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Non-vanishing of Dirichlet series

without Euler products

William D. Banks

Abstract. We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of

this proof is that it makes no use of the Euler product for ζ(s).

Keywords. Riemann zeta function, Euler product, zeros.

2010 Mathematics Subject Classification. 11M06

1. Introduction

Let s = σ + it be a complex variable. In the half-plane

H ..= {s ∈ C : σ > 1}

the Riemann zeta function can be defined either as a Dirichlet series

ζ(s) ..=
∑
n∈N

n−s

or (equivalently) as an Euler product

ζ(s) ..=
∏

p prime

(1− p−s)−1.

Since a convergent infinite product of nonzero factors is not zero, the zeta function does not vanish
in H . This can also be seen by applying the logarithm to the Euler product:

log ζ(s) =
∑
p

∑
m∈N

(mps)−1.

Indeed, since the double sum on the right converges absolutely in H , it follows that ζ(s) 6= 0 for all
s ∈H . Alternatively, since the Möbius function µ is bounded, it follows that the series

ζ(s)−1 =

∞∑
n=1

µ(n)n−s

converges absolutely when σ > 1, so ζ(s) cannot vanish. Of course, to prove that the Möbius function
is bounded, one exploits the multiplicativity of µ, so this argument also relies (albeit implicitly) on
the Euler product for ζ(s).

It is crucial to our understanding of the primes to extend the zero-free region for ζ(s) as far to
the left of σ = 1 as possible.1 According to Titchmarsh [Ti86, §3.1] this means extending the “sphere
of influence” of the Euler product:

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal
1At present, the strongest result in this direction is due to Mossinghoff and Trudjian [MosTru15]; see also the earlier

papers [Fo00, JaKw14, Kad05] and references therein.
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The problem of the zero-free region appears to be a question of extending the sphere of influence

of the Euler product beyond its actual region of convergence; for examples are known of functions

which are extremely like the zeta-function in their representation by Dirichlet series, functional

equation, and so on, but which have no Euler product, and for which the analogue of the Riemann

hypothesis is false. In fact the deepest theorems on the distribution of the zeros of ζ(s) are obtained

in the way suggested. But the problem of extending the sphere of influence of [the Euler product]

to the left of σ = 1 in any effective way appears to be of extreme difficulty.

But let’s play the devil’s advocate for a moment! Is it really the case that the non-vanishing of
the Riemann zeta function in H (and in wider regions) fundamentally relies on the existence of an
Euler product? Our aim in this paper is to provide some evidence to the contrary.

2. Statement of results

For a given arithmetical function F with F (1) 6= 0, let F̃ denote the Dirichlet inverse of F ; this can
be defined via the Möbius relation

∑
ab=n

F (a)F̃ (b) = I(n) ..=

{
1 if n = 1;

0 otherwise.

To prove that a Dirichlet series D(s) ..=
∑
F (n)n−s is nonzero in H , it is enough to show that

D(s)−1 =
∑
F̃ (n)n−s converges in H . Using partial summation, this is a consequence of any bound

of the form ∑
n≤x

F̃ (n)� x1+o(1) (x→∞). (2.1)

Our proof of the next theorem establishes (2.1) whenever F̃ is supported on a set of κ-free numbers.2

Theorem 2.1. Let D(s) ..=
∑

n∈N F (n)n−s be a Dirichlet series such that F is bounded, F (1) 6= 0,

and the Dirichlet inverse F̃ is supported on the set of κ-free numbers for some κ ≥ 2. Then D(s) 6= 0
in H .

This theorem is proved in §5. It establishes the property of non-vanishing in H for a large class
of Dirichlet series, almost all of which do not have an Euler product (but some do).

