Trees of self-avoiding walks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Trees of self-avoiding walks

Vincent Beffara
Cong Bang Huynh
  • Fonction : Auteur

Résumé

We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias converges to its critical value is conjectured to coincide with the weak limit of the uniform SAW. Along the way, we obtain a criterion for the continuity of the escape probability of a biased random walk on tree as a function of the bias, and show that the collection of escape probability functions for spherically symmetric trees of bounded degree is stable under uniform convergence.
Fichier principal
Vignette du fichier
Papier_soumis.pdf (568.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01635173 , version 1 (14-11-2017)
hal-01635173 , version 2 (27-11-2018)
hal-01635173 , version 3 (23-12-2019)

Identifiants

Citer

Vincent Beffara, Cong Bang Huynh. Trees of self-avoiding walks. 2017. ⟨hal-01635173v1⟩
329 Consultations
793 Téléchargements

Altmetric

Partager

More