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ABSTRACT
We present a (so�) real-time event-based anomaly detection appli-

cation for manufacturing equipment, built on top of the general

purpose stream processing framework Apache Flink. �e anom-

aly detection involves multiple CPUs and/or memory intensive

tasks, such as clustering on large time-based window and parsing

input data in RDF-format. �e main goal is to reduce end-to-end

latencies, while handling high input throughput and still provide

exact results. Given a truly distributed se�ing, this challenge also

entails careful task and/or data parallelization and balancing. We

propose FlinkMan, a system that o�ers a generic and e�cient so-

lution, which maximizes the usage of available cores and balances

the load among them. We illustrates the accuracy and e�ciency

of FlinkMan, over a 3-step pipelined data stream analysis, that

includes clustering, modeling and querying.

CCS CONCEPTS
•Information systems →Stream management; •�eory of com-
putation →Distributed algorithms; Unsupervised learning and clus-
tering;

KEYWORDS
Anomaly Detection, Stream Processing, Clustering, Markov Chains,

Linked-Data

1 INTRODUCTION
Stream processing management system (SPMS) and/or Complex

Event Processing (CEP) systems gain momentum In performing

analytics on continuous data streams. �eir ability to achieve sub-

second latencies, coupled with their scalability, makes them the

preferred choice for many big data companies. Supporting this

trend, since 2011, the ACM International Conference on Distributed

Event-based Systems (DEBS) launched the Grand Challenge series

to increase the focus on these systems as well as provide common

benchmarks to evaluate and compare them. �e ACM DEBS 2017

Grand Challenge focuses on (so�) real-time anomaly detection in

manufacturing equipment [4]. To handle continuous monitoring,

each machine is ��ed with a vast array of sensors, either digital or
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analog. �ese sensors provide periodic measurements, which are

sent to a monitoring base station. �e la�er receives then a large

collection of observations. Analyzing in an e�cient and accurate

way, this very-high-rate – and potentially massive – stream of

events is the core of the Grand Challenge. Although, the analysis

of a massive amount of sensor reading requires an on-line analytics

pipeline that deals with linked-data, clustering as well as a Markov

model training and querying.

�e FlinkMan system proposes a solution to the 2017 Grand

Challenge, making use of a publicly available streaming engine and

thus o�ering a generic solution that is not specially tailored for

this or that challenge. We o�er an e�cient solution that maximally

utilizes available cores, balances the load among the cores, and

avoids to the extent possible tasks such as garbage collection that

are only indirectly related to the task at hand.

�is rest of the paper is organized as follows. Section 2 presents

the query engine pipeline, the data set and the evaluation platform,

that are provided for this challenge. Section 3 introduces the general

architecture of our solution and its rationale. Finally, Section 4

provides details of the implementation as well as the optimizations

included in our solution.

2 PROBLEM STATEMENT
�e overall goal is to detect anomalies in manufacturing machines

based on a stream of measurements produced by the sensors embed-

ded into the monitored equipments. �e events produced by each

sensor are clustered and the state transitions between the clusters

are used to train a Markov model. In turn, the produced Markov

model is used to detect anomalies. A sequence of transitions that

follows a low probability path in the Markov chain is considered as

abnormal, and is �agged as an anomaly.

2.1 �ery
�e anomaly detection analysis can be modeled as a pipeline with

three stages: (i) clustering, (ii) Markov model training and (iii)
Markov model querying (i.e., output transition sequences with low

probability). �ese three steps are executed continuously on a

time-based sliding window and the whole pipeline is performed

independently for each sensor of each machine. �e query has 6

parameters: the time-based sliding window sizeW (in seconds), the

initial number of clusters k (non uniform among sensors), the maxi-

mum number of iterations of the clustering algorithm M (if conver-

gence has not been reached), the clustering algorithm convergence

distance µ, the length of the Markov model path we consider for

computing the anomaly probability N , and the probability thresh-

old T below which the path is classi�ed as anomaly. Each event

goes through all the mentioned stages so that a single event may
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Event Physical Timestamp Logical Timestamp Value

r0 = ( 1485903716000, 1155, −0.04 )
r1 = ( 1485903717000, 1165, −0.04 )
r2 = ( 1485903718000, 1175, +0.02 )
r3 = ( 1485903719000, 1185, −0.0 )
r4 = ( 1485903720000, 1195, −0.01 )
r5 = ( 1485903721000, 1205, −0.04 )
r6 = ( 1485903722000, 1215, +0.0 )
r7 = ( 1485903723000, 1225, −0.02 )
r8 = ( 1485903724000, 1235, +0.0 )
r9 = ( 1485903725000, 1245, +0.02 )

Table 1: Example of an input window of sizeW = 10.
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Figure 1: Clustering (k-means) with k = 3.

change the clustering, modify the Markov model, and trigger an

anomaly detection. It is worth noting that the detected anomalies

must be ordered with respect to the ordering in the input stream.

