic regularization is used [20, 21]. Therefore, a
great deal of attention has been paid recently to stochastic approaches capable of
handling a sparse regularization [22]. The list of investigated techniques includes block-
coordinate descent strategies [23–26], stochastic forward-backward iterations [27–31],
random Douglas-Rachford splitting methods [32], random primal-dual proximal
algorithms [33], and stochastic majorization-minimization methods [34,35].

In this paper, we propose a random-sweeping block-coordinate Douglas-Rachford
splitting method. In addition to the stochastic behavior, it presents three distinctive
features with respect to related approaches [32, 36, 37]. Firstly, the matrix to be
inverted at the initial step is block-diagonal, while in the concurrent approaches, it
did not present any specific structure. The block diagonal property implies that the
inversion step actually amounts to inverting a set of smaller size matrices. Secondly,
the proposed algorithm can take advantage explicitly from a strong convexity property
possibly fulfilled by some of the functions involved in the optimization problem. Finally,
the dual variables appear explicitly in the proposed scheme, making it possible to
use clever block-coordinate descent strategies [38].

Moreover, the proposed algorithm appears to be well tailored to binary logistic
regression with sparse regularization. In contrast to gradient-like methods, our ap-
proach deals with the logistic loss through its proximity operator. This results in an
algorithm that is not tied up to the Lipschitz constant of the loss function, possibly
leading to larger updates per iteration. In this regard, our second contribution is to
show that the proximity operator of the binary logistic loss can be expressed in closed
form using the generalized Lambert W function [39,40]. We also provide comparisons
with state-of-the-art stochastic methods using benchmark datasets.

The paper is organized as follows. In Section 2, we derive the proposed Douglas-
Rachford algorithm. In Section 3, we introduce sparse logistic regression, along with
the proximal operator of the logistic loss. In Section 4, we evaluate our approach on
standard datasets, and compare it to three sparse classification algorithms proposed
in the literature [28,30,41]. Finally, conclusions are drawn in Section 5.

Notation: Γ0(H) denotes the set of proper, lower semicontinuous, convex func-
tions from a real Hilbert space H to ]−∞,+∞]. Let ψ ∈ Γ0(H). For every ν ∈ H, the
subdifferential of ψ at ν is ∂ψ(ν) = {ξ ∈ H | (∀ζ ∈ H) 〈ζ − ν | ξ〉+ ψ(ν) ≤ ψ(ζ)},
the proximity operator of ψ at ν is proxψ(ν) = argminξ∈H 1

2‖ξ − ν‖
2 + ψ(ν), and

the conjugate of ψ is ψ∗ = supξ∈H 〈ξ | ·〉 − ψ(ξ) in Γ0(H). The adjoint of a bounded
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linear operator A from H to a real Hilbert space G is denoted by A∗ Let (Ω,F ,P) be
the underlying probability space, the σ-algebra generated by a family Φ of random
variables is denoted by σ(Φ).

2 Optimization method

Throughout this section, H1, . . . ,HB , G1, . . . ,GL are separable real Hilbert spaces. In
addition, H = H1 ⊕ · · · ⊕HB denotes the Hilbertian sum of H1, . . . ,HB . Any vector
v ∈H can thus be uniquely decomposed as (vb)1≤b≤B where, for every b ∈ {1, . . . , B},
vb ∈ Hb. In the following, a similar notation will be used to denote vectors in any
product space (in bold) and their components.

We will now aim at solving the following problem.

Problem 1 For every b ∈ {1, . . . , B} and for every ` ∈ {1, . . . , L}, let fb ∈ Γ0(Hb),
let h` : G` → R be a differentiable convex function with β`-Lipschitz gradient, for
some β` ∈]0,+∞[, and let A`,b be a linear bounded operator from Hb to G`. The
problem is to

minimize
w∈H

B∑
b=1

fb(wb) +
L∑
`=1

h`

( B∑
b=1

A`,bwb

)
,

under the assumption that the set of solutions E is nonempty.

In order to address Problem 1, we propose to employ the random-sweeping block-
coordinate version of the Douglas-Rachford splitting method with stochastic errors
described in Algorithm 1. Let us define

(∀b ∈ {1, . . . , B}) Cb =
(

Id +τb
L∑
`=1

γ`
1 + γ`ρ`

A∗`,bA`,b

)−1
: Hb → Hb, (1)

where (τb)1≤b≤B and (γ`)1≤`≤1 are the positive constants introduced in Algorithm 1.
The next result establishes the convergence of the proposed algorithm.

