
HAL Id: hal-01669886
https://hal.science/hal-01669886v1

Preprint submitted on 21 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Subgraphs of Bounded Degeneracy in Hypergraphs
Kunal Dutta, Arijit Ghosh

To cite this version:
Kunal Dutta, Arijit Ghosh. On Subgraphs of Bounded Degeneracy in Hypergraphs. 2017. �hal-
01669886�

https://hal.science/hal-01669886v1
https://hal.archives-ouvertes.fr


ON SUBGRAPHS OF BOUNDED DEGENERACY IN

HYPERGRAPHS

KUNAL DUTTA AND ARIJIT GHOSH

Abstract. A k-uniform hypergraph is d-degenerate if every induced
subgraph has a vertex of degree at most d. Given a k-uniform hyper-
graph H = (V (H), E(H)), we show there exists an induced subgraph of
size at least ∑

v∈V (H)

min

{
1, ck

(
d + 1

dH(v) + 1

)1/(k−1)
}
,

where ck = 2−(1+ 1
k−1 ) (1− 1

k

)
and dH(v) denotes the degree of ver-

tex v in the hypergraph H. This connects, extends, and generalizes
results of Alon-Kahn-Seymour (Graphs and Combinatorics, 1987), on
d-degenerate sets of graphs, Dutta-Mubayi-Subramanian (SIAM Jour-
nal on Discrete Mathematics, 2012) on d-degenerate sets of linear hy-
pergraphs, and Srinivasan-Shachnai (SIAM Journal on Discrete Mathe-
matics, 2004) on independent sets in hypergraphs to d-degenerate sub-
graphs of hypergraphs. Our technique also gives optimal lower bounds
for a more generalized definition of degeneracy introduced by Zaker
(Discrete Applied Mathematics, 2013). We further give a simple non-
probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear
k-uniform hypergraphs, which extends the Alon, Kahn and Seymour
(Graphs and Combinatorics, 1987) proof technique to hypergraphs. Fi-
nally we provide several applications in discrete geometry, extending
results of Payne-Wood (SIAM Journal on Discrete Mathematics, 2013)
and Cardinal-Tóth-Wood (Journal of Geometry, 2016). We also address
some natural algorithmic questions.

The proof of our main theorem combines the random permutation tech-
nique of Bopanna-Caro-Wei and Beame and Luby, together with a new
local density argument which may be of independent interest.

1. Introduction

For k ≥ 2, a k-uniform hypergraph H is a pair H = (V,E) where E(H) ⊆(V (H)
k

)
. We will call V (H) and E(H) the vertex set and edge set of H
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2 KUNAL DUTTA AND ARIJIT GHOSH

respectively. When there is no chance of confusion, we will use V and E to
denote V (H) and E(H). For a vertex v ∈ V (H), degree dH(v) of V (H) will
denote |{e : e ∈ E(H), v ∈ e}|. For readability, k − 1 will be denoted by t.

For a subset I ⊆ V (H), the induced k-uniform hypergraph H(I) of I

denotes the hypergraph (I, E(H) ∩
(
I
k

)
). A hypergraph is linear if every

pair of vertices are contained in at most a single hyperedge, i.e. any pair
of hyperedges intersect in at most one vertex. A hypergraph H = (V,E) is
d-degenerate if the induced hypergraph of all subsets of V has a vertex of
degree at most d, i.e., for all I ⊆ V , there exists v ∈ I such that dH(I)(v) ≤ d.
For a k-uniform hypergraph H = (V,E), we will denote by αk, d(H) the size
of a maximum-sized subset of V whose induced hypergraph is d-degenerate,
i.e.,

αk, d(H) = max {|I| : I ⊆ V, H(I) is d-degenerate} .
Observe that α(H) := αk, 0(H) is the independence number of the hyper-
graph H.

1.1. Previous Results. Turán [Tur41] gave a lower bound on the inde-
pendence number of graphs: α(G) ≥ n

d+1 where d is the average degree of

vertices in G. Caro [Car79] and Wei [Wei81] independently showed that for
graphs

α(G) ≥
∑

v∈V (G)

1

dG(v) + 1
,

see [AS08]. This degree-sequence based bound matches the original average-
degree based lower bound of Turán in the case when all degrees are equal,
and improves it for general degree sequences.