For a Dirichlet series D(s) attached to a bounded completely multiplicative function F (for ex-
ample, the Riemann zeta function), Theorem 2.1 provides a novel route to showing that D(s) is
nonzero in H . For such F , one can easily show that F̃ is supported on the set of squarefree numbers
provided that one has the luxury of using the Euler product for D(s). For this reason, it is important
to note that our proof of the next theorem makes no use of the Euler product for D(s). Instead, a
combinatorial identity is employed to show that F̃ has the required support.

Theorem 2.2. Let F be an arithmetical function that is bounded and completely multiplicative. Then
the Dirichlet inverse F̃ is supported on the set of squarefree numbers.

This theorem is proved in §6.
In particular, Theorems 2.1 and 2.2 together yield the following result without any use of the

Euler product for ζ(s).

Corollary 2.3. The Riemann zeta function does not vanish in H .

2For a given integer κ ≥ 2, a natural number n is said to be κ-free if pk - n for every prime p.
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To further illustrate how our results can be applied, we introduce and study a special family of
Dirichlet series D ..= {Dz(s) : z ∈ C} with the following properties:

(i) The Riemann zeta function belongs to D ;

(ii) Every series Dz(s) is meromorphic and nonzero in the region H ;

(iii) Only two series in D have an Euler product, namely the Riemann zeta function and the constant
function 1C(s) = 1 for all s ∈ C.

Viewing ζ(s) in relation to the other members of D , the existence of an Euler product seems quite
unusual, whereas non-vanishing in the half-plane H is a property enjoyed by every member of D .

3. Preliminaries

Throughout the paper, we fix an integer parameter κ ≥ 2 and denote by Nκ the set of κ-free numbers.
We denote by 1Nκ the indicator function of Nκ:

1Nκ(n) ..=

{
1 if n ∈ Nκ;

0 otherwise.

We denote by ω(n) the number of distinct prime factors of n and by Ω(n) the number of prime
factors of n, counted with multiplicity.

For any integer k ≥ 2 we denote by logk x the k-th iterate of the function x 7→ max{log x, 1}. In
particular, log2 x = log log x and log3 x = log log log x when x is sufficiently large.

We use the equivalent notations f(x) = O(g(x)) and f(x) � g(x) to mean that the inequality
|f(x)| ≤ c g(x) holds with some constant c. Throughout the paper, any implied constants in the
symbols O and � may depend (where obvious) on the parameters κ, ε but are absolute otherwise.

Two classical results of Hardy and Ramanujan [HR17, Lemmas B and C] assert the existence of
constants c1, c2 > 0 such that the inequalities

∣∣{n ≤ x : ω(n) = `}
∣∣ ≤ c1x

log x

(log2 x+ c2)`−1

(`− 1)!
(3.2)

and ∣∣{n ≤ x : Ω(n) = `}
∣∣ ≤ c1x

log x

`−1∑
j=0

(
9
10

)`−1−j (log2 x+ c2)j

j!
(3.3)

hold for all real x ≥ 2. In the next lemma, we study the counting function

Nκ,`(x) ..=
∣∣{n ≤ x : n ∈ Nκ and Ω(n) = `}

∣∣. (3.4)

Although this function might seem closely related to that on the left side of (3.3), we prove that it
satisfies a bound nearly as strong as (3.2).

Lemma 3.1. There are absolute constants C1, C2 > 0 with the following property. For any integers
κ ≥ 2 and ` ≥ 1, the counting function defined by (3.4) satisfies the upper bound

Nκ,`(x) ≤ C1x

log x

((κ− 1) log2 x+ (κ− 1)C2)`−1

(`− 1)!
(x ≥ 2). (3.5)
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Proof. Our proof is an adaptation of arguments from [HR17].
When ` ≤ κ, the condition Ω(n) = ` implies that n ∈ Nκ. Using (3.3) it follows that

Nκ,`(x) =
∣∣{n ≤ x : Ω(n) = `}

∣∣ ≤ ec1x(log2 x+ c2)`−1

log x
(x ≥ 2),

hence (3.5) holds for any choice of C1 ≥ ec1 and C2 ≥ c2.
From now on, we assume that ` > κ. To simplify the notation slightly, we put κ1