Proposition 1 For every b ∈ {1, . . . , B}, let w[0]
b , t[0]

b and (a[i]
b

)
i∈N be Hb-valued

random variables and, for every ` ∈ {1, . . . , L}, let v[0]
` and s[0]

` be GB` -valued random
variables and let (d[i]

`

)
i∈N be G`-valued random variables. In addition, let (ε[i])i∈N be

identically distributed {0, 1}B+L \ {0}-valued random variables and in Algorithm 1
assume that

(i) (∀i ∈ N) σ(ε[i]) and χ[i] = σ(t[0], . . . , t[i], s[0], . . . , s[i]) are independent;

(ii) (∀b ∈ {1, . . . , B})
∑

i∈N

√
E(‖a[i]

b ‖2|χ[i]) < +∞;

(iii) (∀` ∈ {1, . . . , L})
∑

i∈N

√
E(‖d[i]

` ‖2|χ[i]) < +∞;
(iv) (∀b ∈ {1, . . . , B}) P[ε[0]

b = 1] > 0 and (∀` ∈ {1, . . . , L}) P[ε[0]
B+` = 1] > 0.

Then, the sequence (w[i])i∈N generated by Algorithm 1 converges weakly P-a.s. to an
E-valued random variable.
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Algorithm 1 Random Douglas-Rachford splitting for solving Problem 1
Initialization
Set (τb)1≤b≤B ∈]0,+∞[B and η ∈]0, 1].
For every ` ∈ {1, . . . , L}, set ρ` ≥ 0 such that Bβ`ρ` ≤ 1.
For every ` ∈ {1, . . . , L}, set γ` > 0 such that γ`ρ` < 1.

(∀b ∈ {1, . . . , B}) u
[0]
b

=
L∑
`=1

1
1 + γ`ρ`

A∗`,b s
[0]
`,b

For i = 0, 1, . . .

Set µ[i] ∈ ]η, 2− η[
for b = 1, . . . , Bw[i+1]

b
= w

[i]
b

+ ε
[i]
b

(
Cb

(
t
[i]
b
− τbu

[i]
b

)
− w[i]

b

)
t
[i+1]
b

= t
[i]
b

+ ε
[i]
b
µ[i]
(

proxτbfb (2w[i+1]
b

− t[i]
b

) + a
[i]
b
− w[i+1]

b

)
for ` = 1, . . . , L

v
[i+1]
`

= v
[i]
`

+ ε
[i]
B+`

(
s

[i]
`

+ γ`
(
A`,bw

[i]
b

)
1≤b≤B

1 + γ`ρ`
− v[i]

`

)

p
[i]
`

= 2
B∑
b=1

v
[i+1]
`,b

−
B∑
b=1

s
[i]
`,b

q
[i]
`

= proxB(1−γ`ρ`)
γ`

h`

(
p

[i]
`
/γ`
)

+ d
[i]
`

for b = 1, . . . , B⌊
s

[i+1]
`,b

= s
[i]
`,b

+ ε
[i]
B+`µ

[i]
(
p

[i]
`
− γ` q

[i]
`

B(1− γ`ρ`)
− v[i+1]

`,b

)
for b = 1, . . . , B⌊
u

[i+1]
b

= u
[i]
b

+
L∑
`=1

ε
[i]
B+`

1 + γ`ρ`
A∗`,b

(
s

[i+1]
`,b

− s[i]
`,b

)
.

Proof Problem 1 can be reformulated as minimizing f + h ◦A where

f : H→]−∞,+∞] : w 7→
B∑
b=1

fb(wb) (2)

A : H→ G : w 7→ (A`,1w1, . . . , A`,BwB)1≤`≤L (3)

h : G → R : v 7→
L∑
`=1

h`(Λ`v`) (4)

(∀` ∈ {1, . . . , L}) Λ` : GB` → G` : v` 7→
B∑
b=1

v`,b (5)
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and v = (v`)1≤`≤L denotes a generic element of G = GB1 ⊕ · · · ⊕ GBL with v` =
(v`,b)1≤b≤B ∈ GB` for every ` ∈ {1, . . . , L}. Since dom(h) = G, from [42, Theo-
rem 16.47(i)], Problem 1 is equivalent to

find w ∈H such that 0 ∈ ∂f(w) +A∗∇h (Aw) , (6)

which, from [36, Proposition 2.8] is also equivalent to

find (w,v) ∈H× G such that (0,0) ∈N(w,v) + S(w,v), (7)

where N : (w,v) 7→ ∂f(w) × ∂h∗(v) is maximally monotone and S : (w,v) 7→
(A∗v,−Aw) is a skewed linear operator. Note that A∗ : v 7→ (