For hypergraphs, Spencer [Spe72] gave a bound on the independence num-

ber, based on the average degree d: α(H) ≥ ck
(

n
d1/t

)
, where ck is indepen-

dent of n and d. Caro and Tuza [CT91] generalized the Caro-Wei result to
the case of hypergraphs:

Theorem 1.1. For all k-uniform hypergraph H, we have

α(H) ≥
∑
v∈V

1(dH(v)+1/t
dH(v)

) .1
The above theorem directly implies the following corollary, which gives

Spencer’s bound:

Corollary 1.2. For all k ≥ 2, There exists dk > 0 such that all k-uniform
hypergraphs H satisfy

α(H) ≥ dk
∑
v∈V

1

(1 + dH(v))1/t
.

1 Where for l ∈ N ∪ {0} and r ∈ R,
(
r
l

)
= r(r−1)...(r−l+1)

l!
.
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Further, Thiele [Thi99] obtained a lower bound on the independence num-
ber of arbitrary (non-uniform) hypergraphs, in terms of the degree rank, a
generalization of the degree sequence.

On the algorithmic side, Srinivasan and Shachnai [SS04], used the random
permutation method of Beame and Luby [BL90] and also Bopanna-Caro-Wei
(see e.g. [AS08], [aDMS12]), together with the FKG correlation inequality, to
obtain a randomized parallel algorithm for independent sets, which matched
the asymptotic bound of Caro and Tuza [CT91]. Dutta, Mubayi and Sub-
ramanian [aDMS12] also used the Bopanna-Caro-Wei method; alongwith
some new combinatorial identities, they obtained degree-sequence based
lower bounds on the independence numbers of Kr-free graphs and linear
k-uniform hypergraphs, which generalized the earlier average-degree based
bounds of Ajtai, Komlós, and Szemerédi [AKS80], Shearer [She83, She95]
and Duke, Lefmann and Rödl [DLR95], in terms of degree sequences. 2

Average degree vs. degree-sequence. Intuitively, a bound using the
degree sequence should be expected to be better than a bound using just
the average degree, since it has more information about the graph. For the
above bounds on the independence numbers, this essentially follows from the
convexity of the function x−1/t. Dutta, Mubayi and Subramanian [aDMS12]
gave constructions of hypergraphs which show that the bounds based on the
degree-sequence can be stronger than those based on the average degree by
a polylogarithmic factor in the number of vertices.

Large d-degenerate subgraphs. Unlike independent sets in graphs, d-
degenerate subgraphs have been less well-investigated. However, it includes
as special cases zero-degenerate subgraphs i.e. independent sets, as well as
1-degenerate subgraphs, i.e. maximum induced forests, whose complements
are the well-known hitting set and feedback vertex set problems respec-
tively. The best known result on this question is that of Alon, Kahn and
Seymour [AKS87], who proved the following lower bound for α2, d(G): 3

Theorem 1.3 ([AKS87]). For all graphs G = (V,E) we have

α2, d(G) ≥
∑
v∈V

min

{
1,

d+ 1

dG(v) + 1

}
.

This bound is sharp for every G which is a disjoint union of cliques. More-
over, they gave a polynomial time algorithm that finds in G an induced
d-degenerate subgraph of at least this size.

2Their proof also yields an elementary proof of the main bound of Srinivasan and
Shachnai [SS04] without using correlation inequalities, though not explicitly stated.
3Alon, Kahn and Seymour [AKS87] actually defined a d-degenerate graph as one where
every subgraph has a vertex of degree less than d.
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On the algorithmic side, Pilipczuk and Pilipczuk [PP12] addressed the
question of finding a maximum d-degenerate subgraph of a graph, giving
the first algorithm with running time o(2n). Zaker [Zak13] studied a more
general version of degeneracy and gave upper and lower bounds for find-
ing the largest subgraph of a 2-uniform graph having a given generalized
degeneracy.

The proof of Dutta-Mubayi-Subramanian [aDMS12] implies the following
lower bound on αk, d for linear hypergraphs (though not explicitly stated in
their paper):

Theorem 1.4 ([aDMS12]). Let G = (V,E) be a linear k-uniform hyper-
graph, and for all v ∈ V , dG(v) denote the degree of v in G. Then

(1) αk, d(G) ≥ w(G) :=
∑
v∈V

wG(v),

where

(2) w(v) =


1 if dG(v) ≤ d

1
1+((k−1)(d+1))−1

(dG(v)
d+1 )

(
dG(v)+ 1

k−1
dG(v)−d−1

)
if dG(v) > d.