..= κ− 1.
Let p(1) ..= 2 < p(2) ..= 3 < p(3) ..= 5 < · · · be the sequence of all primes, and put

p̃(j) ..= p(dj/κ1e) (j ∈ N),

where for any t > 0, dte is the least integer that is ≥ t. In other words,
(
p̃(j)

)
j∈N is the sequence

2, . . . , 2︸ ︷︷ ︸
κ1 copies

, 3, . . . , 3︸ ︷︷ ︸
κ1 copies

, 5, . . . , 5︸ ︷︷ ︸
κ1 copies

, . . .

in which the primes appear in increasing order, each being repeated κ1 times.
Let n ∈ Nκ, n ≥ 2, and suppose that Ω(n) = `. Among all of the ordered `-tuples (j1, . . . , j`)

having j1 < · · · < j` and for which
n = p̃(j1) · · · p̃(j`), (3.6)

let Ψ(n) be the unique `-tuple (j1, . . . , j`) that minimizes the sum j1 + · · · + j`. For any such n we
also put

J(n) ..= j`,

and we set J(1) ..= 0. For example, if κ = 5, then 4400 ∈ Nκ and we have

Ψ(4400) = (1, 2, 3, 4, 9, 10, 17) and J(4400) = 17.

Let S be the set of ordered pairs (j,m) such that j ≤ J(m), m ∈ Nκ, and p̃(j)m ≤ x. The
condition j ≤ J(m) implies that the prime p̃(j) does not exceed the largest prime factor of m, and
thus p̃(j) ≤ m ≤ x/p̃(j); consequently,

|S| ≤
∑

j : p̃(j)2≤x

Nκ,`−1(x/p̃(j)). (3.7)

On the other hand, suppose that n ≤ x, n ∈ Nκ and Ω(n) = `. Factoring n as in (3.6) with
(j1, . . . , j`) = Ψ(n), one verifies that the pair (ji, n/p̃(ji)) lies in S for each i = 1, . . . , `− 1 Hence, n
can be expressed in `− 1 different ways as the product of the entries of an ordered pair in S, which
implies that

(`− 1)Nκ,`(x) ≤ |S|. (3.8)

Combining (3.7) and (3.8), and using induction, we have

Nκ,`(x) ≤ 1

`− 1

∑
j : p̃(j)2≤x

Nκ,`−1(x/p̃(j))

≤ 1

`− 1

∑
j : p̃(j)2≤x

C1(x/p̃(j))

log(x/p̃(j))

(κ1 log2(x/p̃(j)) + κ1C2)`−2

(`− 2)!

≤ C1x(κ1 log2 x+ κ1C2)`−2

(`− 1)!

∑
j : p̃(j)2≤x

1

p̃(j) log(x/p̃(j))
.
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As each prime is repeated precisely κ1 times in
(
p̃(j)

)
j∈N we have∑

j : p̃(j)2≤x

1

p̃(j) log(x/p̃(j))
= κ1

∑
p : p2≤x

1

p log(x/p)
.

The proof is completed using the fact that∑
p : p2<x

1

p log(x/p)
<

log2 x+ C2

log x
(x ≥ 2)

holds for a sufficiently large choice of C2; see the proof of [HR17, Lemma C].

4. Factorisatio numerorum

For any n ≥ 2, let f(n) denote the number of representations of n as a product of integers exceeding
one, where two representations are considered equal only if they contain the same factors in the same
order. For technical reasons, we also set f(1) ..= 1.

One can define f(n) as follows. For every positive integer k, let fk(n) denote the number of
ordered k-tuples (n1, . . . , nk) such that each nj ≥ 2 and the product n1 · · ·nk equals n. Then

f(n) ..= I(n) +
∑
k≥1

fk(n) (n ∈ N), (4.9)

where

I(n) ..=

{
1 if n = 1;

0 otherwise.

