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A HIGH ORDER METHOD FOR THE APPROXIMATION OF INTEGRALS OVER
IMPLICITLY DEFINED HYPERSURFACES

LUKAS DRESCHER∗, HOLGER HEUMANN†, AND KERSTEN SCHMIDT‡

Abstract. We introduce a novel method to compute approximations of integrals over implicitly defined hyper-
surfaces. The new method is based on a weak formulation in L2(0, 1), that uses the coarea formula to circumvent
an explicit integration over the hypersurfaces. As such it is possible to use standard quadrature rules in the spirit
of hp/spectral finite element methods, and the expensive computation of explicit hypersurface parametrizations is
avoided. We derive error estimates showing that high order convergence can be achieved provided the integrand and
the hypersurface defining function are sufficiently smooth. The theoretical results are supplemented by numerical
experiments including an application for plasma modeling in nuclear fusion.

1. Introduction. This article is concerned with the approximation of the integrals

(1) gf,ψ(y) :=

∫
{x∈Ω, ψ(x)=y}

f(x) ds(x) , y ∈ (0, 1) ,

where ψ : Ω ⊂ Rn → [0, 1], n = 2, 3 is a Lipschitz continuous, scalar function, and
f : Ω → R∪{−∞,∞} is another integrable scalar function. The values gf,ψ(y) are well
defined for all y for which the level sets {x ∈ Rn, ψ(x) = y} are (n − 1)-dimensional
hypersurfaces and f is bounded on these sets. The functions gf,ψ represent the average of f
over each hypersurface of ψ multiplied by the hypersurface area g1,ψ .

If the hypersurfaces of ψ have an explicit parametrization, standard quadrature formulas
provide adequate means to approximate (1). It is even possible to devise higher order methods
that avoid the computation of the derivatives of the parametrization [3].

In here we want to focus on the case where the hypersurface is a priori not given by
an explicit parametrization, but implicitly as level set of a scalar function. The standard
approach is the following: The scalar function ψ is approximated by a piecewise polynomial
finite element function ψh, and the values gf,ψh(y) can be assembled from contributions in
each element. This approach is a variation of a family of popular algorithms in computer
graphics [23] that are used to visualize hypersurfaces. In the case of linear finite elements
this is the method of marching triangles or tetrahedrons [24, 30], while the case of bilinear
finite elements is the older method of marching squares or cubes [19]. To the best of our
knowledge, there does not exist rigorous convergence analysis. But clearly the projection of
ψ onto low order spaces restricts the convergence order of the method. Very high accuracy
can be only achieved through meshes with a huge number of elements.

On the other hand it is a well known fact in spectral and higher order methods, that
one can find way more economical finite dimensional approximations of ψ, if one exploits
smoothness. Nevertheless, we would like to stress that the direct elementwise assembling of
gf,ψh with ψh piecewise polynomials of degree p will be more difficult and expensive: in the
case of linear finite elements the intersections of hypersurfaces with the mesh elements are
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planar, while in the case of higher order finite elements the intersections are curved. Hence,
it is necessary to determine numerically a local hypersurface parametrization if the accuracy
of ψh shall be inherited to the approximation of gf,ψh . Finding such local parametrizations
requires extra data structures for geometric refinement and algorithms for repeatedly solving
non-linear problems [6, Chapter 12]. The difficulty becomes especially magnified in 3 dimen-
sions. Alternatively one could, as in [25], introduce locally approximated parametrizations
based on higher order reconstructions of discretized hypersurfaces. For higher order poly-
nomial approximations of the level sets of ψ both these approaches are fairly expensive and
algorithmically involved. Such efforts might be reasonable if one is interested in values of (1)
for one specific value y as it is the case for hypersurface integrals that appear in level set meth-
ods and fictitious domain methods or extended finite element methods. A non-exhaustive list
of references about this topic is [7, 22, 10] and the many references therein. We also mention
the more recent [26], [17] and [14] that address the issue of integrals over implicitly defined
hypersurfaces as important ingredient of fictitious domain methods, unfitted finite element
methods and numerical methods of partial differential equations on surfaces.

In this article we are interested in computing efficiently approximations of gf,ψ in (1) on
the whole interval y ∈ (0, 1). We propose a novel approach fitting seamlessly into the spirit
of higher order finite element methods. We will see that the hypersurface integrals (1) are
unique solutions of the variational formulation: Seek gf,ψ ∈ L2(0, 1) such that∫ 1

0

gf,ψ(y)λ(y)dy =

∫
Ω

f(x)|∇ψ(x)|λ(ψ(x)) dx ∀λ ∈ L2(0, 1) .(2)

The main motivation for this work is the magnetohydrodynamic equilibrium equation
in axisymmetric models of nuclear fusion reactors, an elliptic semi-linear equation for the
so-called poloidal flux ψ. Very important functionals of the solution of such equilibrium
problems are the hypersurface integrals (1) that are the focus of this article. They are es-
sential to incorporate resistive diffusion effects into plasma evolution modeling. Also many
plasma characteristics (e.g. the so-called safety factor or the current density profile), impor-
tant to quantify stability or for monitoring during the experiment, are defined as integrals over
hypersurfaces [11].

The outline is the following. In the next section, we will recall the coarea formula and
show (Corollary 2) that the hypersurface integrals satisfy the weak formulation (2). With this,
it is straight forward to introduce the L2 projection methods to compute approximations of
gf,ψ(y) in some finite dimensional space, e.g., a polynomial space. We provide also conver-
gence estimates in L2, H1 and L∞. The next two sections cover two different extensions
of these results addressing important aspects for implementation and applications. Section
3 covers the case where only approximations of the level set function ψ are available and in
section 4 we focus on the analysis of the relevant case where quadrature is involved. We want
to stress that the analysis of the consistency error due to quadrature is here a considerable
evolved extension of the analysis of similar consistency errors in the finite element literature,
since we have to deal with weak formulations with non-polynomial test functions. Extensive
numerical experiments for a model problem and the plasma equilibrium problem in Section
5 highlight the practicability of the new method.

2. Hypersurface integrals and the coarea formula. We recall that ψ : Ω ⊂ Rn →
(0, 1), n = 2, 3 is a Lipschitz continuous, scalar function, not necessarily monotone and that
the hypersurface integrals are the integrals

gf,ψ(y) :=

∫
{x∈Ω, ψ(x)=y}

f(x) ds(x) ,
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with f : Ω 7→ R∪{−∞,∞} another integrable scalar function. We have the following result,
the coarea formula, highlighting the relationship between integrated hypersurface integrals
gf,ψ(y) and volume integrals.

THEOREM 1 (Coarea formula). Let f : Ω→ R ∪ {−∞,∞} be integrable and ψ : Ω→
[0, 1] Lipschitz, then gf,ψ ∈ L1(0, 1) and∫ 1

0

gf,ψ(y)dy =

∫
Ω

f(x)|∇ψ(x)|dx .

Proof. See [8, Theorem 3.2.12].

An immediate corollary of the coarea formula is the following identity.

COROLLARY 2. Let the assumptions of Theorem 1 be fulfilled. If moreover (i) f |∇ψ| 12 ∈
L2(Ω) and g1,ψ ∈ L∞(0, 1) or (ii) f |∇ψ| ∈ L2(Ω) and g|∇ψ|−1,ψ ∈ L∞(0, 1) then gf,ψ ∈
L2(0, 1) and

(3)
∫ 1

0

gf,ψ(y)λ(y)dy =

∫
Ω

f(x)λ(ψ(x)) |∇ψ(x)|dx ∀λ ∈ L2(0, 1) .

