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Abstract
The notion of Sinkhorn divergence has recently gained popularity in machine learning

and statistics, as it makes feasible the use of smoothed optimal transportation distances
for data analysis. The Sinkhorn divergence allows the fast computation of an entropically
regularized Wasserstein distance between two probability distributions supported on a
finite metric space of (possibly) high-dimension. For data sampled from one or two un-
known probability distributions, we derive central limit theorems for empirical Sinkhorn
divergences. We also propose a bootstrap procedure which allows to obtain new test
statistics for measuring the discrepancies between multivariate probability distributions.
The strategy of proof uses the notions of directional Hadamard differentiability and delta-
method in this setting. It is inspired by the results in the work of Sommerfeld and Munk
in [28] on the asymptotic distribution of empirical Wasserstein distance on finite space us-
ing un-regularized transportation costs. Simulated and real datasets are used to illustrate
our approach. A comparison with existing methods to measure the discrepancy between
multivariate distributions is also proposed.

1 Introduction

1.1 Motivations

In this paper, we study the convergence (to their population counterparts) of empirical prob-
ability measures supported on a finite metric space with respect to entropically regularized
transportation costs. Transport distances are widely employed for comparing probability
measures since they capture in a instinctive manner the geometry of distributions (see e.g
[31] for a general presentation on the subject). In particular, the Wasserstein distance is well
adapted to deal with discrete probability measures (supported on a finite set), as its com-
putation reduces to solve a linear program. Moreover, since data in the form of histograms
may be represented as discrete measures, the Wasserstein distance has been shown to be a
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relevant statistical measure in various fields such as clustering of discrete distributions [35],
nonparametric Bayesian modelling [19], fingerprints comparison [28], unsupervised learning
[2], and principal component analysis [4, 26].

However, the computational cost to evaluate a transport distance is generally of order
O(N3 logN) for discrete probability distributions with a support of size N . To overcome
the computational cost to evaluate a transport distance, Cuturi [5] has proposed to add an
entropic regularization term to the linear program corresponding to a standard optimal trans-
port problem, leading to the notion of Sinkhorn divergence between probability distributions.
Initially, the purpose of transport plan regularization was to efficiently compute a divergence
term close to the Wasserstein distance between two probability measures as developed in [6]
through an iterative scaling algorithm where each iteration costs O(N2). This proposal has
recently gained popularity in machine learning and statistics, as it makes feasible the use of
smoothed optimal transportation distance for data analysis. It has found various applica-
tions such as generative models [16] and more generally for high dimensional data analysis in
multi-label learning [14], dictionnary learning [23] and image processing, see e.g. [7, 20] and
references therein, text mining via bag-of-words comparison [15], averaging of neuroimaging
data [18],

The goal of this paper is to analyze the potential benefits of Sinkhorn divergences for
statistical inference from empirical probability measures, by deriving novel results on the
asymptotic distribution of such divergences for data sampled from (unknown) distributions
supported on a finite metric space. The main application is to obtain new test statistics (for
one or two samples problems) for the comparison of multivariate probability distributions.

1.2 Previous work and main contributions

The derivation of distributional limits of an empirical measure towards its population coun-
terpart in Wasserstein distance is well understood for probability measures supported on R
[13, 8, 9]. These results have then been extended for specific parametric distributions sup-
ported on Rd belonging to an elliptic class, see [22] and references therein. Recently, a central
limit theorem has been established in [10] for empirical transportation cost for data sampled
from absolutely continuous measures on Rd that holds for any d ≥ 1. The case of discrete
measures supported on a finite metric space has also been recently considered in [28] with the
proof of the convergence (in the spirit of the central limit theorem) of empirical Wasserstein
distances toward to the optimal value of a linear program. Ramdas and al. in [21] also stud-
ied the link between nonparametric tests and the Wasserstein distance, with an emphasis on
distributions with support in R.

However, apart from the one-dimensional case (d = 1), these results leads to test statistics
whose numerical implementation may become prohibitive for empirical measures supported
on Rd with d ≥ 2. This is due to the computational cost to evaluate a transport distance.
Therefore, using test statistics based on Sinkhorn divergences may be of interest thanks to
their fast computation through the iterative algorithm originally proposed in [5]. This pa-
per is thus focused on the study of inference from discrete distributions in terms of entropic
regularized transport costs. The results are inspired by the work in [28] on the asymptotic dis-
tribution of empirical Wasserstein distance on finite space using un-regularized transportation
costs.

Our main contributions may be summarized as follows. First, for data sampled from one
or two unknown discrete measures, we derive central limit theorems for empirical Sinkhorn
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divergences. These results then lead to new test statistics for measuring the discrepancies
between multivariate probability distributions. Finally, to illustrate the applicability of this
approach to synthetic data, we propose a bootstrap procedure to estimate unknown quantities
of interest in the computation of these test statistics (such as their non-asymptotic variance
and quantiles). Simulated and real datasets are used to illustrate our approach. A comparison
with existing methods to measure the discrepancy between multivariate distributions is also
proposed.

1.3 Overview of the paper

In Section 2 we briefly recall the optimal transport problem between probability measures,
and we introduce the Sinkhorn divergence following the presentation in [6]. Then, we discuss
the notion of directional derivative of these divergences in order to obtain our main result
on a central limit theorem for Sinkhorn divergence via an appropriate adaptation of the
delta-method. A bootstrap procedure is discussed in Section 3. Numerical experiments are
presented in Section 4 and Section 5 for synthetic data and real data, and we illustrate the
benefits of a bootstrap procedure. Some perspectives are given in Section 6.