Note that the sum in (4.9) is finite since fk(n) = 0 when k > Ω(n).
In one of the earliest papers about the function f(n), Kalmár [Kal30] establishes the asymptotic

formula ∑
n≤x

f(n) ∼ − xβ

βζ ′(β)
(x→∞), (4.10)

where β = 1.728647 · · · is the unique positive root of ζ(β) = 2. In particular, this implies that

f(n)� nβ (n ∈ N). (4.11)

The bound (4.11) is essentially optimal since Hille [Hi36] has shown that for every ε > 0 the lower
bound f(n)� nβ−ε holds for infinitely many n; see also Erdős [Er41].

The next proposition is fundamental in the sequel as it leads to a significant strengthening of
(4.11) for κ-free numbers n.

Proposition 4.1. For any integer n ≥ 2 we have

f(n) ≤ exp(` log `+O(` log2 ` log3 `)) with ` ..= Ω(n).

Proof. Let T (n) be the set of ordered tuples (n1, . . . , nr) of any length r such that every nj ≥ 2 and
n1 · · ·nr = n. Thus, |T (n)| = f(n).

Let P(`) be the set of ordered partitions λ of `; these are ordered tuples λ = (λ1, . . . , λr) of any
length r such that 1 ≤ λ1 ≤ · · · ≤ λr and λ1 + · · ·+ λr = `.

We begin by constructing a map Φ : T (n) → P(`) as follows. For any given η = (n1, . . . , nr) in
T (n), let ΦΩ(η) denote the tuple (Ω(n1), . . . ,Ω(nr)), and set

U(n) ..= {ΦΩ(η) : η ∈ T (n)};
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thus, ΦΩ : T (n)→ U(n). Next, for any w = (w1, . . . , wr) in U(n), let Φσ(w) be the tuple (λ1, . . . , λr)
that is obtained by rearranging the entries of w into nondecreasing order; then Φσ : U(n) → P(`).
The map Φ : T (n)→ P(`) is defined to be the composition Φσ ◦ ΦΩ.

Next, for any λ ∈ P(`) let dλ(n) be the cardinality of the set Φ−1({λ}) of preimages of λ in T (n).3

Since any product counted by f(n) gives rise to a unique partition λ via the map Φ, we have

f(n) ..= I(n) +
∑

λ∈P(`)

dλ(n).

In view of the celebrated estimate of Hardy and Ramanujan [HR18]

|P(`)| ∼ (4`
√

3)−1 exp
(
π
√

2`/3
)

(`→∞),

to prove the proposition it suffices to show that the individual bound

dλ(n) ≤ exp(` log `+O(` log2 ` log3 `)) (4.12)

holds for every λ ∈ P(`).
To this end, let λ = (λ1, . . . , λr) be a fixed element of P(`). For any natural number k, let mk be

the multiplicity with which k occurs in the partition λ, i.e.,

mk
..=
∣∣{j : λj = k}

∣∣ (k ∈ N).

Note that ` =
∑

k kmk. Setting m ..=
∑

kmk, a simple combinatorial argument shows that

dλ(n) ≤ `!∏
k(k!)mk

· m!∏
kmk!

(4.13)

(roughly speaking, the second factor is the cardinality of the set Φ−1
σ ({λ}) of preimages of λ in

U(n), whereas for any such preimage w the first factor bounds the cardinality of the set Φ−1
Ω ({w}) of

preimages of w in T (n)). We remark that (4.13) holds with equality whenever n is squarefree. Since
`! ≤ ``, to establish (4.12) it is enough to show that

log

(
m!∏

k(k!)mk
∏
kmk!

