Central limit theorems for Sinkhorn divergence between probability distributions on finite spaces and statistical applications - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Central limit theorems for Sinkhorn divergence between probability distributions on finite spaces and statistical applications

Jérémie Bigot
  • Fonction : Auteur
  • PersonId : 983710
Elsa Cazelles

Résumé

The notion of Sinkhorn divergence has recently gained popularity in machine learning and statistics, as it makes feasible the use of smoothed optimal transportation distances for data analysis. The Sinkhorn divergence allows the fast computation of an entropically regularized Wasserstein distance between two probability distributions supported on a finite metric space of (possibly) high-dimension. For data sampled from one or two unknown probability distributions, we derive central limit theorems for empirical Sinkhorn divergences. We also propose a bootstrap procedure which allows to obtain new test statistics for measuring the discrepancies between multivariate probability distributions. The strategy of proof uses the notions of directional Hadamard differentiability and delta-method in this setting. It is inspired by the results in the work of Sommerfeld and Munk (2016) on the asymptotic distribution of empirical Wasserstein distance on finite space using un-regularized transportation costs. Simulated and real datasets are used to illustrate our approach. A comparison with existing methods to measure the discrepancy between multivariate distributions is also proposed.
Fichier principal
Vignette du fichier
tcl_sinkhorn.pdf (2.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01647869 , version 1 (24-11-2017)
hal-01647869 , version 2 (07-02-2019)

Identifiants

  • HAL Id : hal-01647869 , version 1

Citer

Jérémie Bigot, Elsa Cazelles, Nicolas Papadakis. Central limit theorems for Sinkhorn divergence between probability distributions on finite spaces and statistical applications. 2017. ⟨hal-01647869v1⟩
189 Consultations
457 Téléchargements

Partager

More