2 Distribution limits for empirical Sinkhorn divergences

2.1 Notation and definitions

Let (X , d) be a complete metric space with d : X × X → R+. We denote by Pp(X ) the set
of Borel probability measures µ supported on X with finite moment of order p, in the sense
that

∫
X d

p(x, y)dµ(x) is finite for some (and thus for all) y ∈ X . The p-Wasserstein distance
between two measures µ and ν in Pp(X ) is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫∫
X 2
dp(x, y)dπ(x, y)

)1/p

(1)

where the infimum is taken over the set Π(µ, ν) of probability measures π on the product
space X × X with respective marginals µ and ν.

In this work, we consider the specific case where X = {x1, . . . , xN} is a finite metric space
of size N . In this setting, a measure µ ∈ Pp(X ) is discrete, and we write µ =

∑N
i=1 aiδxi where

(a1, . . . , aN ) is a vector of positive weights belonging to the simplex ΣN := {a = (ai)i=1,...,N ∈
RN+ such that

∑N
i=1 ai = 1} and δxi is a Dirac measure in xi. As the space X is considered

to be fixed, a probability measure supported on X is entirely characterized by a vector of
weights in the simplex. By a slight abuse of notation, we thus identify a measure µ ∈ Pp(X )
by its vector of weights a = (a1, . . . , an) ∈ ΣN (and we sometimes write a = µ).

Definition 2.1 (Sinkhorn divergence). Let λ > 0 be a regularization parameter. The
Sinkhorn divergence [5] between two probability measures µ =

∑N
i=1 aiδxi and ν =

∑N
i=1 biδxi

in Pp(X ) is defined by

pλ(a, b) = min
T∈U(a,b)

〈T,C〉 − λh(T ), with a and b in ΣN , (2)

where 〈·, ·〉 denotes the usual inner product between matrices, and
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- U(a, b) = {T ∈ RN×N+ |T1N = a, T T1N = b} is the set of transport matrices with marginals
a and b (with 1N denoting the vector of RN with all entries equal to one) ,

- C ∈ RN×N+ is the pairwise cost matrix associated to the metric space(X, d) whose (i, j)-th
entry is ci,j = d(xi, xj)p,

- the regularization function h(T ) = −
∑
i,j tij log tij is the negative entropy for a transport

matrix T ∈ U(a, b).

Remark 1. The Sinkhorn divergence is not a metric on the space Pp(X ) of discrete probability
measures. In particular, pλ(a, b) 6= 0 when a = b.

Remark 2. This entire section is also valid for more general cost matrices C.

Computing the p-Wasserstein distance between discrete probability measures supported
on X amounts to find a minimizer of T 7→ 〈T,C〉 over U(a, b). However, the cost of this convex
minimization becomes prohibitive for moderate to large values of N . Regularizing a complex
problem with an entropy term is a classical approach in optimization in order to reduce its
complexity that has been known since a long time [34]. This is the approach followed in [5]
by adding an entropic regularization on the transport matrix. This yields the strictly convex
(primal) problem (2) [5, 6].

Definition 2.2 (Dual problem). Following [6], the dual version of the minimization problem
(2) is given by

dλ(a, b) = max
α,β∈RN

αTa+ βT b−
∑
i,j

λe−
1
λ

(cij−αi−βj), (3)

in the sense that dλ(a, b) = pλ(a, b).

There exists an explicit relation between the optimal solutions of the primal and dual
problems above, and they can be computed through an iterative method called Sinkhorn’s
algorithm [6].

Proposition 2.1 (Sinkhorn’s algorithm). Let K = exp(−C/λ) be the elementwise exponential
of the matrix cost C divided by −λ. Then, there exists a pair a vectors (u, v) ∈ RN+ ×RN+ such
that the optimal solutions T ∗λ and (α∗λ, β∗λ) of problems (2) and (3) are respectively given by

T ∗λ = diag(u)K diag(v), and α∗λ = −λ log(u), β∗λ = −λ log(v).

Moreover, such a pair (u, v) is unique up to scalar multiplication, and it can be recovered as
a fixed point of the Sinkhorn map

S{a,b} : (u, v) ∈ RN × RN 7→ (a/(Kv), b/(KTu)). (4)

where KT is the transpose of K and / stands for the component-wise division.

Finally, the following notation will also be needed in the proofs. We define

fλ :
ΣN × ΣN × RN × RN −→ R

(a, b, α, β) 7−→ αTa+ βT b−
∑
i,j λe

− 1
λ

(cij−αi−βj) (5)

We also denote by L−→ the convergence in distribution of a random variable and P−→ the
convergence in propability. The notation G L∼ a mean that G is a random variable taking its
values in X with law a = (a1, . . . , an) ∈ ΣN (namely that P(G = xi) = ai for each 1 ≤ i ≤ N).
Likewise G L∼ H stands for the equality in distribution of the random variables G and H.
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2.2 Directional derivative of dλ

We follow the presentation and notation in [28]. We recall that, if it exists, the Hadamard
directional derivative of a function g : Dg ⊂ Rd at z ∈ Dg in the direction h is defined as

g′h(z) = lim
n→∞

g(z + tnhn)− g(z)
tn

for any sequences (tn)n such that tn ↘ 0 and hn → h with z + tnhn ∈ Dg for all n. As
explained in [28], the derivate h 7→ g′h(z) is not necessarily a linear map contrary to the usual
notion of Hadamard differentiability. A typical example being the function g(z) = |z| (with
Dg = R) which is not Hadamard differentiable at z = 0 in the usual sense, but directionally
differentiable with g′h(0) = |h|.

Theorem 2.3. The functional (a, b) 7→ dλ(a, b) is directionally Hadamard differentiable at
all (a, b) ∈ int(ΣN × ΣN ) with derivative

(h1, h2) 7→ max
(α,β)∈Nλ(a,b)

〈α, h1〉+ 〈β, h2〉.

where
Nλ(a, b) = {(α, β) ∈ RN × RN such that fλ(a, b, α, β) = dλ(a, b)} (6)

is the optimal set of solutions of the dual problem (3).