)
� ` log2 ` log3 `. (4.14)

Since m ≤ ` and log j! = j log j +O(j) for all positive integers j, the left side of (4.14) is

≤ m log `−
∑
k

mk(k log k +O(k))−
∑
k

(mk logmk +O(mk))

=
∑

k :mk 6=0

mk log
( `

kkmk

)
+O(`) = S1 + S2 +O(`), (say)

where

S1
..=

∑
k :mk 6=0
mk>`/g(`)

mk log
( `

kkmk

)
and S2

..=
∑

k :mk 6=0
mk≤`/g(`)

mk log
( `

kkmk

)

and

g(`) ..=
(log `)2

(log2 `)
2 log3 `

.

3A more descriptive but less precise definition is the following. If λ = (λ1, . . . , λr) ∈ P(`), then dλ(n) is the number of
r-tuples (n1, . . . , nr) for which the product n1 · · ·nr equals n and such that, after a suitable permutation of the indices,
one has Ω(nj) = λj for each j (that is, the multisets {Ω(nj)} and {λj} are the same).
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For each k in the sum S1, we have mk > `/g(`) and kmk ≤
∑

j≤` jmj = `; therefore,

S1 ≤
∑
k

`

k
log
(g(`)

kk

)
≤ ` log g(`)

∑
k : kk≤g(`)

1

k

� ` log g(`) log2 g(`)� ` log2 ` log3 `.

For each k in the sum S2, we have 1 ≤ mk ≤ `/g(`); thus,

S2 ≤
`

g(`)

∑
k

log
( `
kk

)
≤ ` log `

g(`)

∑
k : kk≤`

1� `(log `)2

g(`) log2 `
� ` log2 ` log3 `.

Combining the above bounds on S1 and S2, we derive (4.14), and in turn (4.12), finishing the proof.

The following corollary is crucial in the next section.

Corollary 4.2. For any constant C > 0 we have∣∣∣∣∑
n≤x

CΩ(n)f(n)1Nκ(n)

∣∣∣∣ ≤ x1+o(1) (x→∞), (4.15)

where the function implied by o(1) depends only on C and κ.

Proof. Let Q denote the quantity on the left side of (4.15).
For any n ∈ Nκ we have Ω(n) ≤ κω(n). Also, ω(n) ≤ 2(log x)/ log2 x for all n ≤ x once x is

sufficiently large. Hence, defining Bκ(x) ..= 2κ(log x)/ log2 x it follows from Proposition 4.1 that

Q ≤
∑

`≤Bκ(x)

C` exp(` log `+O(` log2 ` log3 `)) ·Nκ,`(x),

where Nκ,`(x) is the counting function given by (3.4). By Lemma 3.1 we have

Q ≤
∑

`≤Bκ(x)

C` exp(` log `+O(` log2 ` log3 `)) ·
C1x

log x

((κ− 1) log2 x+ (κ− 1)C2)`−1

(`− 1)!

≤ x1+o(1)
∑

`≤Bκ(x)

exp(` log `) · ((κ− 1) log2 x+ (κ− 1)C2)`−1

(`− 1)!
(x→∞).

Using the estimates
(`− 1)! = exp(` log `+O(`)) = xo(1) exp(` log `)

and
((κ− 1) log2 x+ (κ− 1)C2)`−1 = exp(O(` log3 x)) = xo(1),

which hold uniformly for all ` ≤ Bκ(x), the result follows.

5. Reciprocal of a Dirichlet series

Theorem 5.1. Suppose that F is bounded on N, and F (1) 6= 0. Then
∑

n∈N F̃ (n)1Nκ(n)n−s con-
verges absolutely in H .
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Proof. Without loss of generality, we can assume that F (1) = F̃ (1) = 1. Let C ≥ 1 be a number such
that

|F (n)| ≤ C (n ∈ N). (5.16)

For every positive integer k, let Tk(n) be the set of ordered k-tuples (n1, . . . , nk) such that every
nj ≥ 2 and n1 · · ·nk = n. Then |Tk(n)| = fk(n) in the notation of §4. We denote

fk(F ;n) ..=
∑

(n1,...,nk)∈Tk(n)

F (n1) · · ·F (nk). (5.17)

Using (5.16) we derive that
|fk(F ;n)| ≤ Ckfk(n). (5.18)

Since fk(F ;n) = 0 for all k > Ω(n), and the inequality Ω(n) ≤ (log n)/ log 2 holds for all n, it follows
that

|fk(F ;n)| ≤ nBfk(n) with B ..= max{0, (logC)/ log 2}.