A possible extension and a counterexample. When d = 0, i.e. the
subgraph is an independent set, the above expression reduces to the Caro-
Tuza bound in Theorem 1.1. In the proof of the above theorem, the term
corresponding to a given vertex v in the above expression is actually the
fraction of orderings of the vertices, in which there are at most d hyperedges
involving v and some vertices occuring prior to v, in the ordering. For
linear k-uniform hypergraphs, the above expression is exact, but this does
not hold for general k-uniform hypergraphs. However, in the case when
d = 0, the above expression still gives an upper bound on the fraction of
such orderings. One may wonder if a similar property might hold for general
k-uniform graphs, for general d.
That is, does it hold that for any given vertex v ∈ V , the fraction of orderings
of vertices where at most d hyperedges can be formed using only the vertex

v and vertices occuring prior to v, is at most 1
1+((k−1)(d+1))−1

(dG(v)
d+1 )

(
dG(v)+ 1

k−1
dG(v)−d−1

)
?

This however can be seen to be false, from the following example:
Counterexample Consider the 3-uniform hypergraph H = (V,E), given
by V = {1, 2, 3, 4, 5} and E = {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 5, 2}}. Taking
d = 1, we get that the expression obtained from the above expression for
the vertex 1, is

(3− 1) · 2
1 + (3− 1) · 2

(
4
2

)(4+ 1
3−1
4

) =
216

315
=

24

35
.

On the other hand, the fraction of orderings of vertices, where the vertices
occuring prior to 1 together with the vertex 1, constitute at most one hy-
peredge, is 72

120 = 3
5 <

24
35 . Therefore, the expression in Theorem 1.4 clearly
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overshoots the actual fraction of orderings.

Thus, the bound in Theorem 1.4 does not hold for general d.

1.2. Our Results. We first give a completely different and an extremely
simple proof of Theorem 1.4 using a weight function. Our proof follows
along the lines of the proof of Theorem 1.3 due to Alon, Kahn and Sey-
mour [AKS87].

Although the counterexample in the previous subsection shows that the
bound in Theorem 1.4 does not hold for general d and general k-uniform
hypergraphs, we show that the asymptotic expression (in terms of d and
dG(v)) still holds, thus extending Theorem 1.4 asymptotically to the case of
general hypergraphs:

Theorem 1.5. Let G = (V,E) be a k-uniform hypergraph, and for all v ∈ V ,
dG(v) denote the degree of v in G. Then

(3) αk, d(G) ≥
∑
v∈V

min

{
1, ck

(
d+ 1

d(v) + 1

)1/t
}
,

where t = k − 1 and ck = 2
−
(
1+ 1

(k−1)

) (
1− 1

k

)
. Further, there exists a

randomized algorithm that can extract a d-degenerate set of above size in
expectation.

Our proof uses the random permutation method [AS08] of Bopanna-Caro-
Wei, together with a new local density argument, avoiding advanced corre-
lation inequalities. As a consequence, we obtain a simpler proof as well as
a generalization of the result of Srinivasan and Shachnai [SS04].

The rest of the paper is organised as follows: Section 2 has the simpler
proof of Theorem 1.4, Section 3 has the proof of Theorem 1.5 and in Sec-
tion 4 we prove lower bounds for a more generalized definition of degeneracy.
In Section 4, we will show that our proof technique for Theorem 1.5 gives
optimal lower bounds for a more generalized definition of degeneracy intro-
duced recently by Zaker [Zak13]. In Section 5 we give several applications of
our results in discrete and combinatorial geometry. Finally in the conclusion
there are some remarks and open questions.

2. Linear Hypergraphs

In this section we will give an alternative proof of the Theorem 1.4. The
proof will follow exactly along the lines of the proof by Alon, Kahn and
Seymour [AKS87] of Theorem 1.3.

First observe that(
dG(v)
r

)(dG(v)+1/t
dG(v)−r

) =
1(

1 + 1
t(r+1)

)
. . .
(

1 + 1
tdG(v)

)
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This implies that w(v) is decreasing in dG(v) for all values of dG(v) ≥ r.
Also, observe that

(4)

(
dG(v)−1

r

)(dG(v)−1+1/t
dG(v)−1−r

) =

(
1 +

1

t dG(v)

) (
dG(v)
r

)(dG(v)+1/t
dG(v)−r

)
The alternative proof will be by induction on the number n of vertices

of the k-uniform hypergraph G. The base case of n = 1 follows trivially.
Assuming the result holds for n − 1, we will now show that the result also
holds for n. Given a vertex v ∈ V , let Hv denote the hypergraph G(V ′)
where V ′ = V \ {v}.