Proof. For t > 0 and h1, h2, α, β ∈ RN , we define

∇th1,h2fλ(a, b, α, β) = fλ(a+ th1, b+ th2, α, β)− fλ(a, b, α, β)
t

= αTh1 + βTh2.

Let (a, b) ∈ int(ΣN × ΣN ) and Nλ(a, b, r) = {(α, β) ∈ RN × RN such that fλ(a, b, α, β) > r}.
By the existence of optimal solutions (see Proposition 2.1), there exists (α, β) ∈ Nλ(a, b, r)
such that lim inf

t→0
∇th1,h2

fλ(a, b, α, β) = lim inf
t→0

αTh1 + βTh2 = αTh1 + βTh2 > −∞. We can
then apply Theorem 3.1 in [32] which gives the directional differentiability of dλ. Remark that
Proposition 2.1 in [32] provides sufficient conditions (by convexity of (a, b) 7→ fλ(a, b, α, β))
to apply Theorem 3.1. Thus, the directional derivative (dλ)′h1,h2

(a, b) at (a, b) in the direction
(h1, h2) exists, and it is given by

(dλ)′h1,h2(a, b) = lim
r↗dλ(a,b)

lim sup
t→0

(
sup

(α,β)∈Nλ(a,b,r)
∇th1,h2fλ(a, b, α, β)

)

= lim
r↗dλ(a,b)

(
sup

(α,β)∈Nλ(a,b,r)
αTh1 + βTh2

)
= sup

(α,β)∈Nλ(a,b)
αTh1 + βTh2.

Now, we argue as in the proof of Theorem 3 in [28]: to conclude that dλ also admits a
directional derivative in the Hadamard sense, it is sufficient to show that (a, b) 7→ dλ(a, b)
is locally Lipschitz (see Proposition 3.5 in [27]). The function (a, b) 7→ fλ(a, b, α, β) is linear
for all α, β. Hence (a, b) 7→ dλ(a, b) is convex. Since ΣN × ΣN is convex, we have that dλ is
locally Lipschitz on int(ΣN × ΣN ), which completes the proof.

Remark 3. Since the boundary of the convex set ΣN ×ΣN has zero d-Lebesgue measure, we
have that dλ(a, b) is Hadamard directionally differentiable d-Lebesgue almost surely.
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2.3 Main result

Let a, b ∈ ΣN . We denote by ân and b̂m the empirical measures respectively generated by iid
samples X1, . . . , Xn

L∼ a and Y1, . . . , Ym
L∼ b:

ân = (âxn)x∈X , where âxin = 1
n

n∑
j=1

1{Xj=xi} = 1
n

#{j : Xj = xi} for all 1 ≤ i ≤ N.

We also define the multinomial covariance matrix

Σ(a) =


ax1(1− ax1) −ax1ax2 · · · −ax1axN
−ax2ax1 ax2(1− ax2) · · · −ax2axN

...
... . . . ...

−axNax1 −axNax2 · · · ax1(1− ax1)


and the independent Gaussian random vectors G ∼ N (0,Σ(a)) and H ∼ N (0,Σ(b)). As
classically done in statistics, we say that{

H0 a = b is the null hypothesis,
H1 a 6= b is the alternative hypothesis.

The following theorem is our main result on distribution limits of empirical Sinkhorn diver-
gences.

Theorem 2.4. Recall that K = exp(−C/λ) is the matrix obtained by elementwise exponential
of −C

λ . Then, the following central limit theorems holds for empirical Sinkhorn divergences.

1. Null hypothesis, i.e. a = b. Let (u, v) ∈ RN×N+ be a fixed point of the Sinkhorn map
S{a,a} defined in (4)

(a) H0 - One sample.
√
n(dλ(ân, a)− dλ(a, a)) L−→ 〈G,λ log(u)〉. (7)

(b) H0 - Two samples. Let ρn,m =
√

(nm/(n+m)). If n and m tend to infinity such
that n ∧m→∞ and m/(n+m)→ γ ∈ (0, 1), then

ρn,m(dλ(ân, b̂m)− dλ(a, a)) L−→ 〈G,λ log(u)〉. (8)

2. Alternative case, i.e. a 6= b. Let (u, v) ∈ RN×N+ be a fixed point of the Sinkhorn map
S{a,b}

(a) H1 - One sample.
√
n(dλ(ân, b)− dλ(a, b)) L−→ 〈G,λ log(u)〉. (9)

(b) H1 - Two samples. For ρn,m =
√

(nm/(n+m)) and m/(n+m)→ γ ∈ (0, 1),

ρn,m(dλ(ân, b̂m)− dλ(a, b)) L−→ √γ〈G,λ log(u)〉+
√

1− γ〈H,λ log(v)〉. (10)
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Proof. Following the proof of Theorem 1 in [28], we have that (e.g. thanks to Theorem 14.6
in [33])

√
n(ân − a) L−→ G, where G L∼ N (0,Σ(a)),

since nân is a sample of a multinomial probability measure with probability a.
Therefore, for the one sample case, we apply the Delta-method for directionally differen-

tiable functions in the sense of Hadamard (see Theorem 1 of Romisch in [24]). Thanks to
Theorem 2.3, we directly get:

√
n(dλ(ân, a)− dλ(a, a)) L−→ max

(α,β)∈Nλ(a,a)
〈G,α〉 (11)

√
n(dλ(ân, b)− dλ(a, b)) L−→ max

(α,β)∈Nλ(a,b)
〈G,α〉 for a 6= b. (12)

For the two samples case, we use that

ρn,m((ân, b̂m)− (a, b)) L−→ (√γG,
√

1− γH),

where ρn,m and γ are given in the statement of the Theorem. Then, applying again the
delta-method for Hadamard directionally diffenrentiable functions, we obtain that for n and
m tending to infinity such that n ∧m→∞ and m/(n+m)→ γ ∈ (0, 1),