Summing over k and using (4.11), we see that∑
k≥1

|fk(F ;n)| � nB+β (n ∈ N). (5.19)

Next, put

D(s) ..=
∞∑
n=1

F (n)n−s = 1 + Z(F ; s) with Z(F ; s) ..=
∑
n≥2

F (n)n−s.

For every positive integer k we have

Z(F ; s)k =
∑
n≥2

fk(F ;n)n−s.

In view of (5.19) the identity

1

1 + Z(F ; s)
= 1 +

∑
k≥1

(−1)kZ(F ; s)k = 1 +
∑
n≥2

∑
k≥1

(−1)kfk(F ;n)n−s (5.20)

holds throughout the half-plane {σ > B+β} since all sums converge absolutely in that region. Noting
that the left side of (5.20) is D(s)−1 =

∑
n∈N F̃ (n)n−s, we conclude that

F̃ (n) = I(n) +
∑
k≥1

(−1)kfk(F ;n) (n ∈ N). (5.21)

To prove the theorem, we need to show that the Dirichlet series∑
n∈N

F̃ (n)1Nκ(n)n−s = 1 +
∑
n≥2

∑
k≥1

(−1)kfk(F ;n)1Nκ(n)n−s

converges absolutely in H . For any natural number n it is clear that fk(F ;n) = 0 whenever k > Ω(n),
hence using (5.18) we see that∣∣∣∣∑

k≥1

(−1)kfk(F ;n)1Nκ(n)

∣∣∣∣ ≤ I(n) +
∑

k≤Ω(n)

Ckfk(n)1Nκ(n) ≤ CΩ(n)f(n)1Nκ(n).
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Consequently, it suffices to show that the sum∑
n∈N

CΩ(n)f(n)1Nκ(n)n−σ (5.22)

converges for σ > 1. However, since the summatory function

S(x) ..=
∑
n≤x

CΩ(n)f(n)1Nκ(n)

satisfies the bound S(x)� x1+ε for every ε > 0 by Corollary 4.2, the convergence of (5.22) for σ > 1
follows by partial summation.

Proof of Theorem 2.1. Since the Dirichlet inverse F̃ has its support in Nκ for some κ ≥ 2, we have
F̃ (n) = F̃ (n)1Nκ(n) for all n. By Theorem 5.1,∑

n∈N
F̃ (n)1Nκ(n)n−s =

∑
n∈N

F̃ (n)n−s = D(s)−1

converges absolutely in H , and the result follows.

6. The family D

For any fixed z ∈ C, let Fz be the arithmetical function defined by

Fz(n) ..=

{
1 if n = 1;

−z otherwise.

Then ∑
n∈N

Fz(n)n−s = 1− z(ζ(s)− 1) (s ∈H ).

Taking F ..= Fz in (5.19) and (5.21) we have F̃z(n)� nB+β, where B ..= max{0, (log |z|)/ log 2} and
β = 1.728647 · · · as before. This implies that the formal identity∑

n∈N
F̃z(n)n−s =

1

1− z(ζ(s)− 1)
(6.23)

holds rigorously when σ > B+β+1. Moreover, it is clear that the Dirichlet series can be analytically
continued to the region {σ > βz}, where βz is the unique positive root of ζ(βz) = 1 + |z|−1 if z 6= 0,
and β0

..= −∞. It is worth mentioning that for any fixed z 6= 0 or −1, the function on the right
side of (6.23) has infinitely many poles in H since the equation ζ(s) = 1 + z−1 has infinitely many
solutions in any strip {1 < σ < 1 + ε}; see, e.g., Titchmarsh [Ti86, Theorem 11.6 (C)].