Proof. We restrict the proof to the case (i), the case (ii) follows similarly. The assertion
follows from the identity gf,ψ(y)λ(y) = gf ·λ(ψ),ψ(y) and Theorem 1, and so∫ 1

0

gf,ψ(y)λ(y)dy =

∫ 1

0

gf ·λ(ψ),ψ(y)dy =

∫
Ω

f(x)λ(ψ(x))|∇ψ(x)|dx .

Then, the Cauchy-Schwarz inequality implies∫
Ω

f(x)λ(ψ(x))|∇ψ(x)|dx ≤ ‖f |∇ψ| 12 ‖L2(Ω)‖λ ◦ ψ |∇ψ|
1
2 ‖L2(Ω) ,

and so the right-hand side of (3) is bounded in L2(0, 1) due to

‖λ ◦ ψ |∇ψ| 12 ‖2L2(Ω) =
∣∣∣ ∫

Ω

λ2(ψ(x))|∇ψ(x)| dx
∣∣∣

=
∣∣ ∫ 1

0

g1,ψ(y)λ2(y)dy
∣∣ ≤ ‖λ‖2L2(0,1)‖g1,ψ‖L∞(0,1) .

Hence, the weak formulation (3) for gf,ψ ∈ L2(0, 1) is well-posed and the proof is complete.

REMARK 3. The assumption g1,ψ ∈ L∞(0, 1) in the first case (i) in Corollary 2 corre-
sponds to assuming bounded area of the hypersurface as is clear from the definition in (1).
But also the assumption g|∇ψ|−1,ψ ∈ L∞(0, 1) in second case (ii) has an intuitive meaning.
By the coarea formula we have∫ y

0

gf,ψ(y′)dy′ =

∫
{x∈Ω,ψ(x)≤y}

f(x)|∇ψ(x)|dx ,

and hence, g|∇ψ|−1,ψ stands for the differential change of the volume that is enclosed by the
level sets {x ∈ Rn, ψ(x) = 0} and {x ∈ Rn, ψ(x) = y}.
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We are going to use the weak formulation (3) to compute L2 projections of the hypersur-
face integrals to discrete spaces, rather than introducing directly discretizations of the strong
formulation in (1).

Let us introduce PP (0, 1) the space of all polynomials of degree less or equal to P on
[0, 1] and look for an approximation gP

f,ψ
∈ PP (0, 1) of gf,ψ such that

(4)
∫ 1

0

gP
f,ψ

(y)λ(y)dy :=

∫ 1

0

gf,ψ(y)λ(y)dy ∀λ ∈ PP (0, 1) .

The benefit of this idea is that the coarea formula (Corollary 2) can be used to rewrite the
integration over [0, 1] in the right hand side of (5) in an integration over Ω. We will work with
the equivalent formulation: Find gP

f,ψ
∈ PP (0, 1) such that

(5)
∫ 1

0

gP
f,ψ

(y)λ(y)dy =

∫
Ω

f(x)λ(ψ(x)) |∇ψ|dx ∀λ ∈ PP (0, 1) .

The practical implementation of (5) comprises two steps/ingredients. First, a standard (P +
1) × (P + 1) mass matrix containing the L2 inner products of pairs of basis functions of
PP (0, 1) has to be assembled. This mass matrix becomes diagonal when Legendre polyno-
mials – shifted to (0, 1) – are used as basis functions. Secondly, P + 1 entries of the right
hand side vector have to be assembled in an element by element fashion over a triangulation
of Ω. However, there is no need to determine explicitly the hypersurfaces of ψ.

There are standard well known approximation results for the solution of (5) in L2, H1

and L∞ that we restate for completeness.

THEOREM 4 (L2-error). Let the assumptions of Corollary 2 be fulfilled, and assume
that gf,ψ ∈ Hm(0, 1). Then the solution gP

f,ψ
of (5) is well-defined in L2(0, 1) and there

exists a constant C = C(m) > 0 that is independent of P such that for all k ≤ m

(6) ‖gP
f,ψ
− gf,ψ‖L2(0,1) = inf

v∈PP (0,1)
‖v − gf,ψ‖L2(0,1) ≤ CP−k‖gf,ψ‖Hk(0,1) .

Proof. The proof follows directly from the Pythagorean theorem and approximation es-
timates [28, Theorem 3.17].

COROLLARY 5 (L∞- and H1-error). Let the assumptions of Theorem 4 be fulfilled.
Then, there exists a constant C = C(m) > 0 that is independent of P such that for all
k ≤ m

|gP
f,ψ
− gf,ψ|H1(0,1) ≤ CP−k+2‖gf,ψ‖Hk(0,1) ,(7)

‖gP
f,ψ
− gf,ψ‖L∞(0,1) ≤ CP−k+1‖gf,ψ‖Hk(0,1) .(8)

Proof. We denote m-dependent constants that are independent of P by C throughout
this proof. According to [28, Theorem 3.17], [5, Section 16] and the continuous embedding
H1(0, 1) ↪→ L∞(0, 1) due to the Sobolev embedding theorem [28, Theorem A.21] we have
a projection operator IP : H1(0, 1)→ PP (0, 1) such that for all v ∈ Hk(0, 1)

‖v − IP v‖L2(0,1) ≤ CP−k‖v‖Hk(0,1) ,

‖v − IP v‖L∞(0,1) + |v − IP v|H1(0,1) ≤ CP−k+1‖v‖Hk(0,1) .
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Combining these results with triangle inequalities, an inverse inequality for polynomials [28,
Theorem 3.91] we obtain the estimate in the H1-seminorm as

|gP
f,ψ
− gf,ψ|H1(0,1) ≤ |gPf,ψ − IP gf,ψ|H1(0,1) + |IP gf,ψ − gf,ψ|H1(0,1)

≤ CP 2‖gP
f,ψ
− IP gf,ψ‖L2(0,1) + CP−k+1‖gf,ψ‖Hk(0,1)

≤ CP 2‖gP
f,ψ
− gf,ψ‖L2(0,1) + CP−k+2‖gf,ψ‖Hk(0,1) ,

and using L2-estimate of Theorem 4. Similarly the estimate in the L∞-norm follows using
an inverse inequality (Theorem 17 in Appendix B) for the L∞-norm.

REMARK 6 (Smoothness of hypersurface integrals). To obtain in general hypersurface
integrals gf,ψ that are continuous in (0, 1) and so Hk(0, 1)-regular with k ≥ 1

2 that can be
approximated in PP (0, 1) with a convergence rate larger than 1

2 we have to assume that ψ
takes almost all values in [0, 1]. If ψ does not take values in a subinterval I ⊂ (0, 1) then the
hypersurface integrals are zero for all y ∈ I and might be discontinuous on ∂I . In this case
the convergence rate would be below 1

2 .
Another source of limited smoothness of the hypersurface integrals are degenerated hy-

persurfaces, e.g., the cases where level sets {x ∈ Rn, ψ(x) = yd} are not (n−1)-dimensional
hypersurfaces. For such a value yd the hypersurface integrals are not defined, however, its
limits from both sides of yd when y → yd may be defined and do not coincide in general. We
summarize a partial result due to G. Vigfússon, characterizing the smoothness of hypersur-
face integrals for level set functions with elliptic points in the Appendix A.

REMARK 7. If one is only interested in the approximation in specific values of gf,ψ(y),
e.g. at y = yc, yc ∈ (0, 1), as it would be the case for level set methods, fictitious domain
method or extended finite element methods, it might be worth to introduce a smooth cutoff
function wε : R→ R with wε(0) = 1 and compact support (−ε, ε). Clearly

gf ·wε(ψ−yc),ψ(yc) = gf,ψ(yc)

and ∫ 1

0

gf ·wε(ψ−yc),ψ(y)λ(y)dy =

∫
Ω

f(x)wε(ψ(x)− yc)λ(ψ(x))|∇ψ(x)|dx .

