Non-vanishing of Dirichlet series without Euler products
Résumé
We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of this proof is that it makes no use of the Euler product for ζ(s).
Domaines
Mathématiques [math]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...