ρn,m(dλ(ân, b̂m)− dλ(a, b)) L−→ max
(α,β)∈Nλ(a,b)

√
γ〈G,α〉+

√
1− γ〈H,β〉. (13)

In the null hypothesis case (a = b), this simplifies into

ρn,m(dλ(ân, b̂m)− dλ(a, a)) L−→ max
(α,β)∈Nλ(a,a)

〈G,α〉. (14)

Now, thanks to Proposition 2.1, we know that there exists positive vectors u ∈ RN+ and
v ∈ RN+ (unique up to scalar multiplication) such that an optimal solution in Nλ(a, b) of dλ
is given by

α∗ = −λ log(u), β∗ = −λ log(v)
for a and b equal or not. From such results, for (u, v) obtained through Sinkhorn’s algorithm
(4), we can deduce that

max
(α,β)∈Nλ(a,b)

〈G,α〉 L∼ max
t∈R
〈G,−λ log(u) + t1N 〉

L∼ max
t∈R

(〈G,−λ log(u)〉+ 〈G, t1N 〉) .

Moreover,

〈G, t1N 〉
L∼ N (t1′N E(G), t1′NΣ(a)t1N ) L∼ N (0, t21′NΣ(a)1N ) L∼ N (0, 0) L∼ δ0

since G is centered in 0 and 1′NΣ(a)1N = 0 for a in the simplex. Notice that 〈G,−λ log(u)〉 L∼
〈G,λ log(u)〉. Hence, let Y be a random variable of law δ0. By independence, we have that
〈G,−λ log(u)〉+Y follows the same law as 〈G,λ log(u)〉 since G is centered in 0. By the same
process,

max
(α,β)∈Nλ(a,b)

√
γ〈G,α〉+

√
1− γ〈H,β〉 L∼ √γ〈G,λ log(u)〉+

√
1− γ〈H,λ log(v)〉.

Therefore we apply this result to the convergence in distribution obtained previously in (13)
and (14), which concludes the proof.
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Distribution limits of empirical Sinkhorn divergences may also be characterized by the
following result which follows from Theorem 1 of Romisch [24] using the property that ΣN×ΣN

is a convex set.

Theorem 2.5. The following asymptotic result holds for empirical Sinkhorn divergences.

1. One sample

√
n

(
dλ(ân, b)− dλ(a, b)− max

(α,β)∈Nλ(a,b)
〈ân − a, α〉

)
P−→ 0.

2. Two samples - For ρn,m =
√

(nm/(n+m)) and m/(n+m)→ γ ∈ (0, 1),

ρn,m

(
dλ(ân, b̂m)− dλ(a, b)− max

(α,β)∈Nλ(a,b)
(〈ân − a, α〉+ 〈b̂m − b, β〉)

)
P−→ 0.

3 Use of the bootstrap for statistical inference
The results obtained in Section 2 on the distribution of empirical Sinkhorn divergences are
only asymptotic, and it is thus of interest to estimate their non-asymptotic distribution using
a bootstrap procedure. The bootstrap consists in drawing new samples from an empirical
distribution P̂n that has been obtained from an unknown distribution P. Therefore, condi-
tionally on P̂n, it allows to obtain new observations (considered as approximately sampled
from P) that can be used to approximate the distribution of a test statistics using Monte-Carlo
experiments. We refer to [11] for a general introduction to the bootstrap procedure.

Nevertheless, as carefully explained in [28], for a test statistic based on functions that are
only Hadamard directionally differentiability a classical bootstrap procedure is not consistent.
To overcome this issue, we decide to choose α and β in Nλ(a, b) (6) such that their components
sum up to zero. In this way the optimal solution of the dual problem (3) becomes unique as
initially remarked in [6]. We denote this solution by (α0

λ, β
0
λ), and we letN0

λ(a, b) = {(α0
λ, β

0
λ)}.

Under this additional normalization, the previous results remain true. In particular, the
directional derivative of dλ at (a, b) becomes

d′λ(a, b) : (h1, h2) 7→ 〈α0
λ, h1〉+ 〈β0

λ, h2〉,

which is a linear map. Hence, by Proposition 2.1 in [12], the functional (a, b) 7→ dλ(a, b) is
Hadamard differentiable in the usual sense on int(ΣN × ΣN ). We can thus apply the Delta-
method to prove consistency of the bootstrap in our setting using the bounded Lipschitz
metric defined below.

Definition 3.1. The Bounded Lipschitz (BL) metric is defined for µ, ν probability measures
on Ω by

dBL(µ, ν) = sup
h∈BL1(Ω)

∣∣∣∣∫ hdµ−
∫
hdν

∣∣∣∣
where BL1(Ω) is the set of real functions Ω→ R with a Lipschitz norm bounded by 1.

Our main result adapted on the use of bootstrap samples can be stated as follows.
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Theorem 3.2. For X1, . . . , Xn
L∼ a and Y1, . . . , Ym

L∼ b, let â∗n and b̂∗m be boostrap versions
of ân and b̂m respectively.

1. One sample case:
√
n(dλ(â∗n, b) − dλ(ân, b)) converges in distribution (conditionally on

X1, . . . , Xn) to 〈G,α0
λ〉 for the BL metric, in the sense that

sup
h∈BL1(R)

|E(h(
√
n(dλ(ân, b)− dλ(â∗n, b)))|X1, . . . , Xn]− E[h〈G,α0

λ〉]|
P−→ 0

2. Two samples case: ρn,m(dλ(â∗n, b̂∗m)−dλ(ân, b̂m)) converges in distribution (conditionally
on X1, . . . , Xn, Y1, . . . , Ym) to √γ〈G,α0

λ〉 +
√

1− γ〈H,β0
λ〉 for the BL metric, in the

sense that

sup
h∈BL1(R)

|E(h(ρn,m(dλ(ân, b̂m)−dλ(â∗n, b̂∗m)))|X1, . . . , Xn, Y1, . . . , Ym]

− E[h(√γ〈G,α0
λ〉+

√
1− γ〈H,β0

λ〉)]|
P−→ 0

Proof. We only prove the one sample case since both convergence can be shown by similar
arguments. We know that

√
n(ân − a) tends in distribution to G ∼ N (0,Σ(a)). Moreover√

n(â∗n − ân) converges (conditionally on X1, . . . , Xn) in distribution to G by Theorem 3.6.1
in [30]. Theorem 3.9.11 in the same book, on the consistency of the Delta-method combined
with bootstrap, allows us to conclude.