The integrand in the right hand side of the last equation vanishes in large parts of the domain
Ω which reduces the amount of work required to assemble the right hand side of the weak
formulation (10). Alternatively, depending on the application and the concrete setting, it is
also possible to pursue a more localized approach, where the global integral gf,ψ(y) is split
into a sum of integrals

gf,ψ(yc) =
∑
K∈Th

gK
f,ψ

(yc) =
∑
K∈Th

∫
{x∈Ω∩K,ψ(x)=yc}

f(x)ds(x) ,

where the summation runs over the elementsK of a triangulation Th of Ω. Exemplary for this
are the fictitious domain methods, where one needs to evaluate integrals gf,ψ for a large num-
ber of different f with local support. Applying our method to the approximation of gK

f,ψ
(yc)

replaces the involved integration over non-polynomial level sets with quadrature on elements
K that is in general readily available.
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3. Approximated Level Set Functions. In many applications only an approximation
of the level set function will be available. Moreover a rescaling of the level set function
will be necessary to ensure that it maps onto the unit interval [0, 1]. It is therefore useful to
quantify precisely the consistency error of the L2 projected hypersurface integrals due to the
approximation error of the level set function.

In the following we will consider a continuous, bounded scalar function ψ : Ω ⊂⊂
Rn → R and introduce the normalization

ψ(x) =
ψ(x)− ψ0(ψ)

ψ1(ψ)− ψ0(ψ)
∈ (0, 1) ,

with ψ1(ψ) = infx∈Ωψ(x), ψ0(ψ) := supx∈Ωψ(x).
Let Vh,p ⊂ C0(Ω) be a finite element space defined over a triangulation Th of Ω, where

h > 0 corresponds to the largest diameter of an element of the triangulation and p to the
polynomial degree on the reference element. In the following we think of ψh,p ∈ Vh,p as
approximation of ψ with ψh,p : Ω→ R and we assume standard approximation results

(9) ‖ψ − ψh,p‖L2(Ω) ≤ Chp+1 and ‖ψ − ψh,p‖H1(Ω) ≤ Chp .

So ψh,p can be for example the L2 or another kind of Galerkin projection of ψ. We refer
to Sec. 5.2, where ψh,p is the Galerkin projection of the solution ψ of a partial differential
equation. In the application of the axisymmetric magnetohydrodynamic equilibrium problem,
ψ is the so-called poloidal flux that is solution of an elliptic quasi-linear partial differential
equation, the Grad-Shafranov equation.

Let us introduce the weak formulation for the hypersurface integrals of the discrete level
set function ψh,p: Find gP

fh,p,ψh,p
∈ PP (0, 1) such that

(10)
∫ 1

0

gP
fh,p,ψh,p

(y)λ(y)dy =

∫
Ω

fh,p(x)λ(ψh,p(x))|∇ψh,p(x)|dx ∀λ ∈ PP (0, 1) .

We introduced here also fh,p(x) to cover cases where f depends on ψ and, hence, fh,p on its
approximation. For example fh,p(x) = |∇ψh,p(x)|−1 for f(x) = |∇ψ(x)|−1.

The practical implementation of (10) is based on the same two ingredients as the im-
plementation of (5). As λ(ψh,p) is piecewise smooth and polynomial with respect to the
mesh underlying the definition of Vh,p, we can assume here that the right hand side can be
computed exactly and focus on the consistency error due to ψh,p.

We have the following well-posedness and convergence results, the latter balancing the
best approximation error infλ∈PP (0,1) ‖λ− gf,ψ‖L2(0,1) with the discretization error of ψh,p
as specified in the following theorem.

THEOREM 8 (L2-error with discrete level set function). Let the assumptions of Corollary
2, case (ii), be fulfilled and let fh,p : Ω → R ∪ {−∞,∞} and fh,p|∇ψh,p| ∈ L2(Ω). Then
the solution gP

fh,p,ψh,p
of (10) is well-defined in L2(0, 1). If moreover gf,ψ ∈ Hm(0, 1) then

there exists a constant C > 0 such that for all k ≤ m

‖gP
fh,p,ψh,p

− gf,ψ‖L2(0,1) ≤C
(
P−k‖gf,ψ‖Hk(0,1) + ‖f |∇ψ| − fh,p|∇ψh,p|‖L2(Ω)

+ P 3‖ψ − ψh,p‖L∞(Ω)‖f |∇ψ|‖L2(Ω)‖g|∇ψ|−1,ψ‖
1
2

L∞(0,1)

)
.
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Proof of Theorem 8. The well-posedness of (10) is a simple consequence of Corollary 2
when replacing f and ψ by fh,p and ψh,p. We introduce the following notation for the exact
integrals

I(v) =

∫
Ω

v(x) dx .

To prove the estimate on the discretization error we use the Strang lemma that implies

‖gP
fh,p,ψh,p

− gf,ψ‖L2(0,1) ≤ 2 inf
λ∈PP (0,1)

‖λ− gf,ψ‖L2(0,1)

+ sup
λ∈PP (0,1)

∣∣I(f |∇ψ|λ ◦ ψ)− I(fh,p|∇ψh,p|λ ◦ ψh,p)
∣∣

‖λ‖L2(0,1)
,

where the first term is bounded using Theorem 4. Now, using the triangle inequality and the
mean value theorem we obtain for the numerator in the second term on the right hand side for
some function η: Ω→ (0, 1)

(11)

∣∣I(f |∇ψ|λ ◦ ψ)− I(fh,p|∇ψh,p|λ ◦ ψh,p)
∣∣

≤
∣∣I((f |∇ψ| − fh,p|∇ψh,p|)λ ◦ ψ)

∣∣+
∣∣I(fh,p|∇ψh,p|(λ ◦ ψ − λ ◦ ψh,p))

∣∣
≤
∣∣I((f |∇ψ| − fh,p|∇ψh,p|)λ ◦ ψ)

∣∣+
∣∣I(fh,p|∇ψh,p|(ψ − ψh,p)λ′ ◦ η)

∣∣ .
By the coarea formula (3) and the Cauchy-Schwarz inequality we find

‖λ ◦ ψ‖2L2(Ω) =

∫
Ω

λ2 ◦ ψ dx =

∫ 1

0

λ2g|∇ψ|−1,ψdy ≤ ‖λ‖
2
L2(0,1)‖g|∇ψ|−1,ψ‖L∞(0,1) ,

(12)

and

‖(λ′ ◦ η)(ψh,p − ψ)‖L2(Ω) ≤ ‖λ′‖L∞(0,1)‖ψh,p − ψ‖L2(Ω) .(13)

Next, as λ′ is a polynomial of degree P − 1 (cf. Lemma 17) and with inverse estimates [28,
Theorem 3.91] we get

‖λ′‖L∞(0,1) ≤ P‖λ′‖L2(0,1) , ‖λ′‖L2(0,1) ≤ 2
√

3P 2‖λ‖L2(0,1) .(14)

Hence, using the Cauchy-Schwarz inequality, (13) and (14) in the last line of (11) we find

‖gP
fh,p,ψh,p

− gf,ψ‖L2(0,1) ≤ C
(
P−k‖gf,ψ‖Hk(0,1) + ‖f |∇ψ| − fh,p|∇ψh,p|‖L2(Ω)

+ P 3‖ψ − ψh,p‖L2(Ω)‖fh,p|∇ψh,p|‖L2(Ω)

)
.