∑L
`=1 A

∗
`,bv`,b)1≤b≤B

and, from (2), (4) and [42, Proposition 13.30 and Proposition 16.9], ∂f : w 7→
×Bb=1∂fb(wb) and ∂h∗ : v 7→ ×L`=1∂(h` ◦ Λ`)∗(v`). Since, for every ` ∈ {1, . . . , L},
h` ◦ Λ` is convex differentiable with a Bβ`−Lipschitzian gradient ∇(h` ◦ Λ`) =
Λ∗` ◦ ∇h` ◦ Λ`, it follows from Baillon-Haddad theorem [42, Corollary 18.17] that
∇(h` ◦ Λ`) is (Bβ`)−1−cocoercive and, hence, ∂(h` ◦ Λ`)∗ = (∇(h` ◦Λ`))−1 is
(Bβ`)−1−strongly monotone. Therefore, for every ρ` ∈ [0, (Bβ`)−1], (h` ◦ Λ`)∗ is
ρ`−strongly convex. By defining

(∀` ∈ {1, . . . , L}) ϕ` = (h` ◦Λ`)∗ − ρ`‖ · ‖2/2, (8)

it follows from [42, Proposition 10.8] that, for every ` ∈ {1, . . . , L}, ϕ` ∈ Γ0(GB` ) and,
hence, ∂ϕ` := ∂(h` ◦Λ`)∗ − ρ`Id is maximally monotone. Consequently, Problem 1
can be rewritten equivalently as

find (w,v) ∈H×G such that

{
(∀b ∈ {1, . . . , B}) 0 ∈ ∂fb(wb) +Bb(w,v)
(∀` ∈ {1, . . . , L}) 0 ∈ ∂ϕ`(v`) +B`(w,v),

(9)
which, for strictly positive constants (τb)1≤b≤B and (γ`)1≤`≤L, is equivalent to

find (w,v) ∈H×G such that

{
(∀b ∈ {1, . . . , B}) 0 ∈ τb∂fb(wb) + τbBb(w,v)
(∀` ∈ {1, . . . , L}) 0 ∈ γ`∂ϕ`(v`) + γ`B`(w,v),

(10)
where {

Bb : (w,v) 7→
∑L

`=1 A
∗
`,bv`,b

B` : (w,v) 7→ − (A`,1w1, . . . , A`,BwB) + ρ`v`.
(11)

Since S : (w,v) 7→ (A∗v,−Aw) and D : G → G : v 7→ (ρ`v`)1≤`≤L are linear and
monotone operators in H× G and G, respectively, the operator

B : (w,v) 7→ (A∗v,−Aw +Dv) = ((Bb(w,v))1≤b≤B , (B`(w,v))1≤`≤L)

is maximally monotone inH×G. Therefore, by defining the strongly positive diagonal
linear operator

U : H× G →H× G
(w,v) 7→ (Tw,Γv), (12)
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where T : w 7→ (τbwb)1≤b≤B and Γ : v 7→ (γ`v`)1≤`≤L, the operator

UB : (w,v) 7→ (TA∗v,−ΓAw + ΓDv) = ((τbBb(w,v))1≤b≤B , (γ`B`(w,v))1≤`≤L)
(13)

is maximally monotone in (H× G, ‖ · ‖U−1 ), where

(
∀(w,v) ∈H× G

)
‖(w,v)‖U−1 =

√√√√ B∑
b=1

τ−1
b ‖wb‖2 +

L∑
`=1

γ−1
` ‖v`‖2. (14)

Note that the renormed product space (H × G, ‖ · ‖U−1) is the Hilbert sum H1 ⊕
· · ·HB ⊕ GB1 ⊕ · · · GBL where, for every b ∈ {1, . . . , B} and ` ∈ {1, . . . , L}, Hb and
GB` are endowed by the norm ‖ · ‖τb : wb 7→ ‖wb‖/

√
τb and ‖ · ‖γ` : v` 7→ ‖v`‖/

√
γ`,

respectively. Therefore, since τb∂fb and γ`∂ϕ` are maximally monotone in (Hb, ‖ ·‖τb)
and (GB` , ‖ · ‖γ`), respectively, we conclude that (10) is a particular case of the primal
inclusion in [32, Proposition 5.1].

Now we write Algorithm 1 as a particular case of the random block-coordinate
Douglas-Rachford splitting proposed in [32, Proposition 5.1] applied to (10) in
(H×G, ‖ · ‖U−1 ). Given (t, s) ∈H×G, let (w,v) = JUB(t, s) = (Id +UB)−1(t, s).
It follows from (13) that{

w = t− TA∗v

v = (Id + ΓD)−1(s+ ΓAw),
(15)

which leads to

w =
(
Id + TA∗(Id + ΓD)−1ΓA

)−1 (
t− TA∗(Id + ΓD)−1s

)
. (16)

In order to derive an explicit formula for the matrix inversion in (16), set z =
t − TA∗(Id + ΓD)−1s. We have z = w + TA∗(Id + ΓD)−1ΓAw and, since (3)
and D is diagonal, we obtain

