FlinkMan : Anomaly Detection in Manufacturing Equipment with Apache Flink : Grand Challenge - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

FlinkMan : Anomaly Detection in Manufacturing Equipment with Apache Flink : Grand Challenge

Résumé

We present a (soo) real-time event-based anomaly detection application for manufacturing equipment, built on top of the general purpose stream processing framework Apache Flink. e anomaly detection involves multiple CPUs and/or memory intensive tasks, such as clustering on large time-based window and parsing input data in RDF-format. e main goal is to reduce end-to-end latencies, while handling high input throughput and still provide exact results. Given a truly distributed seeing, this challenge also entails careful task and/or data parallelization and balancing. We propose FlinkMan, a system that ooers a generic and eecient solution , which maximizes the usage of available cores and balances the load among them. We illustrates the accuracy and eeciency of FlinkMan, over a 3-step pipelined data stream analysis, that includes clustering, modeling and querying.
Fichier principal
Vignette du fichier
main.pdf (931.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01644417 , version 1 (22-11-2017)

Identifiants

Citer

Yann Busnel, Nicolo Riveei, Avigdor Gal. FlinkMan : Anomaly Detection in Manufacturing Equipment with Apache Flink : Grand Challenge. DEBS '17 : 11th ACM International Conference on Distributed and Event-based Systems, Jun 2017, Barcelone, Spain. pp.274-279 ⟨10.1145/3093742.3095099⟩. ⟨hal-01644417⟩
593 Consultations
817 Téléchargements

Altmetric

Partager

More