Now, applying Lemma 19 with ψ+ = ψ, f+ = f , ψ− = ψh,p and f− = fh,p and
the fact that we have an upper bound of 1/(ψ0(ψh,p) − ψ1(ψh,p)) and that we can bound
‖fh,p|∇ψh,p|‖L2(Ω) by a multiple of ‖f |∇ψ|‖L2(Ω) the assertion of the theorem follows.

REMARK 9. Our numerical experiments in Section 5.2 indicate that the high powers of
P in the bound of Theorem 8 are by far too pessimistic.

Similarly as in the proof of Corollary 5 we can use the L2-estimate in Theorem 8 to
obtain estimates in the H1-seminorm and the L∞-norm.
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COROLLARY 10 (L∞ and H1-error with discrete level set function). Let the assump-
tions of Theorem 8 be fulfilled. Then, there exists a constant C > 0 independent of P such
that for all k ≤ m,

P−1‖gP
fh,p,ψh,p

− gf,ψ‖L∞(0,1)

P−2|gP
fh,p,ψh,p

− gf,ψ|H1(0,1)

}
≤C

(
P−k‖gf,ψ‖Hk(0,1) + ‖f |∇ψ| − fh,p|∇ψh,p|‖L2(Ω)

+ P 3‖ψ − ψh,p‖L∞(Ω)

)
.

REMARK 11. It is straightforward to replace PP (0, 1) in (10) with some other finite
dimensional approximation space, such as spline spaces, for which we can prove a similar
convergence results as in Theorem 4. On the other hand it is a priori not obvious, whether,
due to the lack of regularity of λ(ψ), the standard quadrature on elements of the mesh Th
underlying the definition of Vh,p is sufficient to establish an implementable method.

4. Quadrature. A practical implementation of (5) requires to detail the approximation
of the right hand side for the case of non-polynomial level set functions. At first glance, we
could use the results from the previous section to introduce a practical method for arbitrary
level set functions, in simply approximating the level set functions by functions in some
finite element space Vh,p. But there are two objections: First, the projection introduces an
additional step in the implementation and second, the analysis requires that the quadrature
is exact for polynomials of degree p + pP + (p − 1). The main result of this section, the
convergence assertion in Theorem 13, shows that a projection step is not necessary and that,
moreover, we can obtain convergence estimates for less expensive quadrature rules.

More precisely, the subsequent analysis addresses the following formulation: Find g̃P
f,ψ
∈

PP (0, 1) such that

(15a)
∫ 1

0

g̃P
f,ψ

(y)λ(y)dy = QN (f λ ◦ ψ |∇ψ|) ∀λ ∈ PP (0, 1) ,

with

QN (v) =

N∑
j=1

ωjv(xj) ,(15b)

where N is the number of quadrature points xj ∈ Ω and weights ωj ∈ R.

THEOREM 12 (Well-posedness in the case of quadrature). Let the assumptions of The-
orem 1 be fulfilled and let f |∇ψ| ∈ L∞(Ω). Then, the solution g̃P

f,ψ
of (15) is well-defined

in L2(0, 1) and

‖g̃P
f,ψ
‖L2(0,1) ≤ C(P + 1)‖f |∇ψ|‖L∞(Ω) ,(16)

for some constant C > 0 independent of P that does not depend on N neither if the quadra-
ture formula (15b) is asymptotically exact for constants forN →∞, i.e., limN→∞QN (1) =
|Ω|.

Proof. The variational formulation (15) differs from (5) only by its right hand side. It
suffices for its well-posedness to show that the right hand side is bounded in L2(0, 1). Let us
call ω ∈ RN the vector of weights ωj , j = 1, . . . , N that is bounded in `1 for any N ∈ R.

8



Hence,

QN (f λ ◦ ψ |∇ψ|) =

N∑
j=1

ωjf(xj)λ(ψ(xj))|∇ψ(xj)| ≤ ‖ω‖`1‖f |∇ψ|‖L∞(Ω)‖λ‖L∞(0,1)

≤ (P + 1)‖ω‖`1‖f |∇ψ|‖L∞(Ω)‖λ‖L2(0,1),

using a well-known results on polynomials in the last step (see Lemma 17).
Now, the Lax-Milgram lemma implies

‖g̃P
f,ψ
‖L2(0,1) ≤ (P + 1)‖ω‖`1‖f |∇ψ|‖L∞(Ω) .

Since QN (1) = ‖ω‖`1 and with the assumption that limN→∞QN (1) = |Ω| there exists
an upper constant of ‖ω‖`1 for any N ∈ N and the estimate (16) holds with a constant C
independent of N . This completes the proof.

Given well-posedness of (15), we provide an error estimate taking into account an addi-
tional consistency error due to quadrature in the evaluation of the integrals of the right hand
side. We will address the case of quadrature based on parametrically defined local quadrature
rules. Which means, we assume that there exists a triangulation Th of Ω with mesh-width
h := maxK∈Th diam(K), where each element K is the image of a reference element K̂
under an affine mapping ΦK : K̂ 7→ K, i.e.,

(17) QN (v) =
∑
K∈Th

RK∑
j=1

ωj,Kv(xj,K) ,

with, e.g., ωj,K = ω̂j |K| and xj,K = ΦK(x̂j) where ω̂j and x̂j are weights and quadrature
points in K̂.

THEOREM 13 (L2-error in the case of quadrature). Let the assumptions of Corollary 2,
case (ii), be fulfilled, gf,ψ ∈ Hm(0, 1), m > 0, ψ ∈ Hs+1(Ω), s > 1− n

2 , where n
is the space dimension, and f |∇ψ| ∈ W r,∞(Ω), r ≥ 1 and, QN in (15) is based on a
parametrically defined local quadrature rule (17) that is exact for polynomials up to order q,
then there exists for all p < s with r ≥ q − pP + 1 > 0, a constant C > 0 independent of
P and h but dependent of m, s such that the solution g̃P

f,ψ
of (15) is well-defined in L2(0, 1)

and for all k ≤ m,

‖g̃P
f,ψ
− gf,ψ‖L2(0,1) ≤ C

(
P−k‖gf,ψ‖Hk(0,1) +P 3hp+1−n2 ‖f |∇ψ|‖L∞(Ω)‖ψ‖Hp+1(Ω)

+hq−pP+1‖f |∇ψ|‖W q−pP+1,∞(Ω)‖g|∇ψ|−1,ψ‖
1
2

L∞(0,1)

)
,

Even though Theorem 13 is limited to parametrically defined local quadrature with affine
mappings ΦK , as shown in the following proof, the extension to C∞-mappings is only tech-
nical.

Proof. With the assumption on f and ψ and in view of Theorem 12 the approximated
hypersurface integral g̃P

f,ψ
is well-defined in L2(0, 1). We recall the notation for the exact

integrals

I(v) =

∫
Ω

v(x) dx .

9



To prove the estimate on the discretization error we use the Strang lemma that yields
(18)

‖g̃P
f,ψ
− gf,ψ‖L2(0,1) ≤ 2 inf

λ∈PP (0,1)
‖λ− gf,ψ‖L2(0,1) + sup

λ∈PP (0,1)

∣∣(I −QN )(f |∇ψ|λ ◦ ψ)
∣∣

‖λ‖L2(0,1)
.