4 Numerical experiments with synthetic data
We propose to illustrate Theorem 2.4 and Theorem 3.2 with simulated data consisting of
random measures supported on a p×p square grid of regularly spaced points (xi)i=1,...,N in R2

(with N = p2) for p ranging from 5 to 20. We use the squared Euclidean distance. Therefore,
the cost C scales with the size of the grid. The range of interesting values for λ is thus closely
linked to the size of the grid (as it can be seen in the expression of K = exp(−C/λ). Hence,
λ = 100 for a 5× 5 grid corresponds to more regularization than λ = 100 for a 20× 20 grid.

We ran our experiments on Matlab using the accelerate version [29]1 of the Sinkhorn
transport algorithm [5]. Furthermore, we considered the numerical logarithmic stabilization
described in [25] which allows to handle small values of λ.

4.1 Convergence in distribution

We first illustrate the convergence in distribution of empirical Sinkhorn divergences (as stated
in Theorem 2.4) for either the hypothesis H0 with one sample, or the hypothesis H1 with two
samples.

Hypothesis H0 - One sample. We consider the case where a is the uniform distribution
on a square grid. We generate M = 103 empirical distributions ân (such that nân follows a
multinomial distribution with parameter a) for different values of n and grid size. In this way,
we obtain M realizations of

√
n(dλ(ân, a) − dλ(a, a)), and we use a kernel density estimate

1http://www.math.u-bordeaux.fr/~npapadak/GOTMI/codes.html
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(with a data-driven bandwith) to compare the distribution of these realizations to the density
of the Gaussian distribution 〈G,λ log(u)〉. The results are reported in Figure 1.

It can be seen that the convergence of empirical Sinkhorn divergences to its asymptotic
distribution (n → ∞) is relatively slow. Moreover, for a fixed number n of observations,
the convergence becomes slower as λ increases. We can also notice that for various values of
(n, λ), the non-asymptotic distribution of

√
n(dλ(ân, a)−dλ(a, a)) seems to be non-Gaussian.

This justifies the use of the bootstrap procedure described in Section 3.

n = 103 n = 104 n = 105 n = 104 n = 105 n = 106

λ
=

1
λ

=
10

λ
=

10
0

Grid 5× 5 Grid 20× 20

Figure 1: Hypothesis H0 with one sample. Illustration of the convergence in distribution of
empirical Sinkhorn divergences for a 5×5 grid (left) and a 20×20 grid (right), for λ = 1, 10, 100
and n ranging from 103 to 106. Densities in red (resp. light blue) represent the distribution
of
√
n(dλ(ân, a)− dλ(a, a)) (resp. 〈G,λ log(u)〉).

Let us now shed some light on the bootstrap procedure described in Section 3. The
results on bootstrap experiments are reported in Figure 2. From the uniform distribution a,
we generate one random distribution ân. The value of the realization

√
n(dλ(ân, a)−dλ(a, a))

is represented by the red vertical lines in Figure 2.
Besides, we generate from ân, a sequence of M = 103 bootstrap samples of random

measures denoted by â∗n (such that nâ∗n follows a multinomial distribution with parameter
ân). We use again a kernel density estimate (with a data-driven bandwith) to compare the
distribution of

√
n(dλ(ân, a)−dλ(a, a)) to the distribution of

√
n(dλ(ân, a)−dλ(a, a)) displayed

in Figure 1. The green vertical lines in Figure 2 represent a confidence interval of level 95%.
The observation represented by the red vetical line is consistently located with respect to this
confidence interval, and the density estimated by bootstrap decently captures the shape of
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the non-asymptotic distribution of Sinkhorn divergences.

n = 103 n = 104 n = 105

G
rid

5
×

5

n = 104 n = 105 n = 106

G
rid

20
×

20

Figure 2: Hypothesis H0 with one sample. Illustration of the bootstrap with λ = 1 and
two grids of size 5 × 5 and 20 × 20 to approximate the non-asymptotic distribution of em-
pirical Sinkhorn divergences. Densities in red (resp. light blue) represent the distribution of√
n(dλ(ân, a) − dλ(a, a)) (resp. 〈G,λ log(u)〉). The green density represents the distribution

of the random variable
√
n(dλ(â∗n, a)− dλ(ân, a)) in Theorem 3.2.

Hypothesis H1 - Two samples We consider now the setting where a is still a uniform
distribution, and

b ∝ 1N + θ(1, 2, . . . , N)

is a distribution with linear trend depending on a slope parameter θ ≥ 0 that is fixed to 0.5,
see Figure 3.

As previously, we run M = 103 experiments to obtain a kernel density estimation of the
distribution of

ρn,m(dλ(ân, b̂m)− dλ(a, b)),

that we compare to the density of the Gaussian variable with mean 0 and variance

λ
√
γ log(u)tΣ(a) log(u)(1− γ) log(v)tΣ(b) log(v).

The results are reported in Figure 4. The convergence of empirical Sinkhorn divergences to
their asymptotic distribution seems to be much faster under the hypothesis H1, but increasing
the regularization parameter still makes this convergence slower.