TA∗(Id + ΓD)−1ΓA : w 7→

(
τb

L∑
`=1

γ`A
∗
`,bA`,bwb

1 + γ`ρ`

)
1≤b≤B

,

and, hence,

(∀b ∈ {1, . . . , B}) wb =

(
Id +τb

L∑
`=1

γ`A
∗
`,bA`,b

1 + γ`ρ`

)−1

zb = Cbzb. (17)

Therefore, (16) can be written equivalently as

(∀b ∈ {1, . . . , B}) wb = Cb

(
t
[i]
b − τb

L∑
`=1

A∗`,bs`,b

1 + γ`ρ`

)
= Cb(tb − τbub), (18)

where

(∀b ∈ {1, . . . , B}) ub =
L∑
`=1

A∗`,b s`,b

1 + γ`ρ`
. (19)
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Moreover, from (15), we deduce that

(∀` ∈ {1, . . . , L}) v` = s` + γ`(A`,bwb)1≤b≤B

1 + γ`ρ`
, (20)

and, hence, we have JUB : (t, s) 7→ ((Qb(t, s))1≤b≤B , (Q`(t, s))1≤`≤L), where(∀b ∈ {1, . . . , B}) Qb : (t, s) 7→ Cb (tb − τbub)

(∀` ∈ {1, . . . , L}) Q` : (t, s) 7→ s` + γ`(A`,bQb(t, s))1≤b≤B

1 + γ`ρ`
.

(21)

Now, it follows from [42, Proposition 16.44] that, for every b ∈ {1, . . . , B} and
` ∈ {1, . . . , L}, Jτb∂fb = proxτbfb and Jγ`∂ϕ` = proxγ`ϕ` and, for every ` ∈ {1, . . . , L}
and (r`, z`) ∈ GB` × GB` , we have

r` = proxγ`ϕ` z` ⇔
z` − r`
γ`

∈ ∂ϕ`(r`)

⇔ z` − r`
γ`

∈ ∂(h` ◦Λ`)∗r` − ρ`r`

⇔ z` − (1− γ`ρ`)r` ∈ γ`∂(h` ◦Λ`)∗r`. (22)

Therefore, if γ`ρ` < 1 we have that (22) is equivalent to

r` = prox γ`
1−γ`ρ`

(h`◦Λ`)∗

( z`
1− γ`ρ`

)
(23)

and, from Moreau’s decomposition formula [42, Theorem 14.13(ii)], we obtain

r` = 1
1− γ`ρ`

(
z` − γ` prox 1−γ`ρ`

γ`
(h`◦Λ`)

(z`
γ`

))
. (24)

Noting that, for every ` ∈ {1, . . . , L}, Λ` ◦Λ∗` = B Id, from [42, Proposition 24.14],
(22) and (24) we deduce that

(∀b ∈ {1, . . . , B}) r`,b = 1
B(1− γ`ρ`)

(
B∑
d=1

z`,d − γ` proxB(1−γ`ρ`)
γ`

h`

(
1
γ`

B∑
d=1

z`,d

))
(25)

and, hence,

proxγ`ϕ` z` = 1
B(1− γ`ρ`)

(
B∑
d=1

z`,d − γ` proxB(1−γ`ρ`)
γ`

h`

(
1
γ`

B∑
d=1

z`,d

))
1≤b≤B

.

(26)
Therefore, by defining, for every i ∈ N and ` ∈ {1, . . . , L}, e[i]

` ∈ GB` via

(∀` ∈ {1, . . . , L}) e
[i]
` =

(
− γ`
B(1− γ`ρ`)

d
[i]
`

)
1≤b≤B

, (27)

we deduce that Algorithm 1 can be written equivalently as
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For i = 0, 1, . . .

For b = 1, . . . , Bw[i+1]
b = w

[i]
b + ε

[i]
b

(
Qb(t[i], s[i])− w[i]

b

)
t
[i+1]
b = t

[i]
b + ε

[i]
b µ

[i]
(

proxτbfb(2w
[i+1]
b − t[i]b ) + a

[i]
b − w

[i+1]
b

)
For ` = 1, . . . , Lv[i+1]

` = v
[i]
` + ε

[i]
B+`

(
Q`(t[i], s[i])− v[i]

`

)
s

[i+1]
` = s

[i]
` + ε

[i]
B+`µ

[i]
(

proxγ`ϕ`(2v
[i+1]
` − s[i]

` ) + e[i]
` − v

[i+1]
`

)
.