The first term on the right hand side of (18) can be bounded using Theorem 4 and the second
term is the consistency error due to quadrature. The function λ ◦ψ is not in general a polyno-
mial on the elementsK of the triangulation Th and we prefer to estimate a similar term where
ψ is replaced by a discrete Th-piecewise polynomial approximation ψ

c

h,p of uniform polyno-
mial degree p ≤ s that we will specify later. Then, on each cell K of Th the function λ ◦ψch,p
is a polynomial of degree pP (in each direction). Using the Cauchy-Schwarz inequality and
a Bramble-Hilbert perturbation argument for local parametric quadrature (see Theorem 16)
we get∣∣∣(I −QN )(f |∇ψ|λ ◦ ψch,p)

∣∣∣ ≤ Chq−pP+1‖f |∇ψ|‖W q−pP+1,∞(Ω)‖λ ◦ ψ
c

h,p‖L2(Ω) .(19)

With the mean value theorem, stating that there is some function η : Ω→ (0, 1) such that

λ(ψ(x))− λ(ψ
c

h,p(x)) = λ′(η(x))(ψ(x)− ψch,p(x)) ∀x ∈ Ω ,(20)

and applying the triangle inequality we can bound

‖λ ◦ ψch,p‖L2(Ω) ≤ ‖λ ◦ ψ‖L2(Ω) + ‖(λ′ ◦ η)(ψ
c

h,p − ψ)‖L2(Ω) .(21)

So altogether, recalling (12), (13) and (14) we obtain

(22) sup
λ∈L2(0,1)

∣∣(I −QN )(f |∇ψ|λ ◦ ψch,p)
∣∣

‖λ‖L2(0,1)

≤ Chq−pP+1‖f |∇ψ|‖W q−pP+1,∞(Ω)

(
‖g|∇ψ|−1,ψ‖

1
2

L∞(0,1) + P 3‖ψch,p − ψ‖L2(Ω)

)
.

As we have studied the consistency error with the piecewise polynomial ψ
c

h,p instead of ψ it
remains to bound∣∣∣(I −QN )(f |∇ψ|(λ ◦ ψ − λ ◦ ψch,p))

∣∣∣ =
∣∣∣(I −QN )(f |∇ψ|λ′ ◦ η(ψ − ψch,p))

∣∣∣
≤ C‖f |∇ψ|‖L∞(Ω)‖λ′‖L∞(0,1)‖ψ − ψ

c

h,p‖L∞(Ω)(23)

≤ CP 3‖f |∇ψ|‖L∞(Ω)‖λ‖L2(0,1)‖ψ − ψ
c

h,p‖L∞(Ω) ,

where similarly to the proof of Theorem 12 the constant C does not depend on N as the
quadrature is asymptotically exact for h→ 0 and so N →∞.

To complete the proof we need to specify ψ
c

h,p as an approximation to ψ. Now, we denote
by ψh,p a suitable projection of ψ onto the Lagrangian finite element space of polynomial
degree p ≤ s over the triangulation Th [4]. As ψh,p might exceed [0, 1] we define ψ

c

h,p such
that

ψ
c

h,p(x)− ψ1(ψ)

ψ0(ψ)− ψ1(ψ)
=

ψh,p(x)− ψ1(ψh,p)

ψ0(ψh,p)− ψ1(ψh,p)
,

where ψ0 and ψ1 denote the supremum and infimum in Ω, respectively. Hence, the ranges of
ψ and ψ

c

h,p coincide and ψ
c

h,p(x) ∈ [0, 1] for all x ∈ Ω. Now, with the equality

ψ
c

h,p − ψ =

(
ψh,p − ψ1(ψh,p)

ψ0(ψh,p)− ψ1(ψh,p)
− ψ − ψ1(ψ)

ψ0(ψ)− ψ1(ψ)

)
(ψ0(ψ)− ψ1(ψ))

10



and Lemma 19, we find that

‖ψ − ψch,p‖L∞(Ω) ≤ C‖ψ − ψh,p‖L∞(Ω) .

By the assumption ψ ∈ Hs+1(Ω) there is a ψh,p, e.g. the interpolation of ψ onto the La-
grangian finite element space of polynomial degree p ≤ s over the triangulation Th, such that
(see e.g. [5, Section 16])

‖ψ − ψh,p‖L∞(Ω) ≤ Chp+1−n2 ‖ψ‖Hp+1(Ω) .

Combining the previous estimate we conclude with the statement of the theorem.

5. Numerical Experiments and Applications. In this section, we present numerical
results for an example problem and a very relevant application from fusion science that allow
to study the influence of the discretisation parameters and support the theoretical results in
the previous sections.

5.1. Numerical Experiments. We choose Ω = [−1, 1]2 and ψ(x) = (x2
1− 1)(x2

2− 1).
By symmetry arguments one establishes

(24) gf,ψ(y) = 4

∫ √1−√y

−
√

1−√y

√
1 +

y2x2
1

(x2
1 − 1)3(x2

1 − 1 + y)
f

(
x1,

√
y + x2

1 − 1√
x2

1 − 1

)
dx1 ,

so we can use standard numerical quadrature to find arbitrarily accurate approximations of
gf,ψ(s) that we use as reference solution to validate the new method. We are performing
experiments with f = fi, i = 1, 2, 3 for f1 = |∇ψ|, f2 = 1, and f3 = |∇ψ|−1. The sketches
in Figure 1 indicate that the hypersurface integrals may lose regularity in the vicinity of 0
and 1 corresponding to points where ψ attains stationary points, i.e. at y with ψ(x) = y and
∇ψ(x) = 0.

5.1.1. Global quadrature. In our first experiment we approximate gfi,ψ by the method
(15), where we use very high order tensor product Gauss-Legendre quadrature with N =
(2P + 1)2 quadrature points to evaluate the integral over Ω on the right hand side of (15).
We would like to stress that with this choice the right hand sides of (15) for gf1,ψ and gf3,ψ
are exactly evaluated and the consistency error due to quadrature, hence, does vanish. The
experiments confirm high order convergence that is limited only by the smoothness of gfi,ψ ,
as stated in the convergence estimate of Corollary 5 (see Figure 1, bottom left).

To demonstrate the capability of superalgebraic convergence, we study the method with
f = ωsfi, i = 1, 2, 3 with the cutoff function

(25) ωs(x) =

{
| cos(π(ψ(x)− 0.5))|s ψ(x) ∈ [0, 1]

0 else
,

that improves the regularity in the vicinity of ψ = 0, 1 while keeping the hypersurface integral
at y = 0.5. More precisely, it holds gωsfi,ψ(0.5) = gfi,ψ(0.5) and for appropriate choices
s ∈ N we can ensure gωsfi,ψ ∈ H

k(0, 1) even if gfi,ψ 6∈ H
k(0, 1). We observe a remarkable

increase of the convergence of the error for all three functions fi, i = 1, 2, 3 (see Figure 1,
bottom right). Indeed, the error seems to converge even superalgebraically in the polynomial
degree P which agrees exactly with the convergence estimate in Theorem 4.

The convergence estimate in Theorem 13 suggests that the approximation error blows
up when we increase P while keeping the order of the quadrature rule fixed. To study this

11
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FIG. 1. Convergence in P for quadrature of P -adapted order. Top left: Sketch of the hypersurface integrals
g̃fi,ψ

for f1 = |∇ψ|, f2 = 1, and f3 = |∇ψ|−1. Bottom left: Quadrature withN = (2P +1)2 points. Algebraic
convergence is limited by the global regularity of g̃fi,ψ . The visually encountered high (low) regularity of g̃f1,ψ
(g̃f3,ψ) is confirmed. Bottom right: To overcome the regularity constraints we redo the numerical experiment with

f̂i = ω5fi with ω5 as in (25), use quadrature withN = (2P+1)2 points and observe superalgebraic convergence.

effect, we monitor the error as a function of the polynomial degree P for several fixed number
of quadrature points N in [−1, 1]2 (see Figure 2). As expected, the error decreases first for
increasing values of P , but for P approximately larger than

√
N the error increases again

with a very fast rate.