Case 1. If we have a vertex v ∈ V (G) with dG(v) ≤ d, then consider
H = Hv. Observe that αk, d(G) = αk, d(H)+1. Since ∀u ∈ V ′, we have from
Equation (4), wG(u) ≤ wH(u). This implies

w(H) =
∑
u∈V ′

wH(u) ≥
∑
u∈V ′

wG(u) = w(G)− 1.

The last inequality follows from the fact that wG(v) = 1 since dG(v) ≤ d.
Using the induction hypothesis αk, d(G) ≥ w(G) and the fact that αk, d(G) =
αk, d(H) + 1, we get

αk, d(G) = αk, d(H) + 1 ≥ w(H) + 1 ≥ w(G).

Case 2. Now we will consider the case where dG(v) > d, ∀v ∈ V (G). Let
∆ = maxu∈V (G) dG(u), and let v ∈ V (G) be a vertex with dG(v) = ∆. Let
u1, . . . , ul, where l = t∆, be the neighbors of v in G. Note that l = t∆
follows from the fact that G is a linear hypergraph. We will now show that
w(H) ≥ w(G), where H = Hv.

w(H) =
∑
u∈V ′

wH(u)

= w(G)− wG(v)−
l∑

i=1

wG(ui) +
l∑

i=1

wH(ui)

= w(G)− wG(v) +

l∑
i=1

wG(ui)

t dG(ui)

≥ w(G)

The second last inequality follows from the facts that dH(ui) = dG(ui) − 1
(as G is a linear hypergraph) and Equation (4). The last inequality follows
from the facts that dG(u) ≤ ∆ for all u ∈ V and wG(ui) ≥ wG(v) (direct
consequence of Equation (4)). From induction hypothesis we have

αk, d(H) ≥ w(H) ≥ w(G).

This completes the proof of Theorem 1.4 since αk, d(G) ≥ αk, d(H).
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3. General k-uniform Hypergraphs

In this section we shall prove a lower bound on αk,d(H) for general k-
uniform hypergraph H in terms of its degree sequence. We will give a very
simple randomized algorithm to obtain an d-degenerate subgraph of a k-
uniform hypergraph, whose analysis in expectation will yield the desired
bound in Theorem 1.5.

3.1. Details of the Algorithm. Before we can give the details of the
algorithm, we will need some definitions.

Definition 3.1. Let σ be an ordering of the vertices of H.

• Fix a vertex v ∈ V (H). Call a hyperedge e ∈ E(H) with v ∈ e a
backward edge with respect to σ, if ∀u ∈ e \ {v}, σ(u) < σ(v).
• We will denote by bσ(v) the number of backward edges of the vertex
v with respect to the ordering σ.

Algorithm 1 RandPermute

Input: H := (V,E) and d;
// H is a k-uniform hypergraph
Random odering: Let σ be a random ordering of the vertex set V ;
Initialization: I ← ∅;
// I will be the degenerate subset we output;
for v ∈ V do

Compute: bσ(v);
if bσ(v) ≤ d then
I ← I ∪ {v};

end if
end for
Output: I;

3.2. Analysis of the Algorithm. Theorem 1.5 directly follows from the
following result.

Claim 3.2.

E [|I|] ≥
∑
v∈V

min

{
1, ck

(
d+ 1

dH(v) + 1

)1/t
}
,

where ck = ck = 2−(1+ 1
k−1) (1− 1

k

)
= 2−(1+ok(1)).

Proof. For all vertices v ∈ V , we will denote by N(v) the neighbors of v in
H.

Given an arbitrary vertex v ∈ V , and a random ordering of the vertices
σ, we need to bound Pr [v ∈ I] from below. Since the event of v being
selected depends on the relative ordering of the vertices in N(v), therefore,
the probability v being selected in I in a random ordering is the number
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of orderings for which v is selected, divided by (|N(v)| + 1)!. Let σ be an
ordering of the vertices of V , such that v is selected in I in the ordering
σ. Given a vertex v ∈ V , consider now Lv := (V (Lv), E(Lv)), the (k − 1)-
uniform link hypergraph on the neighbourhood of v, defined as follows:

V (Lv) := N(v), and

E(Lv) := {S ⊂ V (Lv) : S ∪ {v} ∈ E},
i.e., the vertices are the neighbours of v, and the edges are those edges of
the original hypergraph H which contained v, but with v removed. Clearly
|E(Lv)| = dH(v). Let F ⊂ V (Lv) be

F := {u ∈ N(v) : σ(u) < σ(v)} ,
i.e., the vertices in the neighbourhood of v which occur before v in the order-
ing σ. We want Lv(F ) to have at most d hyperedges. The vertices occurring
before v can be ordered arbitrarily amongst themselves, and similarly for the
vertices occuring after v. So we get that the probability that v is selected
in I is given by:

Pr [v ∈ I] =
∑

J⊂V (Lv) : |E(Lv(J))|≤d

(|J |)! (|V (Lv)| − |J |)!
(|V (Lv)|+ 1)!