Next, we introduce two Dirichlet series given by

D†z(s)
..=
∑
n∈N

F̃z(n)1N2(n)n−s

and
Dz(s) ..= D†z(s)

−1 =
∑
n∈N

Gz(n)n−s,

where Gz is the Dirichlet inverse of F̃z · 1N2 . According to Theorem 5.1, D†z(s) converges absolutely
in H , hence it is analytic in that region. This implies that Dz(s) has a meromorphic extension to
H , and Dz(s) 6= 0 in H ; thus, we have verified property (ii) of §1.
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From the above definitions, one sees that F−1(n) = 1N(n), and thus D−1(s) = ζ(s). This estab-
lishes property (i) of §1. We also have F0(n) = I(n), so that D0(s) = 1C(s).

Finally, we establish property (iii) of §1. Observe that the Möbius relations∑
ab=n

F̃z(a)Fz(b) = I(n) and
∑
ab=n

F̃z(a)1N2(a)2Gz(b) = I(n)

immediately imply that Gz(p) = Gz(q) = Gz(pq) = −z for any two different primes p and q.4 If
Dz(s) has an Euler product, then Gz is multiplicative, and therefore

(−z)2 = Gz(p)Gz(q) = Gz(pq) = −z,

which is only possible for z = 0 or −1.

Lemma 6.1. Let z be a complex number, n a natural number, and p a prime number not dividing n.
For any integer α ≥ 1 we have

F̃z(p
αn) = (z + 1)α−1

∑
`≥1

z`
(
z + `α−1(z + 1)

)(α+ `− 1

`

)
f`(n).

Proof. Using (5.17), (5.21) and the definition of Fz, it follows that

F̃z(p
αn) =

∑
k≥1

zkfk(p
αn). (6.24)

The quantity fk(p
αn) is the number of ordered k-tuples (m1, . . . ,mk) such that mj = pαjnj for each

j, with αj ≥ 1 or nj ≥ 2, α1 + · · · + αk = α, and n1 · · ·nk = n. To construct such a k-tuple, first
choose an integer ` in the range 1 ≤ ` ≤ k and an ordered `-tuple (n̂1, . . . , n̂`) with each n̂j ≥ 2
and n̂1 · · · n̂` = n; for any choice of ` there are precisely f`(n) such `-tuples. Next, maintaining the
ordering of the integers n̂j in (n̂1, . . . , n̂`), we construct (n1, . . . , nk) by inserting k − ` extra entries,
each equal to one (thus, every ni in the resulting k-tuple is one of the numbers n̂j , or else ni = 1);

there are
(
k
k−`
)

=
(
k
`

)
ways to insert these extra ones to form (n1, . . . , nk). To guarantee that every

mj = pαjnj ≥ 2 in the final k-tuple (m1, . . . ,mk), so it is counted in the computation of fk(p
αn),

we have to replace each entry ni = 1 in (n1, . . . , nk) with a copy of the prime p. As there are only
α copies of p available, it must be the case that α ≥ k − ` else this choice of ` is unacceptable. The
remaining α− k+ ` copies of the prime p can be distributed arbitrarily. As the number of ways that
one can distribute α− k + ` objects into k boxes is

(
α+`−1
k−1

)
, putting everything together we have

fk(p
αn) =

k∑
`=max{1,k−α}

(
k

`

)(
α+ `− 1

k − 1

)
f`(n).

Combining this result with (6.24), we derive that

F̃z(p
αn) =

∑
`≥1

f`(n)
α+∑̀
k=`

zk
(
k

`

)(
α+ `− 1

k − 1

)
Making the change of variables k 7→ k + ` in the inner summation, it follows that

F̃z(p
αn) =

∑
`≥1

z`f`(n)B(z, α, `),

4A more elaborate argument shows that Fz(n) = Gz(n) = −z for all squarefree numbers n.
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where

B(z, α, `) ..=

α∑
k=0

zk
(
k + `

`

)(
α+ `− 1

k + `− 1

)
.

