Simulation of bone tissue formation within a porous scaffold under dynamic compression
Résumé
A computational model of mechanoregulation is proposed to predict bone tissue formation stimulated mechanically by overall dynamical compression within a porous polymeric scaffold rendered by micro-CT. Dynamic compressions of 0.5–5% at 0.0025–0.025 s −1 were simulated. A force-controlled dynamic compression was also performed by imposing a ramp of force from 1 to 70 N. The model predicts homogeneous mature bone tissue formation under strain levels of 0.5–1% at strain rates of 0.0025– 0.005 s −1. Under higher levels of strain and strain rates, the scaffold shows heterogeneous mechanical behaviour which leads to the formation of a heterogeneous tissue with a mixture of mature bone and fibrous tissue. A fibrous tissue layer was also predicted under the force-controlled dynamic compression, although the same force magnitude was found promoting only mature bone during a strain-controlled compression. The model shows that the mechanical stimulation of bone tissue formation within a porous scaffold closely depends on the loading history and on the mechanical behaviour of the scaffold at local and global scales.
Origine | Accord explicite pour ce dépôt |
---|
Loading...