=
1

|V (Lv)|+ 1

∑
J⊂V (Lv) : |E(Lv(J))|≤d

1(|V (Lv)|
|J |

)
For k = 2, the link hypergraph is a 1-graph i.e. a set of vertices, each
vertex being a 1-edge. Hence the summation in the RHS evaluates to d+ 1
(counting 1 for each case when there are exactly 0, 1, . . . , d vertices before
v, in the random ordering). Therefore

E [|I|] =
∑
v∈V

Pr [v ∈ I]

=
∑
v∈V

min

{
1,

d+ 1

d(v) + 1

}
,

and we get the theorem of Alon, Kahn and Seymour (Theorem 1.3).
For general k-uniform hypergraphs, observe that if dH(v) ≤ d, then

Pr [v ∈ I] = 1. However, if dH(v) > d, then we need to look at the link
hypergraph which can be an arbitrary k − 1-uniform hypergraph. In this
case, we shall prove the following general lemma, (which may be of indepen-
dent interest).

Lemma 3.3. For each k-uniform hypergraph H = (V,E), such that |V | = n,
|E| = m, we have ∑

J⊂V (H) : |E(J)|≤a

1(
n
|J |
) ≥ c′kn(a+ 1

m

)1/k
.
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where c′k = 2−(1+1/k).

Indeed, we get that the probability that v is selected in I is given by:

Pr [v ∈ I] =
1

|V (Lv)|+ 1

∑
J⊂V (Lv) : |E(Lv(J))|≤d

1(|V (Lv)|
|J |

)
≥

c′k−1 |V (Lv)|
|V (Lv)|+ 1

× (d+ 1)1/(k−1)

|E(Lv)|1/(k−1)
(from Lemma 3.3)

≥
c′k−1 |V (Lv)|
|V (Lv)|+ 1

× (d+ 1)1/(k−1)

dH(v)1/(k−1)
(as |E(Lv)| = dH(v))

≥ ck

(
d+ 1

dH(v) + 1

)1/(k−1)
,(5)

where

ck = 2−(1+ 1
k−1)

(
1− 1

k

)
= 2−(1+ok(1)).

Note that Inequality (5) follows from the fact that since dH(v) > d ≥ 0,
we must have at least k − 1 vertices in the hypergraph Lv, i.e., |V (Lv)| ≥
k − 1. �

It only remains to prove Lemma 3.3, which we will prove using a local
density argument.

Proof of Lemma 3.3. For all 1 ≤ s ≤ n, we define

ρs := E|S|=s [|E(H(S))|] =

∑
S⊆V, |S|=sE(H(S))(

n
s

) .

Note that the expectation is taken over all subsets of V of size s, and

E(H(S)) = {e ∈ E(H) : e ⊆ S} .

Counting the number of pairs (e, S), where e ∈ E(H), and S ⊂ V : |S| =
s, e ∈ S, in two ways, we get the average local density of sets of size s is

ρs =
m
(
n−k
s−k
)(

n
s

) =
m(s)k
(n)k

≤ msk

nk
.

(Here
(
a
b

)
:= 0 if b < 0). This is as follows: let

z := #

{
(e, S) : e ∈ E,S ∈

(
V

s

)
, e ⊂ S

}
.

Then each of the
(
n
s

)
sets of size s contributes, on average, ρs-many entries

to z. On the other hand, each edge e ∈ E(H) belongs to
(
n−k
s−k
)
-many sets of

size s. Equating the two summations gives the claimed average local density.
Now, we use the above observation to prove the lemma. Partition the

summands on the LHS into n parts, depending on the size of the set J
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(i.e. the number of neighbouring vertices which precede v in the random
ordering):

n∑
i=1

 ∑
J∈(Vi ) : |E(H(J))|≤a

1(
n
i

)
 .

When i < k, it is easy to see that the inner summation is 1. The main idea
of the proof is the following: first, observe that for any i ∈ [n], the inner
summation is just the probability that a randomly picked set of exactly i
vertices has fewer than a+ 1 edges. Next, the expected number of edges in
a randomly chosen i-vertex subset, is upper bounded by ρi, and for small
enough i, is much smaller than (a+ 1)/2. So the probability that a random
i-set contains more than twice the expected number, is at most half. So for
all such i, the contribution to the outer sum is at least 1/2. The number of
such terms in the outer sum then gives the claimed lower bound.

