A proof of Lusztig's conjectures for affine type $G_2$ with arbitrary parameters - Archive ouverte HAL
Article Dans Une Revue Proceedings of the London Mathematical Society Année : 2018

A proof of Lusztig's conjectures for affine type $G_2$ with arbitrary parameters

Résumé

We prove Lusztig's conjectures ${\bf P1}$--${\bf P15}$ for the affine Weyl group of type $\tilde{G}_2$ for all choices of parameters. Our approach to compute Lusztig's $\mathbf{a}$-function is based on the notion of a ``balanced system of cell representations'' for the Hecke algebra. We show that for arbitrary Coxeter type the existence of balanced system of cell representations is sufficient to compute the $\mathbf{a}$-function and we explicitly construct such a system in type $\tilde{G}_2$ for arbitrary parameters. We then investigate the connection between Kazhdan-Lusztig cells and the Plancherel Theorem in type $\tilde{G}_2$, allowing us to prove ${\bf P1}$ and determine the set of Duflo involutions. From there, the proof of the remaining conjectures follows very naturally, essentially from the combinatorics of Weyl characters of types $G_2$ and $A_1$, along with some explicit computations for the finite cells.
Fichier principal
Vignette du fichier
Lusztig_Conjectures_Final.pdf (622.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01638380 , version 1 (20-11-2017)
hal-01638380 , version 2 (12-12-2017)

Identifiants

Citer

Jérémie Guilhot, James Parkinson. A proof of Lusztig's conjectures for affine type $G_2$ with arbitrary parameters. Proceedings of the London Mathematical Society, 2018, 118 (5), pp.1188-1244. ⟨10.1112/plms.12211⟩. ⟨hal-01638380v2⟩
151 Consultations
118 Téléchargements

Altmetric

Partager

More