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TREES OF SELF-AVOIDING WALKS

VINCENT BEFFARA AND CONG BANG HUYNH

Abstract. We consider the biased random walk on a tree constructed from the set of finite
self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-
avoiding walks. The limit measure (if it exists) obtained when the bias converges to its critical
value is conjectured to coincide with the weak limit of the uniform SAW. Along the way,
we obtain a criterion for the continuity of the escape probability of a biased random walk on
tree as a function of the bias, and show that the collection of escape probability functions for
spherically symmetric trees of bounded degree is stable under uniform convergence.

Keywords: Self-avoiding walk, equivalent conductance, random walk on tree

1. Introduction

An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n) in a regular lattice
L (such as integer lattice Z2, triangular lattice T, hexagonal lattice, etc) starting at the origin
is a nearest neighbor path γ = [γ0 = 0, γ1, . . . , γn] that visits no vertex more than once. An
infinite self-avoiding walk is a self-avoiding walk of infinite length. Self-avoiding walks were first
introduced as a lattice model for polymer chains; while they are very easy to define, they are
extremely difficult to analyze rigorously and there are still many basic open questions about
them.

Let cn be the number of SAWs of length n starting at the origin. The connective constant of
L, which we will denote by µ, is defined by

cn ≈ µn when n→∞.
The existence of the connective constant is easy to establish from the sub-additivity relation
cn+m 6 cncm, from which one can also deduce that cn > µn for all n. Nienhuis [16] gave a

prediction that for all regular plan lattices, cn = µnnα+o(1) where α = 11
32 , and this prediction is

known to hold under the assumption of the existence of a conformally invariant scaling limit,
see e.g. [11].

We are interested in defining a natural probability measure on the set of infinite self-avoiding
walks (SAW∞) (see the sections 5.2 and 6). Such a measure on the set of the infinite self-avoiding
half-plane walks has been constructed already as the weak limit of the uniform measures on the
finite self-avoiding walks (see [14]) by using the Kesten’s equality [9].

In this paper, we consider a one-parameter family of probability measures on SAW∞, denoted
by (Pλ)λ>λc , defined informally as follows. Denote by H the upper-half plane in Z2 and by Q the
first quadrant; let TZ2 (resp. TH, TQ, with the appropriate modifications in the definition which
we will not specify in what follows) be the tree whose vertices are the finite self-avoiding walks
in the plane (respectively half-plane, quadrant), where two such vertices are adjacent when one
walk is a one-step extension of the other. We will call this tree the self-avoiding tree on Z2.

Then, consider the continuous-time biased random walk of parameter λ > 0 on TZ2 , which
from a given location jumps towards the root with rate 1 and towards each of its children vertices
with rate λ. If λ is such that the walk is transient, its path determines an infinite branch in TZ2

which can be seen as a random infinite self-avoiding walk ω∞λ ; we will denote by Pλ the law of
ω∞λ , omitting the mention of Z2 in the notation, and call it the limit walk with parameter λ.

It is well known that there exists a critical value λc such that if λ > λc the biased random
walk is transient and if λ < λc it is recurrent. In the general case of biased random walk on
a tree, the recurrence or transience of the random walk at the critical point depends in subtle
ways on the structure of the tree. The value of λc on the other hand is easier to determine:
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2 VINCENT BEFFARA AND CONG BANG HUYNH

indeed, Lyons [12] proved that it coincides with the reciprocal of the branching rate of the tree.
The following proposition give the critical value for self-avoiding trees.

Proposition 1.1. Let TZ2 , TH, TQ be defined as above. Then,

λc(TZ2) = λc(TH) = λc(TQ) =
1

µ
,

where µ is the connective constant of lattice Z2.

This is a direct consequence of Proposition 5.10 below. Notice that it is clear from the
definition that µ is the growth rate of TZ2 ; there are rather large classes of trees, including TZ2 ,
for which the branching and growth coincide (for instance, this holds for sub- or super-periodic
trees, cf. below, or for typical supercritical Galton-Watson trees), but none of the classical
results seem to apply to TH or TQ.

We now state some properties concerned with the geometry of the limit walk for this family
of probability measures.

Theorem 1.2. For all λ > λc, under the Pλ measure, the infinite self-avoiding walk (in the
plane or half-plane) reaches the line Z× {0} infinitely many times almost surely.