Formally, let Xi be a random variable giving the number of edges contained
in a randomly chosen set on i vertices. By Markov’s inequality:

Pr [Xi ≥ 2.E [Xi]] ≤
1

2
.

We have that E [Xi] = ρi. Therefore, the LHS becomes:

n∑
i=1

Pr [Xi < a+ 1] = 1−
n∑
i=1

Pr [Xi ≥ a+ 1]

With foresight, we split the above sum into two parts, when i ≤ t∗ :=
n(a+1)1/k

(2m)1/k
, and when i > t∗. Observe that when i ≤ t∗, we have that mik

nk
≤

a+1
2 . We get

n∑
i=1

Pr [Xi < a+ 1] =
t∗∑
i=1

Pr [Xi < a+ 1] +
∑
i>t∗

Pr [Xi < a+ 1]

≥
t∗∑
i=1

(
1− E [Xi]

a+ 1

)
=

t∗∑
i=1

(
1− m(i)k

(a+ 1)(n)k

)
≥

t∗∑
i=1

(
1− mik

(a+ 1)nk
)

≥
t∗∑
i=1

(
1− 1

2

)
≥ n(a+ 1)1/k

2(2m)1/k
.

where in the second step we used Markov’s inequality on the first summation,
and in the penultimate step we used the observation on t∗ noted above. This
completes the proof of Lemma 3.3.
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�

Remark 3.4. For simplicity of exposition we did not try to optimize ck in
the proof of Theorem 1.5. We observe that

ck = 2−(1+ 1
k−1)

(
1− 1

k

)
≥ 1

8
,

for all k ≥ 2, and ck → 1
2 as k →∞.

4. Generalized degeneracy

In a recent paper Zaker [Zak13] generalized the definition of definition of
degeneracy to arbitrary function over the vertex set of graphs taking values
from non-negative integers. This is a strict generalization of degeneracy to
graphs, and in this section we will now show that techniques from this paper
can be directly used to get asymptotically bounds for this definition as well.

Let H be a k-uniform hypergraph with |V (H)| = n, and let κ : V (H)→
N ∪ {0} be a non-negative integer assignment to the vertices of H. We will
say H is κ-degenerate if the vertices of H can be ordered as v1, . . . , vn such
that the degree of vertex vi in the hypergraph Hi = H ({1, . . . , i}) is at
most κ(vi).

Let H be k-uniform hypergraph, and let κ : V (H)→ N ∪ {0}, then

αk,κ(H) = max
{
|I| : I ⊆ V (H), H(I) is η-degenerate where η = κ|I .

}
Directly applying the random permutation technique from Section 3 will

give us the following result. We have included the proof of completeness.

Theorem 4.1. For all graphs G = (V,E) and κ : V (H)→ N∪{0}, we have
exists an induced subgraph H of G with

αk,κ(G) =
∑
v∈V

min

{
1,

κ(v) + 1

dG(v) + 1

}
.

Moreover there exists a randomized polynomial time algorithm that finds in
G an induced subgraph H which is η-degenerate, where η = κ|V (H)

, and the

expected size of |V (H)| is
∑

v∈V min
{

1, κ(v)+1
dG(v)+1

}
.

Proof. Let σ be a random ordering of the vertex set V . Without loss of
generality set σ := v1 < v2 < · · · < vn. The vertex set of V is processed in
the increasing order with respect to σ starting with v1. We will include a
vertex vi in the set I if the number of neighbors of v appearing before v in
the random ordering σ, i.e., if

|N(vi) ∩ {v1, . . . , vi−1}| ≤ κ(vi)

then vi ∈ I. The output of this procedure H = G(I). Observe that H is η-
degenerate where η = κ|I . So the only thing left to prove is the lower bound
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on Eσ [|I|]. Observe that if dG(vi) ≤ κ(vi) then Pr [vi ∈ I] = 1, otherwise

Pr [vi ∈ I] =

κ(vi)∑
i=0

(
dG(vi)
j

)
j! (dG(vi)− j)!

(dG(vi) + 1)!
=

κ(vi) + 1

dG(vi) + 1
.