Defining, for every i ∈ N, a[i] =
(
(a[i]
b )1≤b≤B , (e[i]

` )1≤`≤L
)
∈H× G, we have

∑
i∈N

√
E(‖a[i]‖2

U−1 |χ[i]) =
∑
i∈N

√√√√ B∑
b=1

τ−1
b E

(
‖a[i]
b ‖2|χ[i]

)
+

L∑
`=1

γ−1
` E

(
‖e[i]
` ‖2|χ[i]

)
≤

B∑
b=1

τ
−1/2
b

∑
i∈N

√
E(‖a[i]

b ‖2|χ[i]) +
L∑
`=1

γ`
−1/2

∑
i∈N

√
E(‖e[i]

` ‖2|χ[i])

< +∞, (28)

where the last inequality follows from (ii), (iii), (27) and

∑
i∈N

√
E(‖e[i]

` ‖2|χ[i]) = γ`√
B(1− γ`ρ`)

∑
i∈N

√
E(‖d[i]

` ‖2|χ[i]) < +∞. (29)

Altogether, since operator JUB is weakly sequentially continuous because it is con-
tinuous and linear, the result follows from [32, Proposition 5.1] when the error term
in the computation of JUB is zero. ut

Remark 1

(i) In Proposition 1, the binary variables ε[i]
b and ε[i]

B+` signal whether the variables t
[i]
b

and s[i]
` are activated or not at iteration i. Assumption (iv) guarantees that each

of the latter variables is activated with a nonzero probability at each iteration. In
particular, it must be pointed out that the variables p[i]

` and q[i]
` only need to be

computed when ε[i]
B+` = 1.

(ii) Note that Algorithm 1 may look similar to the stochastic approach proposed
in [32, Corollary 5.5] (see also [36, Remark 2.9], and [37] for deterministic variants).
It exhibits however three key differences. Most importantly, the operator inversions
performed at the initial step amount to inverting a set of positive definite self-
adjoint operators defined on the spaces (Hb)1≤b≤B . We will see in our application
that this reduces to invert a set of small size symmetric positive definite matrices.
Another advantage is that the smoothness of the functions (h`)1≤`≤L is taken
into account, and a last one is that the dual variables appear explicitly in the
iterations.
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(iii) If, for every ` ∈ {1, . . . , L}, ρ` = 0 and B = 1, Algorithm 1 simplifies to
Algorithm 2, where unnecessary indices have been dropped and we have set

(∀i ∈ N)

{
ũ[i] = −τu[i]

(∀` ∈ {1, . . . , L} s̃
[i]
` = −τs[i]

` .
(30)

In this case,

C =
(

Id +τ
L∑
`=1

γ`A
∗
` A`

)−1
. (31)

Algorithm 2 Random Douglas-Rachford splitting for solving Problem 1 when ρ` = 0
and B = 1
Initialization

Set τ ∈]0,+∞[ and η ∈]0, 1].
For every ` ∈ {1, . . . , L}, set γ` > 0.

ũ[0] =
L∑
`=1

A∗` s̃
[0]
`

For i = 0, 1, . . .

Set µ[i] ∈ ]η, 2− η[

w[i+1] = w[i] + ε[i]
(
C
(
t[i] + ũ[i]

)
− w[i]

)
t[i+1] = t[i] + ε[i]µ[i]

(
proxτf (2w[i+1] − t[i]) + a[i] − w[i+1]

)
for ` = 1, . . . , Lq

[i]
`

= prox h`
γ`

(
2A`w[i] −

s̃
[i]
`

τγ`

)
+ d

[i]
`

s̃
[i+1]
`

= s̃
[i]
`

+ ε
[i]
`+1µ

[i]τγ`

(
q

[i]
`
−A`w[i]

)
ũ[i+1] = ũ[i] +

L∑
`=1

ε
[i]
`+1A

∗
`

(
s̃

[i+1]
`

− s̃[i]
`

)
.

When (∀` ∈ {1, . . . , L}) γ` = 1/τ , it turns out this algorithm is exactly the same
as the one resulting from a direct application of [32, Corollary 5.5] [43].

(iv) The situation when, for a given `, h` ∈ Γ0(G`) is not Lipschitz-differentiable can
be seen as the limit case when β` → +∞. It can then be shown that Algorithm 1
remains valid by setting ρ` = 0.

3 Sparse logistic regression

The proposed algorithm can be applied in the context of binary linear classification.
A binary linear classifier can be modeled as a function that predicts the output
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y ∈ {−1,+1} associated to a given input x ∈ RN . This prediction is defined through
a linear combination of the input components, yielding the decision variable

dw(x) = sign
(
x>w

)
, (32)

where w ∈ RN is the weight vector to be estimated. In supervised learning, this
weight vector is determined from a set of input-output pairs

S =
{

(x`, y`) ∈ RN × {−1,+1} | ` ∈ {1, . . . , L}
}
, (33)

which is called training set. More precisely, the learning task can be defined as the
trade-off between fitting the training data and reducing the model complexity, leading
to an optimization problem expressed as

minimize
w∈RN

f(w) +
L∑
`=1

h
(
y` x

>
` w
)
, (34)

where f ∈ Γ0(RN ) is a regularization function and h ∈ Γ0(R) stands for the loss
function. In the context of sparse learning, a popular choice for the regularization
is the `1-norm. Although many choices for the loss function are possible, we are
primarily interested in the logistic loss, which is detailed in the next section.