Example 2.1. Table 1 contains an input windows of sizeW = 10.

Clustering First, the clustering algorithm groups all readings

(from r0 to r9) into k = 3 clusters. To do so, a k-means algo-

rithm is initialized: the cluster centers are set to the k �rst values

encountered (represented as c0, c1 and c2 in the Init part of Fig-

ure 1). �en, a �rst grouping is produced according to these centers.

Several iterations are then launched, until convergence, to �nd

the best-��ed clustering. In our example, a�er a the third itera-

tion (Iter2 in Figure 1), an equilibrium is reached and the clusters,

represented in the bo�om part of Figure 1, are returned.

Model training �en, based on this history, a trained Markov

chain is computed (Figure 2). �is Markov model illustrates, for

instance, that the probability is 1/3 to move from cluster C0 to

cluster C2 (respectively states 0 and 2 in the Markov chain), and is

0 to move to C0 from C1.

Model quering Finally, the path represented by the last 5 read-

ings raises an anomaly. In fact, as demonstrated in the bo�om

of Figure 1, r4 belongs to C2 and r5 to C0. �ese transition corre-

sponds to 2→ 0 in the Markov model, and has then a probability

1/3

1/3

1/3 3/5

1/5

1/5

1

r5
r6

r7

r8

r9

0

2

1

Last N transitions Probability

r5 : 2→ 0 P1 = P2→0 = 1/5 = 0.2

r6 : 0→ 2 P2 = P1 × 1/3 = 1/15 ≈ 0.666

r7 : 2→ 2 P3 = P2 × 3/5 = 1/25 = 0.04

r8 : 2→ 2 P4 = P3 × 3/5 = 3/125 ≈ 0.024

r9 : 2→ 1 P5 = P4 × 1/5 = 1/3215 < T = 1/200

⇒ r5 trigger an anomaly

Figure 2: Trained Markov model and probability of the ter-
minal path of length N = 5, with a threshold T = 0.005.

P1 = 1/5 to occur. Following the 5-step path from r4 to r9, this se-

quence has a probability of 1/3215 to happen, which is way below

the anomaly threshold (set to 0.005 for this toy example).

2.2 Dataset
�e molding machines of our dataset are equipped with a large

array of sensors, measuring various parameters of their processing

including distance, pressure, time, frequency, volume, tempera-

ture, time, speed, and force. �e dataset is encoded as RDF [20]

(Resource Description Framework) triples using Turtle [19] and

consists of two types of inputs, namely a stream of measurements

and a meta-data �le. �e stream measurements contain a sequence

of observation groups, a 120 dimensional vector with the events

from all sensors for a single time-tick and machine. It is notewor-

thy that the vector contains a mix of di�erent value types, e.g., text

and numerical values. Each observation group is marked with a

physical timestamp and has a machine identi�er. In addition, each

event contains a sensor identi�er, a sensor reading and a sensor

type. Each machine outputs a (complete) observation group once

every second. W is the size in time of the sliding window and, in

steady state, the exact count of the sliding window.

�e query has to run against two di�erent dataset types, namely

static and dynamic. In the former, sensors from all machines listed

in the meta-data output their events at a given rate. In the la�er,

machines can leave and join the working set. If a solution leverages

data parallelism, by partitioning the input stream on machines

and/or sensors, the machine’s churn may become imbalanced.

2.3 Evaluation Platform
ACM DEBS 2017 Grand Challenge introduces a long awaited im-

provement over previous years, allowing the evaluation of the

submi�ed solutions using a distributed environment. To provide a

fair framework supporting the linked-data �avor of the challenge,

the chosen evaluation platform is the automated evaluation plat-

form provided by the European Union�s H2020 HOBBIT [6] project.
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Figure 3: Evaluation Platform Architecture

HOBBIT aims at abolishing the barriers in the adoption and de-

ployment of Big Linked Data by European companies, by means of

open benchmarking reports that allow them to assess the �tness

of existing solutions for their purposes. �ese benchmarks are

based on data that re�ects reality and measures industry-relevant

Key Performance Indicators (KPIs) with comparable results using

standardized hardware.