In view of the combinatorial identity(
k + `

`

)(
α+ `− 1

k + `− 1

)
=

(
α+ `− 1

`

)((
α− 1

k − 1

)
+
`

α

(
α

k

))
(where

(
α−1
k−1

)
= 0 when k = 0), it follows that

B(z, α, `) =

(
α+ `− 1

`

) α∑
k=0

zk
((

α− 1

k − 1

)
+
`

α

(
α

k

))
=

(
α+ `− 1

`

)(
z(z + 1)α−1 + `α−1(z + 1)α

)
,

and we obtain the stated result.

Proof of Theorem 2.2. Since F is completely multiplicative, from (5.17) it follows that

fk(F ;n) = F (n)fk(n) (k, n ∈ N).

With two applications of (5.21) we deduce that

F̃ (n) = I(n) + F (n)
∑
k≥1

(−1)kfk(n) = F (n)F̃−1(n) (n ∈ N). (6.25)

Applying Lemma 6.1 with z = −1, we see that F̃−1(pαn) = 0 for any n ∈ N, any prime p not dividing
n, and all α ≥ 2. This implies that F̃−1 is supported on the set of squarefree numbers,5 and (6.25)
shows that the same is true of F̃ .

7. Remarks

Theorems 2.1 and 5.1 can be extended to cover all functions satisfying the polynomial growth condition
F (n) � nA provided that one is willing to replace H with the half-plane {s ∈ C : σ > A + 1} in
those theorems. It would be interesting to see whether the ideas of this paper can be developed to
produce zero-free regions for ζ(s) and other Dirichlet series inside the critical strip.

Sarnak [Sa11] has recently considered a general pseudo-randomness principle related to a famous
conjecture of Chowla [Ch65]. Roughly speaking, the principle asserts that the Möbius function µ(n)
does not correlate with any function ξ(n) of low complexity. In other words,∑

n≤x
µ(n)ξ(n) = o

(∑
n≤x
|ξ(n)|

)
(x→∞). (7.26)

Combining Kalmár’s result (4.10) with Corollary 4.2, we see that (7.26) is verified for the function
ξ(n) ..= f(n). However, this is not due to the randomness of µ(n) but instead to the fact f(n)
takes smaller values on squarefree numbers than it does on natural numbers in general. It would be
interesting see whether (7.26) holds for ξ(n) ..= f(n)1N2(n)2.

5As we have already seen, F̃−1 is the Möbius function µ.
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Let feven(n) [resp. fodd (n)] denote the number of representations of n as a product of an even
[resp. odd ] number of integers exceeding one, where two representations are considered equal only if
they contain the same factors in the same order. In other words,

feven(n) ..= I(n) +
∑
k≥1
k even

fk(n) and fodd (n) ..=
∑
k≥1
k odd

fk(n).

Clearly, f(n) = feven(n) + fodd (n), but it is somewhat less obvious that

µ(n) = feven(n)− fodd (n) (n ∈ N). (7.27)

Indeed, taking F ..= F−1 = 1N we have fk(F ;n) = fk(n) for all n by (5.17), and then (7.27) follows
immediately from (5.21). The identity (7.27) is originally due to Linnik [Li63]; see also Friedlander
and Iwaniec [FrIw10, Chapter 17].
Acknowledgment.
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[Kad05] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann. Acta Arith. 117 (2005), no. 4, 303–339.
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[Sa11] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, 2011.
https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures.pdf

[Ti86] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University
Press, New York, 1986.

William D. Banks
University of Missouri, Department of Mathematics, 102 Mathematical Sciences Bldg.
Columbia, MO 65203 USA
e-mail : bankswd@missouri.edu


	Introduction
	Statement of results
	Preliminaries
	Factorisatio numerorum
	Reciprocal of a Dirichlet series
	The family D
	Remarks