3.1 Logistic regression

Logistic regression aims at maximizing the posterior probability density function of
the weights given the training data, here assumed to be a realization of statistically
independent input-output random variables. This leads us to

maximize
w∈RN

ϕ(w)
L∏
`=1

π(y` | x`,w)θ`(x`|w), (35)

where ϕ is the weight prior probability density function and, for every ` ∈ {1, . . . , L},
θ` is the conditional data likelihood of the `-th input knowing the weight values,
while π(y` | x`,w) is the conditional probability of the `-th output knowing the `-th
input and the weights. Let us model this conditional probability with the sigmoid
function defined as

π(y` | x`,w) = 1
1 + exp(−y`x>` w)

, (36)

and assume that the inputs and the weights are statistically independent and that ϕ
is log-concave. Then, the negative-logarithm of the energy in (35) yields an instance
of Problem (34) in which

(∀v ∈ R) h(v) = log
(
1 + exp(−v)

)
(37)

and, for every w ∈ RN , f(w) = − logϕ(w). (The term
∏L
`=1 θ`(x`|w) can be

discarded since the inputs and the weights are assumed statistically independent.)
The function in (37) is called logistic loss. For completeness, note that other loss
functions, leading to different kinds of classifiers, are the hinge loss [44]

(∀v ∈ R) hhinge(v) =
(

max{0, 1− v}
)q (38)
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with q ∈ {1, 2}, and the Huber loss [45]

(∀v ∈ R) hhuber(v) =


0 if v ≥ 1
−v if v ≤ −1
1
4 (v − 1)2 otherwise.

(39)

These functions can be also handled by the proposed algorithm.

3.2 Optimization algorithm

Let us blockwise decompose the weight variable w ∈ RN as

w> =
[
w>1 . . . w>B

]
, (40)

where, for every b ∈ {1, . . . , B}, wb ∈ RNb and N1, . . . , NB are strictly positive
integers such that N = N1 + · · · + NB . Let us also decompose the input vector
as x> =

[
x>1 . . . x>B

]
. Finally, let us assume that the regularization function is

block-separable, i.e. f = ⊕Bb=1fb, where, for every b ∈ {1, . . . , B}, fb ∈ Γ0(RNb). A
typical example of such functions is given by

(∀b ∈ {1, . . . , B}) fb = λ‖ · ‖κb , (41)

where λ ∈ [0,+∞[ and ‖·‖κb , κb ∈ [1,+∞], denotes the `κb -norm of RNb . In particular,
when for every b ∈ {1, . . . , B} κb = 1, f reduces to the standard `1 regularizer, whereas
setting κb ≡ 2 results in a potential promoting group sparsity [46].

In the context described above, (34) is a particular case of Problem 1 where,
for every b ∈ {1, . . . , B}, Hb = RNb , for every ` ∈ {1, . . . , L}, G` = R, h` = h and
A`,b = y`x

>
`,b. Note that since, for every ` ∈ {1, . . . , L}, y2

` = 1, A∗`,bA`,b = x`,bx
>
`,b.

Moreover, h defined in (37) is twice differentiable with

(∀v ∈ R) h′(v) = − exp(−v)
1 + exp(−v) , (42)

h′′(v) = exp(−v)
(1 + exp(−v))2 . (43)

Since h′′ is maximized in v = 0, we have supv∈R |h′′(v)| = 1/4, which implies that h′
is 1/4-Lipschitz continuous and we have thus, for every ` ∈ {1, . . . , L}, β` = 1/4.

The problem can thus be solved with Algorithm 1, the convergence of which is
guaranteed almost surely under the assumptions of Proposition 1.

3.3 Proximity operator

An efficient computation of the proximity operators of functions (fb)1≤b≤B and h
plays a crucial role in the implementation of Algorithm 1. There exists an extensive
literature on the computation of the proximity operators of functions like (41) [47].
In particular, when κb = 1 (resp. κb = 2), this proximity operator reduces to a
component-wise (resp. blockwise) soft-thresholding [48]. Regarding the logistic loss in
(37), although some numerical methods exist [49,50], to the best of our knowledge,



12 Luis M. Briceño-Arias et al.

no thorough investigation of the form of its proximity operator has been made. The
next proposition will contribute to fill such a void. The result relies on the generalized
W-Lambert function recently introduced in [39,40], defined via

(∀v̄ ∈ R)(∀v ∈ R)(∀r ∈ ]0,+∞[) v̄ (exp(v̄) + r) = v ⇔ v̄ = Wr(v). (44)