Therefore

Eσ [|I|] =

n∑
i=1

Pr [vi ∈ I] =

n∑
i=1

min

{
1,

κ(vi) + 1

dG(vi) + 1

}
This completes the proof. �

Using the inductive argument in Section 2 we will get the following gen-
eralization of Theorem 1.4

Theorem 4.2. Let G = (V,E) be a linear k-uniform hypergraph, and κ :
V → N ∪ {0}. Then

(6) αk, κ(G) ≥ w(G, κ) :=
∑
v∈V

wG(v, κ),

where

(7) wG(v, κ) =


1 if dG(v) ≤ κ(v)

1
1+(t(κ(v)+1))−1

( dG(v)

κ(v)+1)

( dG(v)+1/t

dG(v)−κ(v)−1)
if dG(v) > κ(v).

For general k-uniform hypergraphs, using random permutation and the
proof technique from Section 3, we can prove the following generalization of
Theorem 1.5.

Theorem 4.3. Let G = (V,E) be a k-uniform hypergraph, and κ : V →
N ∪ {0}. Then

(8) αk, κ(G) ≥
∑
v∈V

min

{
1, ck

(
κ(v) + 1

dG(v) + 1

)1/t
}
,

where t = k − 1 and ck = 2
−
(
1+ 1

(k−1)

) (
1− 1

k

)
. There exists a randomized

algorithm that can extract a d-degenerate set of above size in expectation.

5. Applications in Discrete Geometry

In this section, as an application of Theorem 1.5 we will prove several
generalizations of a result of Payne and Wood [PW13] in incidence geometry,
on the maximum size of a subset, of an n point set in the plane, such that
no three points in the subset are collinear.

Lemma 5.1. (1) Let P be a set of n points in the plane such that for
any line l in the plane |l ∩ P | ≤ `. For d ≤ O(n log ` + `2) there
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exists a subset S ⊆ P with at most d|S| collinear triples in S and

|S| = Ω

(√
dn2

n log `+ `2

)
.

And if ` ≤ O(
√
n), then

|S| = Ω

(√
dn

log `

)
.

(2) Let P be a set of n points in the plane such that for any line l in the
plane |l ∩ P | ≤ `. Let k ≥ 4 be a constant and d ≤ O(`k−3n+ `k−1).
Then there exists a subset S ⊆ P of size

Ω

(
n

(
d

`k−3n+ `k−1

)1/(k−1)
)

such that S has at most d|S| collinear k-tuples in S. And if ` ≤
O(
√
n), then

|S| = Ω

((
nk−2d

`k−3

)1/(k−1))
.

The following result of Payne and Wood [PW13], proved using Szemerédi-
Trotter theorem [ST83] on incidence geometry, will be used to prove Lemma
5.1.

Lemma 5.2 ([PW13]). (1) Let P be a set of n points in the plane such
that for any line l in the plane |l ∩ P | ≤ `. Then the number of
collinear 3-tuples in P is at most O(n2 log `+ n`2).

(2) Let P be a set of n points in the plane such that for any line l in the
plane |l ∩ P | ≤ `. Then, for k ≥ 4, the number of collinear k-tuples
in P is at most O(`k−3n2 + `k−1n).

Proof of Lemma 5.1. Let H be a k-uniform hypergraph with V (H) = P ,
and {p1, . . . , pk} ∈ E(H) if there exists a line a line l in the plane with
{p1, . . . , pk} ∈ l. Lemma 5.2 bounds the size of E(H). The result now
follows directly from Theorem 1.5. �

In a followup work Cardinal, Tóth and Wood [CTW16], using Elekes and
Tóth’s [ET05, Theorem 2.3] generalisation to hyperplane point incidences
in Rd of Szemeredi-Trotter’s theorem [ST83] on incidence geometry, proved
the following theorem.

Lemma 5.3 (Lemma 4.5 [CTW16]). Let P be a set of n-points in Rm such
that for any hyperplane H in Rm, we have |P ∩ H| ≤ ` where ` = O(

√
n).

Then the number of cohyperplanar (m+1)-tuples in P is at most O(nm log `).

As in the proof of Lemma 5.1 using the above result together with The-
orem 1.5 implies the following result.
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Lemma 5.4. Let P be a set of n points in Rm such that for any hyperplane
H in Rm we have |P ∩ H| ≤ ` where ` = O(

√
n). Then there exists S ⊂ P

of size

Ω

((
dn

log `

)1/m
)

such that S has at most d|S| cohyperplanar (m+ 1)-tuples in S.