Theorem 1.3. For all λ > λc, then

Pλ(lim sup
n
<ω∞λ (n) = +∞) = 1; Pλ(lim inf

n
<ω∞λ (n) = −∞) = 1.

These theorems are proved in Section 6.4. We are mostly interested in the behavior of the
limit walk as λ→ λc, since this is a natural candidate to be in relation with uniformly sampled
long SAWs. We did not quite manage to prove the existence of the limit, but were able to
obtain a partial result in this direction by restricting the process to paths formed of bridges of
bounded height m, and letting m increase; see Theorem 7.3 for more details.

A useful tool in our proofs is the effective conductance of the biased random walk on
a tree T , defined as the probability of never returning to the root o of T and denoted by
C(λ, T ). Along the way, we will be interested in several properties of it as a function of λ. Most
important for us will be the question of continuity: in a general tree, the effective conductance
is not necessarily a continuous function of λ. We will derive criteria for continuity, which are
forms of uniform transience of the random walk, and apply them to prove that the effective
conductance of self-avoiding trees is a continuous function (see Section 5.5):

Theorem 1.4. The functions C(λ, TH) and C(λ, TZ2) are continuous on (λc,+∞).

A related question is that of the convergence of effective conductance along a sequence of
trees. More precisely, let (fn)n denote the effective conductances for a sequence (Tn) of infinite
trees, and we assume that (fn)n converges uniformly towards f 6= 0. The question is: is f the
effective conductance of a certain tree? We study this question on a class of particular trees,
spherically symmetric trees (recall that T is spherically symmetric if deg x depends only on |x|,
where |x| denote its distance from the root o and deg x is the number of its neighbors). If S
denotes the set of spherically symmetric trees and m ∈ N∗ is fixed, define

Am := {T ∈ S; ∀x ∈ T, deg x 6 m} and Fm :=
{
f ∈ C0([0, 1]) : ∃T ∈ Am, C(λ, T ) = f(λ)

}
.

Then (see Section 4.2):

Theorem 1.5. Let (fn)n be a sequence of functions in Fm. Assume that fn converges uniformly
towards f 6= 0. Then f ∈ Fm.

The paper is structured as follows. In Section 2, we review some basic definitions on graphs,
tree, branching number and growth rate of a tree, as well as a few classical results about random
walks on trees. Section 3 gathers some relevant examples and counter-examples exhibiting
some similarities to the self-avoiding trees while being treatable explicitly. The criterion for
the continuity of the effective conductance is given in Section 4. Then Section 5 provides some
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background on self-avoiding walks and the self-avoiding trees, and some properties of the limit
walks are obtained in Section 6. Finally, we state a few conjectures and conditional results in
Section 7. Appendix A isolates the details of an algorithm to improve the readability of the
main text.

2. Notation and basic definitions

2.1. Graphs and trees. In this section, we review some basic definitions; we refer the reader
to the book [13] for a more developed treatment. A graph is a pair G = (V,E) where V is a
set of vertices and E is a symmetric subset of V ×V , called the edge set, containing no element
of the form (x, x). Two vertices are adjacent if their pair that they form is an edge. A path in
a graph is a sequence of vertices, any two consecutive of which are adjacent. A simple path is
a path which does not pass through any vertex more than once. A graph is connected if, for
each pair (x, y) ∈ V × V , there exist a simple path starting at x and ending at y. A connected
graph with no cycles is called a tree. We will always consider trees to be rooted by the choice
of a vertex o, called the root.

Let T be a rooted tree and x ∈ V (T ), the symbol |x| will denote the height of x, that is
the distance from x to o in the graph distance, i.e. the length of the simple path joining o to
this vertex; deg x will denote the number of neighbors of x. Let Tn be the set of vertices of
T with height n. The parent of a vertex is the vertex connected to it on the simple path to
the root; every vertex except the root has a unique parent. A child of a vertex v is a vertex
of which v is the parent. A vertex is called a leaf if it have no child. We define an order on
V (T ) as follows: if x, y ∈ V (T ), we say that x 6 y if the simple path joining o to y passes
through x. For each x ∈ T , we define the sub-tree T x where V (T x) := {y ∈ T : x 6 y} and
E(T x) = E(T )|V (Tx)×V (Tx).

An infinite simple path starting at o is called a ray. The set of all rays, denoted by ∂T ,
is called the boundary of T . The set T ∪ ∂T can be equipped with a metric that makes it a
compact space, see [13].