HOBBIT (Figure 3) enables running a system on a cluster of 3

physical servers equipped with a dual socket 64 bit Intel Xeon E5-

2630v3 (8-Cores, 2.4 GHz, Hyperthreading, 20MB Cache) with 256

GB RAM and Gigabit Ethernet. �e deployment is handled through

Docker [2] containers, which package everything required to make

a so�ware run in an isolated environment. Unlike VMs, containers

do not bundle a full operating system but only the libraries and

se�ings required to make the so�ware work. �is makes for light-

weight and self-contained systems, guaranteeing a write once, run
(almost) anywhere property. �e communication with the platform

is (both data and control) is based on RabbitMQ [11] queues while

an adapter handled the control messages from and to the platform.

3 SOLUTION ARCHITECTURE
In this section we outline the general architecture of our solution

and its rationale. Figure 4 identi�es the three main tasks of our

system architecture, namely input, business logic and output. Con-

sidering the query and given the large amount of available memory

(3 × 256GB) and the limited amount of cpu (96 virtual cores), we

chose to prioritize execution time and cpu usage over memory.

3.1 Input Task
�e �rst task encodes the input data from the HOBBIT platform

RabbitMQ Input �eue (Figure 3) and parses the incoming event

(sensor readings) into the format expected by the Business Logic.

Notice that while this may seem a trivial task, for low window

sizes parsing turns out to be the most intensive task of the analytic

pipeline and an incorrect interaction with the evaluation platform

RabbitMQ queue may induce starvation and other drawbacks inher-

ent to distributed and parallel computation. Since the observation

group (i.e., the input data unit) is encoded in RDF triples, the natural

parsing approach is through an RDF-parsing library (e.g., Apache

Jena [16]), however the ease of use also comes with a large perfor-

mance overhead. A straightforward alternative is to implement an

ad-hoc RDF string parser, which does not improve much due to

the high cost of string comparison and manipulation operations.

Delving slightly deeper, one may use byte arrays as an underlying

messages type. Our approach is indeed to directly parse the con-

sumed byte array, thus minimizing the conversions from bytes and

using fast byte comparison operation. We provide more details in

Section 4.3. Each ingested observation group yields 55 events, thus

this task has a large count selectivity of 55. On the other hand, the

observation group is encoded in RDF triples with turtle, while the

system events are encoded in a 5-tuple of basic types. In addition,

only 55 of the 120 events grouped in the observation group are

monitored, yielding a space selectivity pf 0.012. Finally, the Rab-

bitMQ consumer (which has a low execution time) is in the same

tasks of the parser to avoid cpu under-utilization.

3.2 Business Logic Task
�is task implements the mechanics of the ACM DEBS 2017 Grand

Challenge query. �e initial description of the query naturally leads

to the instantiation of a pipeline of three parallel tasks: clustering,

Markov model training, and Markov model querying.

Each stage takes into account the current time-based sliding

window with a count of exactlyW events. We have that the clus-

tering (using k-means) execution time lower and upper bounds are

respectively Ω(k +W ) and O (M (W + k )), where k is the number

of clusters, W the window size, and M the maximum number of

clustering iterations. Given the cluster assignment for each events

in the sliding window the Markov model can be trained with Θ(W )
time. Finally, the Markov model querying requires to replay the last

N transitions in the Markov model to compute the probability of

the resulting path, yielding Θ(N ) and O (W ) time (by construction

N ≤W ). Using a monolithic approach, where the whole business

logic is performed as a single task, the overall execution time lower

and upper bounds are asymptotically
1

the same of the clustering

tasks alone.

Each event may impact the current clustering, the Markov model

training and querying, since each stage requires access to the whole

result from the previous stage. Notice that here the output may be

large, for instance the clustering has to output a cluster assignment

for each event in the sliding window. �erefore, using a single

task to run the business logic does not harm the overall asymptot-

ically time complexity and avoids transferring (possibly through

the network) large chunks of data.

