Inductive Learning from State Transitions over Continuous Domains - Archive ouverte HAL Access content directly
Book Sections Year : 2018

Inductive Learning from State Transitions over Continuous Domains

Abstract

Learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to discrete variables or suppose a discretization of continuous data. However, when working with real data, the discretization choices are critical for the quality of the model learned by LFIT. In this paper, we focus on a method that learns the dynamics of the system directly from continuous time-series data. For this purpose, we propose a modelling of continuous dynamics by logic programs composed of rules whose conditions and conclusions represent continuums of values.
Fichier principal
Vignette du fichier
main.pdf (403.73 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01655644 , version 1 (05-12-2017)
hal-01655644 , version 2 (08-01-2020)
hal-01655644 , version 3 (08-01-2020)

Identifiers

Cite

Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico Borzacchiello, et al.. Inductive Learning from State Transitions over Continuous Domains. 27th International Conference on Inductive Logic Programming, LNCS, volume 10759, Springer, Cham, pp.124-139, 2018, Inductive Logic Programming, ⟨10.1007/978-3-319-78090-0_9⟩. ⟨hal-01655644v3⟩
771 View
454 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More