2.2. Branching and growth.

Definition 2.1. Given a graph G = (V,E) and A, Z two subsets of V , a set Π ⊂ V is said
to separate A and Z (or to be a cut-set between A and B) if every path starting at a point
in A and finishing at a point in Z must pass through a vertex of Π. Similarly, if G is infinite
and equipped with a marked root o, Π is said to separate o and ∞ if every infinite simple path
started from o must pass through a vertex of Π; we also call Π a cut-set. For example, let T be
a tree, then for all n, Tn is a cut-set of T .

Definition 2.2. Let T be a tree.

• The branching number of T is defined by:

br(T ) = sup

{
λ > 1 : inf

Π

∑
e∈Π

λ−|e| > 0

}
,

where the inf is taken over cut-sets of T .
• We define also

gr(T ) = lim sup |Tn|1/n and gr(T ) = lim inf |Tn|1/n .

In the case gr(T ) = gr(T ), the growth rate of T is defined by their common value and
denoted by gr(T ).

Proposition 2.3 ([13]). Let T be a tree, then br(T ) 6 gr(T ).

In general, the inequality in Proposition 2.3 may be strict: The 1–3 tree (see [13], page 4) is
an example for which the branching number is 1 and the growth rate is 2. There are classes of
trees however where branching and growth match.

Definition 2.4. The tree T is said to be spherically symmetric if deg x depends only on |x|.
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Theorem 2.5 ([13] page 83). For every spherically symmetric tree T , br(T ) = gr(T ).

Definition 2.6. Let N > 0: an infinite tree T is said to be

• N -sub-periodic if for every x ∈ T , there exists an adjacency-preserving injection f :
T x → T f(x) with |f(x)| 6 N .
• N -super-periodic if for every x ∈ T , there exists an adjacency-preserving injection f :
T → T f(o) with d(x, f(o)) 6 N .

Theorem 2.7 (see [5, 13]). Let T be a tree that is either N -sub-periodic, or N -super-periodic
with gr(T ) <∞. Then the growth rate of T exists and gr(T ) = br(T ).

2.3. Random walks on trees. Let T be a tree, we now define the discrete-time biased random
walk on T . Working in discrete time will make some of the arguments below a little simpler, at
the cost of a slightly heavier definition here — notice though that the definition of the measure
Pλ and the main results of the paper are not at all affected by this choice.

Let λ > 0: the biased walk RWλ with bias λ on T is the discrete-time Markov chain on the
vertex set of T with transition probabilities given, at a vertex x 6= o with k children, by

pλ(x, y) :=


1

1+kλ if y is the father of x,
λ

1+kλ if y is a child of x,

0 otherwise.

If the root has k > 0 children, then pλ(o, x) is 1/k if x is a child of o and 0 otherwise. The
degenerate case T = {o} where the root has no child will not occur in our context, so we will
silently ignore it. We also allow ourselves to consider the cases λ ∈ {0,∞}, with the natural
convention that RW0 remains stuck at the root.

Definition 2.8. Let G = (V,E) be a graph, and c : E → R∗+ be labels on the edges, referred to
as conductances. Equivalently, one can fix resistances by letting r(e) := 1/c(e). The pair (G, c)
is called a network. Given a subset K of V , the restriction of c to the edges joining vertices in K
defines the induced sub-network G |K . The random walk on the network (G, c) is the discrete-
time Markov chain on V with transition probabilities proportional to the conductances.

Given a network (T, e) on a tree, let π(o) be the sum of the conductances of the edges incident
to the root, and denote by o→∞ the event that the random walk on (T, e), started at the root,

never returns to it. We will write C̃(o ↔ ∞) := P[o → ∞] and C(o ↔ ∞) := π(o)C̃(o ↔ ∞).
The latter is the equivalent conductance of the network, and its reciprocal R(o ↔ ∞) is the
equivalent resistance.

The particular case where, on a tree T , for an edge e = (x, y) between a vertex x and any of

its children y, c(e) is chosen to be λ|x| will play a special role, because in that case the random
walk on the network is exactly the same process as the random walk RWλ defined earlier. Is
this setup, we will denote the equivalent conductance by C(λ, T ) to emphasize its dependency
on the parameter λ.