5.1.2. Local quadrature. To study the influence of parametrically defined local quadra-
ture we introduce a triangulation Th of rectangular elementsK of diameter h and use on each
element a Gauss-Legendre quadrature to approximate the right hand side in (5). With this
quadrature the hypersurface integral g̃P

f,ψ
∈ PP (0, 1) solves (15), where QN is of the form

(17). In Figure 3 we keep the polynomial degree P fixed and study the influence of the
quadrature order and refinement of the quadrature mesh. We observe high-order convergence
in the number of quadrature points up to a saturation that corresponds to the discretization
error |gP

f̂i,ψ
(0.5)− gfi,ψ(0.5)|. The results indicate that the refinement of the mesh underly-

ing the quadrature rule leads to a convergence that does not deteriorate when increasing the
polynomial order P .

5.2. Application: the axisymmetric plasma equilibrium problem. For the appli-
cation of the axisymmetric magnetohydrodynamic equilibrium problem, ψ is the so-called
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FIG. 3. Convergence when refining the quadrature mesh for a fixed numberN of quadrature points per element
and fixed polynomial degree P = 20 (left) and P = 30 (right) and f̂1 = ω5f1.

poloidal flux and solves the following elliptic quasi-linear partial differential equation:

(26)
−∇ ·

(
1

µ0r
∇ψ(r, z)

)
= j(r, ψ) in Ω ;

ψ(r, z) = ψbd at ∂Ω ;

with ψbd ∈ R,∇ the gradient in two dimensions, Ω ⊂ (0,∞)×(−∞,∞) and µ0 the constant
magnetic permeability of the vacuum. The right hand side j(r, ψ) is positive, but in general
non-linear in ψ. Hence, by the maximum principle we have ψ1 = inf(r,z)∈Ω ψ(r, z) = ψbd.
The equation (26) is the Grad-Shafranov-Schlüter equation [13, 29, 20], that is one of the
central equations for modeling of magnetically confined plasma in tokamaks. The physical
properties of the plasma, characteristic time and length scales, are highly different for direc-
tions parallel and perpendicular to levelsets of ψ. Hence, the modeling of plasma equilibrium
evolution in tokamaks needs to take into account the very high anisotropy between these two
directions. This is achieved in discretizing a hypersurface-integrated version of the magneto-
hydrodynamic (MHD) equations [12], instead of the full MHD equations in three dimensions.
This procedure [15, Chapter 6] is equivalent to rewriting MHD equations in the curvi-linear
coordinate system that is induced by the level sets of the poloidal flux function ψ and assum-
ing symmetry in the ψ-parallel direction. Some entries of the metric tensor of this non-linear
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change of variables are related to the hypersurface integrals (1) for n = 2, ds(x) = r ds and
dx = r dr dz. More precisely, these entries, the so-called geometric coefficients c·,ψ(y), are
given as

(27) cf,ψ(y) = gf ·|∇ψ|−1,ψ(y) .

For this reason, the modeling of transient plasma equilibrium evolution it is essential to be
able to compute such hypersurface integrals with high precision.

We have implemented the Galerkin method for (26) for the linear case j(r, ψ(r, z)) =
j(r, z) in CONCEPTS [9, 27, 34] (www.concepts.math.ethz.ch), using finite dimensional hp-
FEM spaces Vh,p for the approximations ψh,p of ψ. CONCEPTS provides tensor product
basis functions based on integrated Legendre polynomials on the reference square. We make
use of CONCEPTS’ ability to resolve arbitrary curved boundaries with known parametriza-
tion exactly in the mesh by transfinite interpolation techniques. We consider smooth domains
and functions j such that the solution ψ of (26) is approximated by Galerkin discretization
ψh,p ∈ Vh,p as

(28) ‖ψ − ψh,p‖L2(Ω) ≤ Chp+1 and ‖ψ − ψh,p‖H1(Ω) ≤ Chp .

with constantsC > 0 independent of h and p [28]. Moreover we have the pointwise estimates
[5, Section 22]

(29) ‖ψ − ψh,p‖L∞(Ω) ≤ C

{
h2| log(h)| 23 p = 1 ,

hp+1 p > 1 .

Next, fixing the polynomial degree P of the approximation c̃P
f,ψ

(y) = g̃P
f ·|∇ψ|−1,ψ

(y) of the
geometric coefficients, the Theorem 8 and Corollary 10 assert

‖c̃P
fh,p,ψh,p

− cf,ψ‖L2(0,1)

‖c̃P
fh,p,ψh,p

− cf,ψ‖H1(0,1)

}
=

{
O(h2| log(h)| 23 ) p = 1 ,

O(hp+1) p > 1 ,

for the c̃P
fh,p,ψh,p

with fh,p = f = 1/r2 and

‖c̃P
fh,p,ψh,p

− cf,ψ‖L2(0,1)

‖c̃P
fh,p,ψh,p

− cf,ψ‖H1(0,1)

}
= O(hp) ,

with f = |∇ψ|2/r2 and fh,p = |∇ψh,p|2/r2. Hence, once we invest reasonable amount of
effort to achieve high order accuracy for the approximations of ψ, we will be rewarded with
a likewise high order accuracy for the approximation of the geometric coefficients.

5.2.1. Numerical Experiment: Elliptic Equilibrium. We consider a model problem
with the data ψbd = 0 and j(r, z) = 1

µ0

(
2
r + 2

9r −
2(r−2)
r2

)
and

Ω = {
(
rE(s, t)
zE(s, t)

)
=

(
2 +
√

2− s cos(πt)
3
√

2− s sin(πt)

)
; (s, t) ∈ [0, 2]2} ,

an ellipse with center (2, 0) and minor and major radius
√

2 and 3
√

2. The solution is given
by

ψE(r, z) = 2−
(

(r − 2)2 +
z2

9

)
,
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and (rE(s, t), zE(s, t)) is a parametrization of its level sets, i.e. ψE(rE(s, t), zE(s, t)) =
s. With this we can find analytic expressions for geometric coefficients that are useful for
numerical experiments:

c 1
r2
,ψE

(y) =
6π√

4− 2y
, c |∇ψE|2

r2
,ψE

(y) =
24π√
4− 2y

− 12π .

Convergence of ψE. To begin with, we are using the Galerkin method to determine an
approximation ψh,p of ψE in Vh,p. The convergence estimates (28) are clearly reproduced by
our experiments (see Figure 4).

Convergence of the geometric coefficients. In the following experiments we fix P =
15 and study the convergence of the geometric coefficients. The convergence in both the
L2-norm and H1-norm is in general better than predicted by Theorem 8 and Corollary 10.
We observe a convergence like h2| log(h)|2/3 for p = 1 and like h2p for p > 1 for both
coefficients c 1

r2
,ψE

and c |∇ψE|2

r2
,ψE

(see Figure 5). Surprisingly, the additional consistency

error by taking fh,p instead of f in c |∇ψE|2

r2
,ψE

does not seem to spoil the rate of convergence.

The experimental results highlight even more that the new method for computing the
geometric coefficients is most powerful, when combined with an high order polynomial ap-
proximation of ψ. In this case the approximation error in ψ decays very quickly and one
achieves low error levels in the geometric coefficients despite the positive powers of P in
front of this contribution, see Theorem 8 and Corollary 10. Finally, our experiments suggest
also that the high powers of the discretization parameter P in the estimates of Theorem 8
and Corollary 10 are too pessimistic (see Figure 6). We observe in these examples a conver-
gence like P

1
2 rather than P 4 for the error in L2(0, 1). For the error in H1(0, 1) we see a

convergence like P
5
2 rather than P 6. Additionally, we see in the experiments the saturation

levels for small P , which highlights that the discretization parameter P needs to be balanced
accordingly with h and p, to achieve a desired accuracy level with minimal effort.