When r ∈ [exp(−2),+∞[, Wr is uniquely defined and strictly increasing, but when
r ∈]0, exp(−2)[, there exist three branches for Wr. We will retain the only one which
can take nonnegative values (denoted by Wr,0 in [39, Theorem 4]) and is also strictly
increasing. This function can be efficiently evaluated through a Newton-based method
devised by Mező et al. [39] and available on line.1

Proposition 2 Let γ ∈ ]0,+∞[ and let h : v 7→ log
(
1 + exp(−v)

)
. We have

(∀v ∈ R) proxγh(v) = v + Wexp(−v) (γ exp (−v)) . (45)

Proof Let v ∈ R and γ ∈ ]0,+∞[. For every p ∈ R, it follows from the definition of
proxγh, (42) and (44) that

p = proxγh(v) ⇔ v − p = − γ exp(−p)
1 + exp(−p) = − γ

exp(p) + 1 (46)

⇔ (p− v)(exp(p) + 1) = γ

⇔ (p− v)(exp(p− v) + exp(−v)) = γ exp(−v)
⇔ p− v = Wexp(−v)(γ exp(−v)) (47)

and the result follows. ut

From a numerical standpoint, it must be emphasized that the exponentiation in
(45) may be problematic, as it yields an arithmetic overflow when v tends to −∞. To
overcome this issue, one can use the asymptotic equivalence2 between the proximity
operator of the logistic function and other more tractable functions.

Proposition 3 Let γ ∈ ]0,+∞[ and let h : v 7→ log(1+exp(−v)). Then, as v → −∞,

proxγh(v) = v + γ
(
1− exp(γ + v) + (1 + γ) exp(2(γ + v))

)
+ ϑ(exp(2v)). (48)

Proof Define
(∀v ∈ R) ϕ(v) = Wexp(−v)(γ exp(−v)). (49)

According to Proposition 2,
ϕ = proxγh− Id . (50)

It follows from (46) that ranϕ = ran(proxγh− Id) ⊂ ]0, γ[. Moreover, from [42, Sec-
tion 24.2] we deduce that ϕ = −γ proxh∗/γ(·/γ), which is decreasing and continuous
by virtue of [42, Proposition 24.31]. Therefore, limv→−∞ ϕ(v) exists and from (44)
we have

(∀v ∈ R) ϕ(v) exp(ϕ(v)) = (γ − ϕ(v)) exp(−v). (51)

1https://sites.google.com/site/istvanmezo81/others
2Hereafter, following Landau’s notation, we will write that F (v) = ϑ(G(v)), where F : R→ R

and G : R→ R, if F (v)/G(v)→ 0 as v → +∞ (or v → −∞).
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Since the left side of the equality above is bounded, we deduce that limv→−∞ ϕ(v) = γ.
Subsequently, we define

(∀v ∈ R) u(v) = ϕ(v)− γ satisfying lim
v→−∞

u(v) = 0. (52)

Hence, (51) can be rewritten as

(γ + u(v)) exp(γ) exp(u(v)) = −u(v) exp(−v) (53)

and by using the first order Taylor expansion around ξ = 0, exp(ξ) = 1 + ξ + ϑ(ξ)
and the fact that u(v)2 + (γ + u(v))ϑ(u(v)) = ϑ(u(v)), we obtain

u(v) = − exp(γ + v)(γ + u(v))(1 + u(v) + ϑ(u(v)))
= − exp(γ + v)(γ + (γ + 1)u(v) + ϑ(u(v)))
= −γ exp(γ + v)− (γ + 1) exp(γ + v)u(v)− exp(γ + v)ϑ(u(v)). (54)

We deduce from this relation that

u(v) = −γ exp(γ + v) + exp(γ + v)ϑ(u(v))
1 + (γ + 1) exp(γ + v) . (55)

It follows that
lim

v→−∞
u(v) exp(−v) = −γ exp(γ), (56)

which implies that exp(γ + v)ϑ(u(v)) = ϑ(exp(2v)) and, from (55) we obtain

u(v) = − γ exp(γ + v)
1 + (γ + 1) exp(γ + v) + ϑ(exp(2v)). (57)

Combining (50), (52), and (57) yields

proxγh(v) = v + γ

(
1− exp(γ + v)

1 + (γ + 1) exp(γ + v)

)
+ ϑ(exp(2v))

= v + γ

(
1 + γ exp(γ + v)

1 + (γ + 1) exp(γ + v)

)
+ ϑ(exp(2v))

= v + γ (1− exp(γ + v) + (1 + γ) exp(2(γ + v))) + ϑ(exp(2v)), (58)

where the last equality follows from the second order Taylor expansion around ξ = 0.
ut

