A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2017

A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces

Résumé

We introduce a novel method to compute approximations of integrals over implicitly defined hyper-surfaces. The new method is based on a weak formulation in L 2 (0, 1), that uses the coarea formula to circumvent an explicit integration over the hypersurfaces. As such it is possible to use standard quadrature rules in the spirit of hp/spectral finite element methods, and the expensive computation of explicit hypersurface parametrizations is avoided. We derive error estimates showing that high order convergence can be achieved provided the integrand and the hypersurface defining function are sufficiently smooth. The theoretical results are supplemented by numerical experiments including an application for plasma modeling in nuclear fusion.
Fichier principal
Vignette du fichier
HeumannDrescherSchmidt_16v4.pdf (1.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01637946 , version 1 (18-11-2017)

Identifiants

Citer

Lukas Drescher, Holger Heumann, Kersten Schmidt. A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces. SIAM Journal on Numerical Analysis, 2017, 55 (6), pp.2592 - 2615. ⟨10.1137/16M1102227⟩. ⟨hal-01637946⟩
212 Consultations
386 Téléchargements

Altmetric

Partager

More