These geometric results can be easily extended to the polynomial set-
tings. Let F ⊂ R[X1, . . . , Xm] be a family of non-zero polynomial func-
tions with real coefficients in m variables statisfying the following property:
every f ∈ F can be written as a linear combination of the polynomials
f0(X), . . . , fb(X) where f0(X) = 1 and the polynomials fi(X) are linearly
independent in R[X1, . . . , Xm]. Now a point set P in Rm, with |P | > b, is
said to be in general position if no more than b points of P lies on a zero
set of a polynomial in F . In this situation we are interested in extracting a
large subset S of P such that number of (b + 1)-tuples in S which lie on a
zero set of at least one polynomial in F is at most d|S|.

First observe that this definition captures many notions of general position
with respect to algebraic and geometric objects of bounded complexity.

Remark 5.5. (1) Family of spheres in Rm: This set is generated by
the polynomials

{∑m
i=1X

2
i , X1, . . . , Xm, 1

}
. A set P in Rm is said

to be in general position with respect to spheres if no more than
m+1 points of P lie on any given sphere. This notion of general po-
sition is extremely important in computational geometry both from
theoretical and practical sides. For example, see [BCKO08, EM90,
ES95, ES97, BDG13].

(2) Family of hyperplanes in Rm: This family is a linear combination
of the polynomials {X1, . . . , Xm, 1}. A set P in Rm is said to be in
general position with respect to spheres if no more than m points of
P lie on any given hyperplane. For example, see [BCKO08, EM90,
ES95, ES97, BDG13].

(3) Polynomials in R[X1, . . . , Xm] with degree bounded by D:

This set is generated by the set S = {Xj1
1 . . . Xjm

m | 0 ≤
∑m

i=1 ji ≤
D}. Observe that |S| =

(
D+m
m

)
. A set P in Rm is said to be in general

position with respect to this family if no more than
(
D+m
m

)
−1 points

of P lie on any given non-zero polynomial in R[X1, . . . , Xm] with
degree bounded by D. This notion of general position appears in
semialgebraic range searching [AMS13].

We can associate with the polynomial family F the following Veronese
mapping:

ΦF : Rm → Rb, where ΦF (X) = (f1(X), . . . , fb(X)) .

It is easy to see that if there exists a set of points S in Rm and a non-
zero polynomial f(X) ∈ F such that S ⊆ Z(f(X)), where Z(f(X)) ⊆ Rm
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denotes the zero set of the polynomial in Rm, then there exists a hyperplane
H in Rb with ΦF (S) ⊂ H.

The following result is a direct consequence of above construction and
Lemma 5.4.

Lemma 5.6. Let F ⊆ R[X1, . . . , Xm] be a family of non-zero polynomials
obtained by linear combination of non-zero polynomials f0(X), f1(X), . . . ,
fb(X) where X = (X1, . . . , Xm), f0(X) = 1 and the polynomials fi(X) are
linearly independent in R[X1, . . . , Xm]. Let P be a n-point set in Rm such
that for all non-zero polynomial f(X) ∈ F we have |Z(f(X)) ∩ P | ≤ `.

(1) If ` = O(n1/3), then there exists S ⊂ P of size

Ω

(
dn

` log `

)
such that S has at most d|S| (b + 1)-tuples in S each of which is a
subset of zero set of some polynomials in F .

(2) If ` = O(
√
n) and the Veronese map ΦF : Rm → Rb restricted to the

set P is injective, then there exists S ⊂ P of size

Ω

(
dn

log `

)
such that S has at most d|S| (b + 1)-tuples in S and each of these
(b+ 1)-tuples are a subset of zero sets of some polynomials in F .

6. Conclusion

Our randomized algorithm for finding d-degenerate subgraphs of k-uniform
hypergraphs inherits the analysis of Srinivasan and Shachnai [SS04] for in-
dependent sets:

(i) The RandPermute algorithm runs in RNC, as long as d is polyloga-
rithmic in the number of vertices and edges.

(ii) Our proof technique generalizes to non-uniform hypergraphs.
(iii) All our results generalize to the vertex-weighted scenario, where we

want an induced d-degenerate subgraph of maximum weight.

It is interesting to ask if the RandPermute algorithm can be used to solve
the conjecture of Beame and Luby [BL90], which asks whether iterating the
RandPermute algorithm always yields a maximal independent set.
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[CTW16] Jean Cardinal, Csaba D. Tóth, and David R. Wood. General position subsets
and independent hyperplanes in d-space. Journal of Geometry, pages 1–11,
2016.

[DLR95] Richard A. Duke, Hanno Lefmann, and Vojtech Rödl. On Uncrowded Hyper-
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