4 Experimental results

In order to assess the performance of Algorithm 1, we performed the training on
standard datasets3,4 (see Table 1), and we compared it with the following approaches.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
4http://yann.lecun.com/exdb/mnist
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– Stochastic Forward-Backward splitting (SFB) [29–31,51]

w[0] ∈ RN

For i = 0, 1, . . .Select L[i] ⊂ {1, . . . , L}

w[i+1] = proxγif
(
w[i] − γi

∑
`∈L[i]

y`x`h
′(y`x>` w[i]))

where (γi)i∈N is a decreasing sequence of positive values.
– Regularized Dual Averaging (RDA) [28]

w[0] ∈ RN , z[0] = 0
For i = 0, 1, . . .
Select L[i] ⊂ {1, . . . , L}

z[i+1] = z[i] +
∑
`∈L[i]

y`x`h
′(y`x>` w[i])

w[i+1] = proxγif
(
− γi z[i+1])

where (γi)i∈N is a decreasing sequence of positive values.
– Block-Coordinate Primal-Dual splitting (BCPD) [41]

w[0] ∈ RN , v[0] ∈ RL

For i = 0, 1, . . .

Select L[i] ⊂ {1, . . . , L}
w[i+1] = proxτf

(
w[i] − τu[i])

(∀` ∈ L[i]) v
[i+1]
` = proxσh∗

(
v

[i]
` + σy`x

>
`

(
2w[i+1] − w[i]))

(∀` /∈ Li) v
[i+1]
` = v

[i]
`

u[i+1] = u[i] +
∑
`∈L[i]

(
v

[i+1]
` − v[i]

`

)
y`x`

where τ > 0 and σ > 0 are such that τσ
∥∥∑L

`=1 x`x
>
`

∥∥ ≤ 1.

The algorithmic parameters are reported in Table 2. For all the algorithms, mini-
batches of size 1000 were randomly selected using a uniform distribution, and the
initial vector w[0] was randomly drawn from the normal distribution with zero mean
and unit variance. For the datasets with more than two classes (MNIST and RCV1),
the “one-versus-all” approach is used [52]. All experiments were carried out with
Matlab 2015a on an Intel i7 CPU at 3.40 GHz and 12 GB of RAM.

Table 3 reports the classification performance achieved by the compared algo-
rithms, which includes the classification errors computed on a (disjoint) test set,
as well as the sparsity degree of the solution. For all the considered datasets, the
regularization parameter λ was selected with a cross-validation procedure. The results
show that the proposed algorithm finds a solution that yields the same accuracy as
state-of-the-art methods, while being sparser than the ones produced by gradient-like
methods (SFB and RDA).
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Table 1 Training sets used in the experiments (K is the number of classes).

Dataset N L K

W8A 300 49749 2
MNIST 717 60000 10
RCV1 12560 30879 20

Table 2 Algorithmic parameters used in the experiments.

SFB / RDA Algo 1 BCPD

Dataset γi γ, τ µ[i] ρ B τ σ

W8A 10−1/
√
i+ 1

1 1.5 0.1
1

0.1 τ−1
∥∥ L∑
`=1

x`x
>
`

∥∥−1
MNIST 1/

√
i+ 1 1

RCV1 10/
√
i+ 1 9

Table 3 Classification performance on test sets (after training for a fixed number of iterations).

Dataset
Algo 1 SFB RDA BCPD

Errors – Zeros Errors – Zeros Errors – Zeros Errors – Zeros

w8a 9.73% – 19.60% 9.92% – 5.65% 9.99% – 0.33% 10.44% – 50.50%
mnist 8.49% – 41.57% 8.37% – 5.25% 8.60% – 11.13% 8.45% – 58.64%
rcv1 6.62% – 83.43% 6.67% – 35.22% 6.60% – 32.90% 6.25% – 98.57%

Figure 1 reports the training performance versus time of the considered algorithms,
which includes the criterion in (34), and the distance to the solution w[∞] obtained
after many iterations for each compared method. The results indicate that the
proposed approach converges faster to a smaller value of the objective criterion. This
could be related to the implicit preconditioning present in Algorithm 1 through the
matrix Q. Another interesting feature of our algorithm is the free choice of parameters
γ and µi. Conversely, in both SFB and RDA, the parameter γi (also referred to as
learning rate) needs to be carefully selected by hand, causing such algorithms to slow
down or even diverge if the learning rate is chosen too small or too high.

5 Conclusion

In this paper, we have proposed a block-coordinate Douglas-Rachford algorithm for
sparse logistic regression. In contrast to gradient-like methods, our approach relies
on the proximity operator of the logistic loss, for which we derived a closed-form
expression that can be efficiently implemented. Thanks to this feature, our approach
removes restrictions on the choice of the algorithm parameters, unlike gradient-like
methods, for which it is essential that the learning rate is carefully chosen. This is
confirmed by our numerical results, which indicate that the training performance of
the proposed algorithm compares favorably with state-of-the-art stochastic methods.
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