11



Figure 3: Example of a distribution b with linear trend (with slope parameter θ = 0.5 on a
20× 20 grid).

Remark 4. A possible explanation for the slow convergence under the hypothesis H0 is that, in
this setting, the Sinkhorn divergence dλ(a, a) is very close to 0, but as soon as we generate an
empirical measure ân, the value of dλ(ân, a) seems to explode in comparison to the divergence
between a and itself.

n = 103 n = 104 n = 105 n = 105 n = 106 n = 107

λ
=

1
λ

=
10

Figure 4: Hypothesis H1 - two samples. Illustration of the convergence in distribution of
empirical Sinkhorn divergences for a 5× 5 grid (left) and a 20× 20 grid (right), for λ = 1, 10,
n = m and n ranging from 103 to 107. Densities in red (resp. blue) represent the distribution
of ρn,m(dλ(ân, b̂m)− dλ(a, b)) (resp. √γ〈G,λ log(u)〉+

√
1− γ〈H,λ log(v)〉 with γ = 1/2).

We also report in Figure 5 results on the consistency of the bootstrap procedure under the
hypothesis H1 with two samples. From the distributions a and b, we generate two random
distributions ân and b̂m. The value of the realization

√
n(dλ(ân, b̂n)− dλ(a, b)) is represented

by the red vertical lines in Figure 5. Then, we generate from ân and b̂m, two sequences of
M = 103 bootstrap samples of random measures denoted by â∗n and b̂∗m. We use again a
kernel density estimate (with a data-driven bandwith) to compare the green distribution of
ρn,m(dλ(â∗n, b̂∗m)− dλ(ân, b̂m)) to the red distribution of ρn,m(dλ(ân, b̂m)− dλ(a, b)) displayed

12



in Figure 5. The green vertical lines in Figure 5 represent a confidence interval of level 95%.
The observation represented by the red vertical line is consistently located with respect to
this confidence interval, and the green density estimated by bootstrap captures very well the
shape and location of the non-asymptotic distribution of Sinkhorn divergences.

n = m = 103 n = m = 104 n = m = 105

G
rid

5
×

5

n = m = 105 n = m = 106 n = m = 107

G
rid

20
×

20

Figure 5: HypothesisH1 - two samples. Illustration of the bootstrap with λ = 1 and two grids
of size 5×5 and 20×20 to approximate the non-asymptotic distribution of empirical Sinkhorn
divergences. Densities in red (resp. blue) represent the distribution of ρn,m(dλ(ân, b̂m) −
dλ(a, b)) (resp. √γ〈G,λ log(u)〉+

√
1− γ〈H,λ log(v)〉). The green density is the distribution

of the random variable ρn,m(dλ(â∗n, b̂∗m)− dλ(ân, b̂m)) in Theorem 3.2.

4.2 Estimation of test power using the bootstrap

One sample - distribution with linear trend and varying slope parameter. We
illustrate the consistency and usefulness of the bootstrap procedure by studying the statistical
power (that is P(Reject H0|H1 is true)) of statistical tests (at level 5%) based on empirical
Sinkhorn divergences. For this purpose, we choose a to be uniform on a 5× 5 grid, and b to
be a distribution with linear trend whose slope parameter θ is ranging from 0 to 0.15. We
assume that we observe a single realization of an empirical measure ân sampled from a with
n = 103. Then, we generate M = 103 bootstrap samples of random measures â∗n,j from ân
(with 1 ≤ j ≤M), which allows the computation of the p-value

p-value = #{j such that
√
n|dλ(â∗n,j , b)− dλ(ân, b)| ≥

√
n|dλ(ân, b)− dλ(a, b)|}/M.
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This experiments is repeated 100 times, in order to estimate the power (at level α) of a test
based on

√
n(dλ(ân, b)−dλ(a, b)) by comparing the resulting sequence of p-values to the value

α. The results are reported in Figure 6.

Te
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λ=1

λ=5

λ=10

θ

Figure 6: Test power (probability of accepting H0 knowing that H1 is true) on a 5× 5 grid in
the one sample case, as a function of the slope parameter θ ranging from 0 to 0.15 for λ = 1
(blue), λ = 5 (orange) and λ = 10 (yellow), with n = 103.

It can be seen that this test is a good discriminant, especially when λ is small. As soon
as the slope θ increases and b sufficiently differs from a, then the probability of rejecting
H0 increases. Moreover, for a fixed value of the slope parameter θ of distribution b, the
test power becomes larger as λ gets smaller. This suggests the use of a small regularization
parameter λ to be more accurate for discriminating two measures using statistical testing
based on empirical Sinkhorn divergences.

5 Analysis of real data
We consider a dataset containing the locations of reported incidents of crime (with the ex-
ception of murders) in Chicago in 2014 which is publicly available2, and that has been re-
cently studied in [3] and [17]. Victims’ addresses are shown at the block level only (specific
locations are not identified) in order to (i) protect the privacy of victims and (ii) have a
sufficient amount of data for the statistical analysis. The city of Chicago is represented as
a two-dimensional grid X = {x1, . . . , xN} of size N = 27 × 18 = 486 of equi-spaced points
xi = (x(1)

i , x
(2)
i ) ∈ [1, 27] × [1, 18] ⊂ R2. For each month 1 ≤ k ≤ 12 of the year 2014, the

spatial locations of reported incidents of crime in Chicago are available. This yields to a
2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data
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dataset made of 12 empirical measures

µ̂k =
N∑
i=1

â
(k)
i δxi for 1 ≤ k ≤ 12,

where â(k)
i is the relative frequency of reported crimes for month k at location xi. We denote

by n = nk the number of reported crimes for month k. This dataset is displayed in Figure
7 and 8. To compute the cost matrix C, we use the squared Euclidean distance between the
spatial locations xi ∈ R2.