3.3 Output Task
�e �nal task serializes the anomalies and publish them to the

HOBBIT platform RabbitMQ Output �eue (Figure 3). As will

be discussed next, this task cannot be parallelized, and therefore

γ = 1. �us, assuming an in�nite number of cores, the execution

time of this task bounds the maximum throughput (or minimum

latency) of the whole system. Optimize this task to avoid it be-

coming a bo�leneck to the whole process, is a major aspect of our

implementation.

1
Abusing notation somewhat we have Ω(k + 3W ) and O (M (W + k ) + 2W ).
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Figure 4: Solution Architecture

3.4 Parallelization and Distribution
�e HOBBIT platform provides us with up to 8 ∗ 2 ∗ 3 = 48 physical

(or 96 hyper-threaded) cores, which utilization must be maximized

to achieve good overall performances. �is means that we spawn

several instances of the aforementioned task. In particular we can

spawn α instances (threads) running the input task which will

consume messages from the HOBBIT platform RabbitMQ Input

�eue and parse them in parallel. �e HOBBIT platform uses

the RabbitMQ Work �eues pa�erns, allowing only round-robing

dispatching for multiple consumers.

Since the query is performed independently on each sensor of

each machine, we can safely partition the events in β parts over

the machine and sensor ids. We then spawn β instances for the

business logic task, each receiving one of such parts, i.e., the input

to the business logic task from the input task is key-grouped. Notice

that the parallelism in the input task may un-order the input of the

business logic task: the n-th observation group for a given machine

may �nish its parsing before observation group n + 1. �is compels

us to introduce re-ordering step in the business logic task.

Considering the output task, the data-parallelism of the business

logic task may, in its turn, un-order the anomaly output across

sensors. �is compels us to introduce re-ordering step in the out-

put task. To avoid further re-ordering, the output task cannot be

parallelized.

3.5 Apache Flink
�e best performances are in general achieved by using ad-hoc un-

derlying framework, and this has been the case for most previous

edition of the ACM DEBS Grand Challenge. However, we strongly

believe that using publicly available general purpose streaming

engine is a more interesting choice for the DEBS community. We se-

lected three initial candidates, Apache Storm [18], Apache Spark [17]

and Apache Flink [15], and then further re�ned our selection con-

sidering the challenge query and our architecture requirements, as

well as feature and performance comparisons [8, 14]. Finally we

picked Apache Flink based on: (i) documented higher throughputs

and lower latencies, (ii) API at high to low abstraction level, (iii)
native time-based window and out-of-order managing mechanisms

based on event-time, (iv) streamlined performance tuning, (v) both

API and engine coded with HOBBIT’s reference language (Java).

4 IMPLEMENTATION DETAILS
In this section we provide more details on our solution implemen-

tation, as well as the more relevant optimizations.

4.1 Load Balancing, Placement and Parallelism
Load balancing in distributed computing is a well known problem

that has been extensively studied since the 80s. We can identify two

ways to perform load balancing in stream processing systems [5]:

either when placing the task instances on the available machines [1]

or when assigning load to the parallelized instances of tasks [10,

12, 13]. In this se�ing we have complete control over both angles,

since we known a-priori the values that drive the execution time

of the tasks: W and k .

In particular we have (in the meta-data �le) the k values for all

sensors on all machines, which is in average per sensor equal to 50.

We implemented a partitioning function, and an associated hash

function, that partitions the sensors over the available β instances

of the business logic task in order to hit the same per sensor av-

erage value of k . We leverage this mechanism also to a�empt to

minimize the impact of the machine’s churn in the second scenario

by spreading as much as possible the sensor of a single machine

over the β instances.

With respect to placement, the pipeline architecture itself pre-

vents avoidable hops over the network. However notice that, given

the placement and the stream partitioning, a part may incur from

0 to 2 hops over the network. �is variance is undesirable and a

solution would be to place the tasks instances given the partition-

ing. An orthogonal concern is to avoid unbalancing the load on

the the network interfaces and IP stacks of the available machines.

To mitigate this issue we spread the α input task instances and

the β business logic task instances evenly (on the node hosting

Flink’s JobManager process some cpu must be spared) among the 3

available machines.

Since we control the parallelism of both the input (α ), the busi-

ness logic (β) and output (γ = 1) tasks, we must strike the ratio that

do not introduce a bo�leneck. In other words we have to maximize

β while satisfy the following two equations:

α + β + γ + µ ≤ 3(32 − σ ) and

1

55

wαα ≥ wβ β

where µ is the number of cores allocated to Flink’s JobManager

process, σ is the number of cores allocated to the operating system
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on each machine, whilewα andwβ are respectively the average ex-

ecution time of the input and business logic tasks collected through

experimental evaluations. Notice that wβ is a function of k andW
(cf., Section 3.2). Finally, as mentioned in Section 3.3, we must also

guarantee that the output task is not a bo�leneck, i.e., wβ β ≥ wγ .