5.2.2. Application: Solov’ev Equilibrium. Finally, we study a more realistic example,
taken from [21], that is a very popular and important benchmark case in computational plasma
physics. It corresponds to the data ψbd = 0, j(r, z) = 1+κ2

µ0κr30q0
r and

(30) ∂Ω = {(r, z) : r2 = r2
0 + 2ar0 cos(t), z = κa

r0

r
sin(t), 0 ≤ t ≤ 2π} ,

where the parameters r0 and q0 are the so called major radius and the safety factor at the
magnetic axis, and the parameters a and κ the so called effective minor radius of the domain
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FIG. 5. Elliptic equilibrium: Relative L2-error e0(l, p) := ‖c̃P
f,ψhl,p

− cf,ψE
‖L2(0,1)/‖cf,ψE

‖L2(0,1)

(top) and H1-error e1(l, p) := ‖c̃P
f,ψhl,p

− cf,ψE
‖H1(0,1)/‖cf,ψE

‖H1(0,1) (bottom) for f = 1/r2 (left) and

fhl,p = |∇ψhl,p|
2/r2 (right) as function of the mesh refinement level l for P = 15 fixed.

and elongation of the domain. Then the solution of (26) is

ψS(r, z) = − κ

2r3
0q0

(
1

4
(r2 − r2

0)2 +
1

κ2
r2z2 − a2r2

0

)
.

In our experiments we have chosen the parameter values r0 = 1, a = 0.32, κ = 1.7 and
q0 = 1.0.

Convergence of the geometric coefficients. For this example we do not have analytic
values of the various geometric coefficients c̃f,ψS

with f = 1/r2 and f = |∇ψ|2/r2. Hence,
we explore the convergence behavior using a reference solution c̃ref

f,ψS

:= c̃15
f,ψh2,16

computed

at a discretization with P = 15 for the discretization of the geometric coefficient and p = 16
on a two times refined mesh for the discretization of ψS .

In Figure 7 we plot the error for refinement in the polynomial degree p and in the mesh
refinement level l. The polynomial degree is held fixed at P = 15. Here again we observe
spectral convergence for geometric coefficients cf,ψS

that involve functions f independent of
ψS or functions that are dependent of ψS. To achieve a certain error level with a minimal
number of degrees of freedom for the approximation ψh,p it is advantageous to chose larger
values for p rather than to work with very fine meshes. Figure 8 illustrates ψhl,1 on the initial
mesh and after 1 and 2 refinements.

6. Conclusions. We presented a novel high-order accurate method for numerical inte-
gration of functions over hypersurfaces. This method avoids the use of explicit parametriza-
tions of the hypersurface, that are in general not available. Both the numerical analysis and
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(top left) and H1-error e1(l, 1) := ‖c̃P
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function of the refinement level l of the mesh for different polynomial degrees P and relative L2-error e0(l, 1) and
H1-error e1(l, 1) as a function of the polynomial degree P at fixed level l = 5 (bottom).
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FIG. 7. Solov’ev equilibrium: Relative L2-error e0(l, p) := ‖c̃P
f,ψhl,p

− cref
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‖L2(0,1)/‖cref

f,ψS
‖L2(0,1)

for f = 1/r2 (left) and fhl,p = |∇ψhl,p|
2/r2 (right) for refinement in polynomial degree p and mesh refinement

level l for P = 15 fixed.

our numerical examples provide evidence of fast convergence. Moreover, the method is easy
to implement in a pre-existing finite element solver as it requires no extra geometric data
structures or non-linear solvers needed to explicitly resolve level sets. The only non-standard
component is the evaluation of test functions concatenated with the (possibly discrete) level
set function in the right hand side of the weak formulation. While the motivation of this work
clearly stems from plasma equilibrium modeling in nuclear fusion science, we want to high-
light that integrals over hypersurfaces are a standard task in many engineering problems and
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FIG. 8. Solov’ev equilibrium problem: Numerical solution ψhl,1 on the initial mesh (l = 0, left) and after
l = 1 (middle), l = 2 (right) geometric refinements via bisection along all coordinate directions (hl = 2−lh0). The
boundary ∂Ω is resolved exactly in all meshes by virtue of splitting the explicit parametrization in (30) at element
boundaries and applying transfinite interpolation.

an important building block in numerical methods, such as the boundary element method,
fictitious domains method, mortar element methods or level set methods. Shape optimization
problems or fluid structure interaction obviously require the approximation of hypersurface
integrals. As such the proposed method can have implications in many different areas.
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Appendix A. A few regularity results for hypersurface integrals. The assumption
gf,ψ ∈ Hk(0, 1) in Theorem 4 is fairly strong. First of all it is obvious that gf,ψ might
lose regularity in the neighborhood of values y ∈ [0, 1] where ψ has a stationary point, i.e.
∇ψ(x) = 0 and ψ(x) = y. Second, it can be expected that a loss of regularity ψ influences
also the regularity of the hypersurface integrals. To our knowledge it is an open problem to
quantify precisely how the regularity of ψ influences the regularity of gf,ψ . There is also very
few theory available explaining how stationary points of ψ influence the regularity of gf,ψ .
The only result, we are aware of, is due to G. Vigfússon, stated in [33, Theorem 2].

THEOREM 14 (G. Vigfússon 1979). Assume that the boundary ∂Ω ∈ C∞ is arbitrarily
smooth and that ψ has only one stationary point in Ω, that is the maximum of ψ in Ω and
ψ|∂Ω ≡ ψ1 ∈ R, then

gf |∇ψ|−1,ψ ∈ C
n([0, 1]), if f ∈ C2n(Ω) and ψ ∈ C2n+2(Ω) .

Proof. The proof for n = 0 and n = 1 follows from various results in [32] and is based
on a technique called elliptic expansions that compares the contour lines of ψ with ellipses
and quantifies the deviation. The Theorems 9 and 10 in [32, p. 62] provide

(31) G|∇ψ|−1,ψ(·) :=

∫ ·
0

g|∇ψ|−1,ψ(y′)dy′ ∈ Cn+1([0, 1]) if ψ ∈ C2n+2(Ω) ,
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with n = 0, n = 1 or n = 2. Furthermore, another theorem in [32, p. 75] states

(32)
gf |∇ψ|−1,ψ

g|∇ψ|−1,ψ

∈ Cn([0, 1]), if f ∈ C2n(Ω) andψ ∈ C2n+1(Ω) ,

with n = 0 or n = 1 and the assertion of Theorem 14 follows.

Such a smoothness result is not true if ψ has saddle points in Ω as we see for the example in
the following remark.

REMARK 15. We consider Ω = [0, 1]2, ψ(r, z) = 1− rz and f(r, z) =
∑
i,j≥0 aijr

izj

with aij ∈ R. ψ(r, z) has a saddle point at (rX , zX) = (0, 0) with yX = 1. We compute for
f1(r, z) = rnzm, n,m ∈ N, n 6= m:

Gf1|∇ψ|−1,ψ(y) =

∫ 1

1−y

(∫ 1

(1−y)/z

rnzmdr

)
dz

=
(m− n)− (m+ 1)(1− y)n+1 + (n+ 1)(1− y)m+1

(m+ 1)(n+ 1)(m− n)

and for f2(r, z) = rnzn , n ∈ N:

Gf2|∇ψ|−1,ψ(y) =

∫ 1

1−y

(∫ 1

(1−y)/z

rnzndr

)
dz

=
1− (1− y)n+1

(n+ 1)2
+

(1− y)n+1 log(1− y)

n+ 1
,

which yields

G′
f1|∇ψ|−1,ψ

(y) = gf1|∇ψ|−1,ψ(y) =
(1− y)n − (1− y)m

m− n
.

and

G′
f2|∇ψ|−1,ψ

(y) = gf2|∇ψ|−1,ψ(y) = − log(1− y)(1− y)n .