Figure 7: Spatial locations of reported incidents (relative frequencies) of crime in Chicago for
the first 6 months of 2014 over a two-dimensional grid of size 27× 18.

5.1 Testing the hypothesis of uniform distribution of crimes locations

We first test the null hypothesis that the distribution of crimes locations over the whole year
2014 is uniform. To this end, we consider the Euclidean barycenter of the dataset (µ̂k)1≤k≤n
defined as

µ̄12 = 1
12

12∑
k=1

µ̂k =
N∑
i=1

āiδxi

which represents the locations of crime in 2014. This discrete measure is displayed in Fig-
ure 9(a). It can be seen that µ̄12 is a discrete empirical measure consisting of n = 16104
observations such that āi = 0 for many locations xi. We use the one sample testing proce-
dure described previously, and a bootstrap approach to estimate the distribution of the test
statistics √

n(dλ(ân, a)− dλ(a, a))
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Figure 8: Spatial locations of reported incidents (relative frequencies) of crime in Chicago for
the last 6 months of 2014 over a two-dimensional grid of size 27× 18.

with ân = µ̄12 and a the uniform distribution over the support of µ̄12 defined as {xi : āi 6=
0, 1 ≤ i ≤ N}, see Figure 9(b). We report results for λ = 1 and λ = 5 by displaying in Figure
9(cd) an estimation of the density of the bootstrap statistics

√
n(dλ(â∗n, a) − dλ(ân, a)). For

both values of λ, the value of
√
n(dλ(ân, a)− dλ(a, a)) is outside the support of this density,

and the null hypothesis that crimes are uniformly distributed (over the support of µ̄12 is thus
rejected.

5.2 Testing the hypothesis of equal distributions between months

We propose now to investigate the possibility of equal distributions of crime locations between
different months. To this end, we first compute a reference measure using data from the first
6 months. Under the assumption that the distribution of crime locations does not change
from one month to another, it is natural to consider the Euclidean barycenter

µ̄6 = 1
6

6∑
k=1

µ̂k,

as a reference measure to which the data from the last 6 months of 2014 can be compared.
The measure µ̄6 is displayed in Figure 10(a) and Figure 11(a).

One sample testing. We use the one sample testing procedure described previously, and
a bootstrap approach to estimate the distribution of the test statistics

√
nk(dλ(ânk , a)− dλ(a, a))
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Figure 9: Testing uniform distribution of crimes locations. (a) Euclidean barycenter µ̄12
(empirical measure corresponding to locations of crime in Chicago for the whole year 2014
over a two-dimensional grid of size 27×18), (b) Uniform distribution a over the support of µ̄12.
Green densities represent the distribution of the bootstrap statistics

√
n(dλ(â∗n, a)−dλ(ân, a))

(vertical bars represent a confidence interval of level 95%) for (c) λ = 1 and (d) λ = 5. The
value of

√
n(dλ(ân, a)− dλ(a, a)) (with ân = µ̄12) is outside the support [−100, 100] for each

value of λ, and it is thus not represented.
.

with a = µ̄6 and ânk = µ̂k, for 7 ≤ k ≤ 12. We report results for λ = 1 by displaying in Figure
10 an estimation of the density of the bootstrap statistics √nk(dλ(â∗nk , a) − dλ(ânk , a)), and
the values of the observations √nk(dλ(ânk , a)− dλ(a, a)) for the last 6 months of 2014. It can
be seen that, at level 5%, the null hypothesis that the distribution of crime locations is equal
to the reference measure µ̄6 is accepted for the months of September, October, November and
December, but that it is rejected for the months of July and August.

Alternatively, one may think of using a smoothed Wasserstein barycenter µ̄λ6 of the data
(µ̂k)1≤k≤6 as a reference measure that is defined as

µ̄λ6 = arg min
µ∈Pp(X )

1
6

6∑
k=1

pλ(µ̂k, µ).

To compute such a smoothed Wasserstein barycenter, we use the algorithmic approach pro-
posed in [7], and we display µ̄λ6 for λ = 1 in Figure 10(b) and λ = 0.3 in Figure 11(b).

For λ = 1, this smoothed Wasserstein barycenters is visually quite different from the
measures (µ̂k)7≤k≤12 that are displayed in Figure 8. For λ = 1, we found that using µ̄λ6 as a
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reference measure in one sample testing (with ânk = µ̂k and a = µ̄λ6) leads to reject the null
hypothesis that the distribution of crime locations is equal to µ̄λ6 for all 7 ≤ k ≤ 12 (last 6
months of 2014). As a consequence we do not display the corresponding results.
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Figure 10: Testing equality of distributions over months for λ = 1 with the Euclidean barycen-
ter as a reference measure. (a) Euclidean barycenter µ̄6 (empirical measure corresponding
to locations of crime in Chicago for the first 6 months of 2014). (b) Smoothed Wassertein
barycenter µ̄λ6 of the measures (µ̂k)1≤k≤6 for λ = 1. (c)-(h) Green densities represent the
distribution of the bootstrap statistics √nk(dλ(â∗nk , a) − dλ(ânk , a)) for the last 6 months of
2014, with a = µ̄6 and ânk = µ̂k, for 7 ≤ k ≤ 12. The green vertical bars represent a con-
fidence interval of level 95% for each density. The red vertical bars represent the value of√
nk(dλ(ânk , a)− dλ(a, a)).
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For λ = 0.3, the Wasserstein barycenter µ̄λ6 is a slightly smoothed version of the Euclidean
one µ̄6. We display in Figure 11 an estimation of the density of the bootstrap statistics√
nk(dλ(â∗nk , a)−dλ(ânk , a)), and the values of the observations √nk(dλ(ânk , a)−dλ(a, a)) for

the last 6 months of 2014, with a = µ̄λ6 and λ = 0.3. At level 5%, the null hypothesis that
the distribution of crime locations is equal to the reference measure µ̄λ6 is accepted for the
months of November and December, just as in the case where the Euclidean barycenter µ̄6
is the reference measure. However, the null hypothesis is rejected for the four others months
July, August, September and October.