4.2 Minimize Garbage Collection
We chose to develop our system not only to �t HOBBIT and Flinks

API, but also for the dynamic optimizations [3] it performs while

running, which typically bene�t long running systems. In turns

then out that the optimizations that a designer and/or program-

mer can introduce are mainly targeted at maximize resource usage

while reducing contention, and keeping object creation and dele-

tion under check. It is well known [9] that an excessive object

allocation churn in the JVM may hit the overall performances by

inducing too many garbage collector cycles. Aiming at minimizing

object allocation (and deletion) at runtime, we maximized object

re-usage. �e most relevant instances are discussed in more details

in the following Sections 4.4 and 4.5. Notice that this pa�ern is

quite more error prone since it partially forfeit encapsulation. To

mitigate this problem (i) we implemented this pa�ern only as the

last optimization layer and (ii) we introduced proper interface to

ease swapping from classical to object re-usage pa�ern with ease.

4.3 ByteArray Parser
As mentioned in Section 3.1, with low value of W the parsing

becomes a bo�leneck. To design a fast parser we wanted to avoid

as much as possible string operations, type conversions and object

creations. While the input data is a sequence of grouped events

(observation groups) encoded in RDF triples with turtle (i.e., string),

the RabbitMQ messages underlying type is byte arrays. As such, we

implemented an ad-hoc parser that works directly on the received

byte arrays. Our implementation uses only displacement and access

on the array as well as byte comparisons. Given the RDF ontology,

we can identify a speci�c o�set and character (byte) that uniquely

identify the type of a triple. �e parser main loop is the following:

(i) the parser scans the byte array bytes from the current o�set and

identi�es which type is the triple, (ii) then bytes and the current

o�set are passed to a type speci�c parser and (iii) the current o�set

is moved to the start of the following triple (i.e., a�er the new line
character) until the end of bytes is reached. For instance, if the

current triple encodes the sensor identi�er, we can compute the

o�sets (start and end) from the triple start position of the sensor

identi�er. �e type speci�c parser extracts the identi�er integer

value using the method getInteger (cf., Listing 5). We introduced

a number of other optimizations to reduce the number of accesses

and comparisons (i.e., fast skipping to the new line character).

4.4 Reordering events and anomalies
As mentioned in Section 3.4, parallelizing the input and business

logic tasks requires to introduce two reordering stages. While we

initially planned to leverage Flink’s native mechanism to handle

out-of-order events in sliding windows, we stumbled upon two

shortcomings of the current implementations. �e foremost is that

while the engine waits for late events (i.e., the window contains the

correct events), it does not reorder the window (i.e., the late event

1: function getInteger(byte[] bytes, start , end , byte[] diдits)
. diдits is a static array storing the byte value of the 9 digits

2: num ← 0

3: for each i ∈ [0,end − start] and j ∈ [0, |diдits | − 1] do
4: if bytes[end − i] = diдits[j] then
5: num ← num + j × 10

i

6: return num

Figure 5: Pseudo code of the byte to integer parser
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Figure 6: Pending bu�er withW = 16 and ρ = 2

is wrongly positioned). �e other issue with Flink’s native out-of-

order mechanism, is that it assumes that the �rst received timestamp

is t0 (i.e., the application speci�c origin of time), while this may

not be true in our se�ing. Since our application is strongly order

sensitive, we had to implement an ad-hoc reordering mechanism

that leverages the knowledge on the inter-arrival time of events

(1 second). To identify the t0 for each sensor we implement the

following heuristic: (i) store all events in a bu�er (i.e., stall the

execution) until there is a sequence of consecutive (i.e., 1 second

appart) events of length ρ ×W (where ρ is a user de�ned parameter

encoding the expected maximum lateness) rooted in the event with

the lowest timestamp, (ii) use the root of the sequence as t0. Once

t0 is chosen, reordering the output of the input task boils down

to store in the same bu�er early-arrivals and add to the window

consecutive events.