Hence we find

gf |∇ψ|−1,ψ(y) =
∑

i,j≥0 i 6=j

aij
(1− y)i − (1− y)j

j − i
− log(1− y)

∑
i≥0

aii(1− y)i .

In the neighborhood of the saddle point y = yX(= 1) the hypersurface integral gf |∇ψ|−1,ψ(y)

behave like log(yX − y) whenever a00 6= 0. In particular, gf |∇ψ|−1,ψ(yX) is unbounded,
while the quotient gf |∇ψ|−1,ψ(yX)/c1,ψ(yX) is bounded:

lim
y→yX

gf |∇ψ|−1,ψ(y)

g|∇ψ|−1,ψ(y)
= f(rX , zX) = a00 .

Appendix B. Auxiliary results for the numerical analysis. In this section we collect
some auxiliary results.
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LEMMA 16. Let ω̂j ∈ R and x̂j ∈ Rn, 1 ≤ j ≤ R be weights and quadrature points
of a quadrature rule over an reference element K̂ ⊂ Rn with diameter diam(K̂) = 1 that is
exact for polynomials of degree q, i.e.

Ê(p̂) :=

∫
K̂

p̂(x̂)dx̂−
R∑
j=1

ω̂j p̂(x̂j) = 0 ∀p̂ ∈ Pq(K̂) ,

where Pq(K̂) is the set of polynomials of degree q over K̂. Let K ⊂ Rn be the image of K̂
under an affine transformation. Then for all ` with q + 1 > `

(33)

∣∣∣∣∣∣
∫
K

g(x)ξ(x)dx− |K|
R∑
j=1

ωjg(xj)ξ(xj)

∣∣∣∣∣∣
≤ Cdiam(K)q−l+1|K| 12 ‖g‖W q−`+1,∞(K)‖ξ‖L2(K), ∀ξ ∈ P`(K) .

Proof. We introduce

E(p) :=

∫
K

p(x)dx− |K|
R∑
j=1

ω̂jp(xj)

and have (p̂ = p ◦ Φ)

E(gξ) = |K|Ê(ĝξ̂) ≤ C|K|‖ĝξ̂‖L∞(K̂)

≤ C|K|‖ĝ‖L∞(K̂)‖ξ̂‖L∞(K̂)

≤ C|K|‖ĝ‖W q−`+1,∞(K̂)‖ξ̂‖L∞(K̂)

≤ C|K||ĝ|W q−`+1,∞(K̂)‖ξ̂‖L∞(K̂)

≤ C|K||ĝ|W q−`+1,∞(K̂)‖ξ̂‖L2(K̂)

≤ Cdiam(K)
q−`+1|K| 12 |g|W q−`+1,∞(K)‖ξ‖L2(K)

where in the third step we use W q−l+1,∞(K̂) ↪→ C0(K̂) since q− l+ 1 > 0, the fourth step
is Bramble-Hilbert, the fifth step equivalence of ‖ · ‖L∞(K̂) and ‖ · ‖L2(K̂) on P(K̂) and the
sixth step follows from scaling due to back transformation.

LEMMA 17 (L∞(0, 1)-bounds of polynomials). For any λ ∈ PP (0, 1) it holds

‖λ‖L∞(0,1) ≤ (P + 1)‖λ‖L2(0,1) .

Proof. Taking the (shifted) Legendre polynomialsLk, k = 0, . . . , P asL2(0, 1)-orthogonal
basis of PP (0, 1) with ‖Lk‖L2(0,1) = 1/

√
2k + 1 and the fact that all Lk are all in [0, 1]

bounded by 1 [1, Chap. 22] and so ‖Lk‖L∞(0,1) ≤ 1 =
√

2k + 1‖Lk‖L2(0,1) we find for
λ =

∑P
k=0 λkLk that

‖λ‖L∞(0,1) ≤
P∑
k=0

|λk|‖Lk‖L∞(0,1) ≤
P∑
k=0

√
2k + 1|λk|‖Lk‖L2(0,1) ≤ (P + 1)‖λ‖L2(0,1) ,

where we used the orthogonality of Lk in the last step, and the proof is complete.
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LEMMA 18. For any functions ψ± ∈ L∞(Ω) it holds∣∣∣∣ inf
x∈Ω

ψ+(x)− inf
x∈Ω

ψ−(x)

∣∣∣∣ ≤ 2 ‖ψ+ − ψ−‖L∞(Ω)∣∣∣∣sup
x∈Ω

ψ+(x)− sup
x∈Ω

ψ−(x)

∣∣∣∣ ≤ 2 ‖ψ+ − ψ−‖L∞(Ω) .

Proof. We prove the first assertion and remark that the second follows analogously.
Without loss of generality let ε := infx∈Ω ψ+(x) − infx∈Ω ψ−(x) ≥ 0. Then, there ex-
ists x? ∈ Ω such that

ψ−(x?) +
ε

2
≤ inf

x∈Ω
ψ+(x) ≤ ψ+(x?) .

Hence,

ε ≤ 2 (ψ+(x?)− ψ−(x?)) ≤ 2 ‖ψ+ − ψ−‖L∞(Ω) ,

and the proof is complete.

LEMMA 19. Let | · |Ω be a seminorm on Ω, f±, ψ± ∈ L∞(Ω) such that |ψ±|Ω < ∞,
ψ0(ψ±) = supx∈Ω ψ±, ψ1(ψ±) = infx∈Ω ψ±, ψ0(ψ±) > ψ1(ψ±) and ψ± = (ψ± −
ψ0(ψ±))/(ψ1(ψ±)−ψ0(ψ±)). Then, there exists a constant C independent of ψ− such that

∣∣ψ+ − ψ−
∣∣
Ω
≤ C

∣∣ψ+ − ψ−
∣∣
Ω

+
∥∥ψ+ − ψ−

∥∥
L∞(Ω)

ψ0(ψ−)− ψ1(ψ−)
.

If moreover ψ± ∈ H1(Ω) then with a constant C independent of ψ− it holds

∣∣f+|∇ψ+| − f−|∇ψ−|
∣∣
Ω
≤ C

∣∣f+|∇ψ+| − f−|∇ψ−|
∣∣
Ω

+
∥∥ψ+ − ψ−

∥∥
L∞(Ω)

ψ0(ψ−)− ψ1(ψ−)
.

Proof. The first estimate follows by the equality

(ψ1(ψ−)− ψ0(ψ−))(ψ+ − ψ−) = (ψ+ − ψ−)− ψ+−ψ1(ψ+)
ψ0(ψ+)−ψ1(ψ+) (ψ0(ψ+)− ψ0(ψ−))

− ψ+−ψ0(ψ+)
ψ1(ψ+)−ψ0(ψ+) (ψ1(ψ+)− ψ1(ψ−)) ,

the triangle inequality and Lemma 18. Similarly, with the equality

(ψ1(ψ−)− ψ0(ψ−))(f+|∇ψ+| − f−|∇ψ−|) = f+|∇ψ+| − f−|∇ψ−|

− f+|∇ψ+|
ψ1(ψ+)− ψ0(ψ+)

(ψ1(ψ+)− ψ1(ψ−) + ψ0(ψ+)− ψ0(ψ−))

we obtain the second estimate.
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