On Subgraphs of Bounded Degeneracy in Hypergraphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

On Subgraphs of Bounded Degeneracy in Hypergraphs

Kunal Dutta
  • Fonction : Auteur
  • PersonId : 1025303
Arijit Ghosh
  • Fonction : Auteur
  • PersonId : 938794

Résumé

A k-uniform hypergraph is d-degenerate if every induced subgraph has a vertex of degree at most d. Given a k-uniform hyper-graph H = (V (H), E(H)), we show there exists an induced subgraph of size at least $v∈V (H) min (1, c_k d + (1/ d_H (v) + 1)^{1/(k−1)}$ , where $c_k = 2^{−(1+ 1/ k−1)}( 1 − 1/ k)$ and d_H (v) denotes the degree of ver-tex v in the hypergraph H. This connects, extends, and generalizes results of Alon-Kahn-Seymour (1987), on d-degenerate sets of graphs, Dutta-Mubayi-Subramanian (2012) on d-degenerate sets of linear hypergraphs, and Srinivasan-Shachnai (2004) on independent sets in hypergraphs to d-degenerate sub-graphs of hypergraphs. Our technique also gives optimal lower bounds for a more generalised definition of degeneracy introduced by Zaker (2013). We further give a simple non-probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear k-uniform hypergraphs, which extends the Alon, Kahn and Seymour (1987) proof technique to hypergraphs. Finally we provide several applications in discrete geometry, extending results of Payne-Wood (2013) and Cardinal-Tóth-Wood (2016). We also address some natural algorithmic questions. The proof of our main theorem combines the random permutation technique of Bopanna-Caro-Wei and Beame and Luby, together with a new local density argument which may be of independent interest.
Fichier principal
Vignette du fichier
Journal version.pdf (356.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01669886 , version 1 (21-12-2017)

Identifiants

  • HAL Id : hal-01669886 , version 1

Citer

Kunal Dutta, Arijit Ghosh. On Subgraphs of Bounded Degeneracy in Hypergraphs. 2017. ⟨hal-01669886⟩
149 Consultations
152 Téléchargements

Partager

More