It is then crucial that this bu�er is backed by a highly perfor-

mant data structure. LMAX Disruptor [7] are a well known tech-

nology which provides a strong performance boost by leveraging

the concept of circular bu�er which main goal is to minimize ob-

ject allocation churn (cf., Section 4.2). We took inspiration from

this design and implemented our own circular bu�er with O (1)
operations, called pending (Figure 6). Pending maintains a pointer

(next) to the entry associated with the next event. When polled,

pending returns null if the next event has not arrived yet (i.e., next
points an empty entry), otherwise it returns the next event and

moves the next forward. When a new event is added, pending
computes in which entry it falls based on the distance between

the new event timestamp and the timestamp of the event pointed

by next. �e initial size of pending is set to ρ ×W (where ρ is a

user de�ned parameter encoding the expected maximum lateness).

If an added event has to be added in an entry exceeding this size,

pending automatically doubles it size. Notice that it in pending is

easy to identify time gaps in among events, which may indicate

that a machine has stopped sending events for a time interval.
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Figure 7: Window bu�er withW = 16

Guaranteeing that anomalies are returned ordered, the output

task must know if it has yet to receive any previous one. Toachieve

that, the business logic does not �lter out non-anomalous events,

delegating the �ltering stage to the output task. �en the output task

receives all events (anomalous and non) and can reorder anomalies

leveraging the logical timestamp associated to each observation

group, the sensor identi�er as well as the ordering guarantee among

event of the same sensor. Similarly to the reordering mechanism of

the business task, here we have to store events from the business

logic that have arrived ahead of time. �e data structure backing

this mechanism is a slight variant of pending.

4.5 Sliding Window
Due to Flink’s native windowing mechanism, the reordering stage

could not be run inside the business logic task instances (i.e., requir-

ing an additional thread). To overcome this limitation and avoid

wasting a thread, we had to implement our own time based sliding

window mechanism. Also in this case the sliding window bu�er

must be backed by a highly performant data structure. We used

again the concept of circular bu�er, implementing another circu-

lar bu�er with O (1) operations, called window (Figure 7). Window
maintains a pointer to the �rst event in the window (start) and

to the last (end). Window o�ers an iterator interface (backed by

pointer) to scan, in order, the current window. When an event is

added, Window places it in the entry following end. If it is the entry

pointed by start, then the �rst item in the window is overwrit-

ten and start (i.e., the window) moves forward. Notice that it in

window is easy to retrieve the �rst, last and last but N event in the

window.

4.6 RabbitMQ, Flink and JVM
In this section we discuss the con�gurations of the three main piece

of so�ware underlying our solutions, starting with the communica-

tion middleware.

Most of RabbitMQ con�guration (i.e., durability, auto-deletion,

etc.) is bounded by the HOBBIT platform and there is not tuning

possible for our RabbitMQ producer in the output task. Considering

the input task, to ensure an exactly-once semantic in the message

delivery, the HOBBIT data input queue producer requires an ac-

knowledgment of the delivery. As is, this pa�ern can quickly choke

the system throughput by introducing a round-trip time delay in

between each message and forcing the producer to process an ac-

knowledgment for each produced message. �e former can me

mitigated through the consumer prefetch con�guration parameter

which sets the number of messages the producer is allowed to send

to a single consumer without acknowledgment. Enabling multiple
acknowledgments the consumer can acknowledge several deliveries

with a single acknowledgment message, e�ectively reducing the

overhead.

Flink runs the submi�ed job task instances into task manager
processes (JVMs), each handling a con�gurable amount of slots.

Given n slots in a task manager, each has access to a n-th of

the task manager available memory, can contain any number

of threads and tasks instances (not belonging to the same task).

�e networking stack is shared among threads in the same task
manager and thus may become a bo�leneck. We then run 2 task
managers per machine, each with a slot for each available physical

core. Assigning a resouce group name to a task forces or avoids

co-location of the instances of di�erent tasks in a task manager
slot. Chaining instead allows (or prevents) Flink to run two con-

secutive tasks instances in the same thread. �ese two mechanism

con�gure the task instance-to-thread and the thread-to-slot alloca-

tions. It is also possible strike a good balance between throughput

and latency con�guring Flink’s network level batching, i.e., set-

ting the batching timeout from 0 to ∞. We set Flink’s parameter

taskmanager.memory.fraction to 0 since our application does

not bene�t from Flink’s internal memory management.

Finally, the JVMs of the 2 task managers are set to use almost

all the available RAM (256 GB), leaving a generous slack to the

operating system.
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