Two samples testing. We finally consider the problem of testing the hypothesis that the
distributions of crime locations between two months (from July to December) are equal to
the reference measure a = µ̄6 (Euclidean barycenter over the first 6 months of 2014) using the
two samples test statistic based on Sinkhorn divergence for λ = 1 and λ = 5 combined with a
bootstrap procedure. We report in Table 1 and Table 2 the estimated p-values corresponding
to such tests for all pairs of different months from July to December 2014. For both values of
λ the interpretation of the results is similar. They tend to support the hypothesis that the
distribution of crime locations is the same when comparing two months among September,
October, November and December, and that this distribution is different when the comparison
is done with the month of July. The results for August are more difficult to interpret, as it
can be concluded that the distribution of crime locations for this month is equal to that of
July, September, October and December.

As remarked in [28], there exists a vast literature for two-sample testing using univariate
data. However, in a multivariate setting, it is difficult to consider that there exist standard
methods to test the equality of two distributions. We compare the results that have been
obtained using our approach with those given by a kernel based test proposed in [1] that
is implemented in the R package ks. The test statistics in [1] uses the integrated square
distance between two kernel-based density estimates computed from two empirical measures
with a data-based choice of bandwidth. We report in Table 3 the p-values corresponding
to this test for all pairs of different months from July to December 2014. It can be seen
that the p-values obtained with this test are larger than those obtained with our testing
procedure. Nevertheless, the conclusions on the equality of distributions of crime locations
between different months are roughly the same than previously.

6 Future works
We intend to further investigate the benefits of the use of Sinkhorn divergences to propose
novel testing procedure to compare multivariate distributions for real data analysis. A first
perspective is to apply the methodology developed in this paper to more than two samples
using the notion of smoothed Wasserstein barycenters (see e.g. [7] and references therein) for
the analysis of variance of multiple and multivariate random measures (MANOVA). However,
as pointed out in [7], a critical issue in this setting will be the choice of the regularization
parameter λ, as it has a large influence on the shape of the estimated Wasserstein barycenter.
Our simulations in Section 5 show that using a smoothed Wasserstein barycenter as a reference
measure may lead to different results from the use of an Euclidean barycenter for hypothesis
testing of the equality of distributions.

Another issue is that, for one or two samples testing, the use of Sinkhorn divergences leads
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Figure 11: Testing equality of distributions over months for λ = 0.3 with the smoothed
Wasserstein barycenter as a reference measure. (a) Euclidean barycenter µ̄6 (empirical mea-
sure corresponding to locations of crime in Chicago for the first 6 months of 2014). (b)
Smoothed Wassertein barycenter µ̄λ6 of the measures (µ̂k)1≤k≤6 for λ = 0.3. (c)-(h) Green
densities represent the distribution of the bootstrap statistics √nk(dλ(â∗nk , a)−dλ(ânk , a)) for
the last 6 months of 2014, with a = µ̄λ6 and ânk = µ̂k, for 7 ≤ k ≤ 12. The green vertical bars
represent a confidence interval of level 95% for each density. The red vertical bars represent
the value of √nk(dλ(ânk , a)− dλ(a, a)).

to a biased statistics in the sense that its expectation dλ(a, b) is not equal to zero under the
hypothesis that a = b. A possible alternative to avoid this issue would be to use the so-called
notion of Sinkhorn loss defined as

d̄λ(a, b) := 2dλ(a, b)− dλ(a, a)− dλ(b, b),

that has been recently introduced in [16], and which satisfies the property that d̄λ(a, b) = 0
when a = b. An interesting extension of the results in this paper would thus be to develop
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July August September October November December
July 1 0.07 0.04 0.01 < 10−2 0.08

August 1 0.16 0.14 0.01 0.12
September 1 0.18 0.07 0.20
October 1 0.06 0.05
November 1 0.10
December 1

Table 1: Two samples testing of equal distributions between pairs of different months from
July to December using a test statistics based on Sinkhorn divergence for λ = 1 with reference
measure a = µ̄6 (Euclidean barycenter over the first 6 months of 2014). The table reports
estimated p-values using a bootstrap procedure for the test statistics ρnk,n`(dλ(ânk , b̂n`) −
dλ(a, a)) (with ânk = µ̂k and b̂n` = µ̂`) for 7 ≤ k ≤ ` ≤ 12.

July August September October November December
July 1 0.12 0.04 0.01 < 10−2 0.05

August 1 0.25 0.11 0.01 0.10
September 1 0.40 0.06 0.20
October 1 0.06 0.05
November 1 0.06
December 1

Table 2: Two samples testing of equal distributions between pairs of different months from
July to December using a test statistics based on Sinkhorn divergence for λ = 5 with reference
measure a = µ̄6 (Euclidean barycenter over the first 6 months of 2014). The table reports
estimated p-values using a bootstrap procedure for the test statistics ρnk,n`(dλ(ânk , b̂n`) −
dλ(a, a)) (with ânk = µ̂k and b̂n` = µ̂`) for 7 ≤ k ≤ ` ≤ 12.

July August September October November December
July 1 0.14 0.04 0.04 0.10 0.09

August 1 0.25 0.06 0.12 0.16
September 1 0.11 0.30 0.30
October 1 0.16 0.14
November 1 0.43
December 1

Table 3: Two samples testing with kernel smoothing. The table reports p-values using the
kernel based test proposed in [1] for testing equality of distributions between different pairs
of months from July to December 2014.

test statistics based on the Sinkhorn loss for the comparison of multivariate distributions.
We believe this can be done using tools in this paper on the delta method for differentiable
functions in the sense of Hadamard.
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