Inductive Learning from State Transitions over Continuous Domains - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Inductive Learning from State Transitions over Continuous Domains

Résumé

Learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to discrete variables or suppose a discretization of continuous data. However, when working with real data, the discretization choices are critical for the quality of the model learned by LFIT. In this paper, we focus on a method that learns the dynamics of the system directly from continuous time-series data. For this purpose, we propose a modelling of continuous dynamics by logic programs composed of rules whose conditions and conclusions represent continuums of values.
Fichier principal
Vignette du fichier
Riberiro_ILP17.pdf (414.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01655644 , version 1 (05-12-2017)
hal-01655644 , version 2 (08-01-2020)
hal-01655644 , version 3 (08-01-2020)

Identifiants

Citer

Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico Borzacchiello, et al.. Inductive Learning from State Transitions over Continuous Domains. The 27th International Conference on Inductive Logic Programming (ILP 2017), Nicolas Lachiche; Christel Vrain, Sep 2017, Orléans, France. pp.124-139, ⟨10.1007/978-3-319-78090-0_9⟩. ⟨hal-01655644v1⟩
817 Consultations
555 Téléchargements

Altmetric

Partager

More