Theorem 2.9 (Rayleigh’s monotonicity principle [13]). Let T be an infinite tree with two
assignments, c and c′, of conductances on T with c 6 c′ (everywhere). Then the equivalent
conductances are ordered in the same way: Cc(o↔∞) 6 Cc̃(o↔∞).

Corollary 2.10. Let T, T ′ be two infinite trees; we say that T ⊂ T ′ if there exists an adjacency-
preserving injection f : T → T ′. If this holds, then for every λ > 0, C(λ, T ′) 6 C(λ, T ).

In the case of spherically symmetric trees, the equivalent resistance is explicit:

Proposition 2.11. Let T be spherically symmetric and (c(e)) be conductances that are them-
selves constant on the levels of T . Then R(o↔∞) =

∑
n>1

1
cn|Tn| , where cn is the conductance

of the edges going from level n− 1 to level n.

Corollary 2.12. Let T be a spherically symmetric tree. Then RWλ is transient if and only if∑
n

1
λn|Tn| <∞.
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Theorem 2.13 (Nash-Williams inequality, see [15]). If a and z are distinct vertices in a finite
network that are separate by pairwise disjoint cut-sets Π1,Π2, . . . ,Πn, then

R(a↔ z) >
n∑
k=1

(
∑
e−∈Πk

c(e))−1.

This theorem implies the following theorem

Theorem 2.14 (Nash-Williams criterion, see [15]). If Πn is a sequence of pairwise disjoint
finite cut-sets in a locally finite network G, then

R(o↔∞) >
∑
n

 ∑
e−∈Πn

c(e)

−1

.

In particular, if
∑

n

(∑
e∈Πn

c(e)
)−1

= +∞, then the random walk associated to this family
conductances (c(e))e is recurrent.

We end this subsection by stating a classical theorem relating the recurrence or transience of
RWλ to the branching of the underlying tree:

Theorem 2.15 (see [12]). If λ < 1
br(T ) then RWλ is recurrent, whereas if λ > 1

br(T ) , then RWλ

is transient. The critical value of biased random walk on T is therefore λc(T ) := 1
br(T ) .

2.4. The law of first k-steps of the limit walk. Let T be a tree and (c(e)) be conductances
on the edges of T such that the associated random walk (Xn) is transient. For every k > 0, the
walk visits Tk finitely many times: we can define an infinite path ω∞ on T by letting ω∞(k) be
the last vertex of Tk visited by the walk. Equivalently:

(1) ω∞(k) = x ⇐⇒ x ∈ Ti and ∃n0,∀n > n0 : Xn ∈ T x.

Let k ∈ N∗ and y0 = o, y1, y2, . . . , yk be k elements of V (T ) such that (y0, y1, y2, . . . , yk) is a
simple path: we can then define

(2) ϕc(y0, y1, y2, . . . , yk) := P(ω∞(0) = y0, ω
∞(1) = y1, . . . , ω

∞(k) = yk).

We will refer to this function as the law of first k-steps of limit walk. In the case of the biased
walk RWλ, we will denote tho function ϕλ; this will not lead to ambiguities. We finish this
section with the following lemma.

Lemma 2.16. The value of ϕc(y0, . . . , yk) depends continuously on any finite collection of the
conductances in the network. More precisely, given a finite set U = {e1, . . . , e`} of edges and a
collection (c(e)) of conductances, let c̃(u1, . . . , u`) be the family of conductances that coincides
with c outside U and takes value ui at ei: then the map

ψU,c : (u1, . . . , u`) 7→ ϕc̃(u1,...,u`)(y0, . . . , yk)

is continuous on (R∗+)`.

3. A few examples

The self-avoiding tree in the plane, which we alluded to in the introduction and will formally
introduce in the next section, is sub-periodic but quite inhomogeneous, and the self-avoiding
tree in the half-plane sits in none of the classes of trees defined above. To get an intuition of
the kind of behavior we should expect or rule out, we gather here a few examples of trees with
some atypical features.
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3.1. Trees with discontinuous conductance. Let 0 < λ0 6 1. In the first part of this sec-
tion, we construct two tree T, T with λc(T ) = λc(T ) = λ0, such that the effective conductances
C(λ, T ) and C(λ, T ) of the biased random walk RWλ on T and T satisfy C(λc(T ), T ) = 0 but
C(λc(T ), T ) > 0. In the second part, we construct a tree T such that C(λ, T ) is not continuous
on (λc, 1).

Proposition 3.1. For every x > 1, there exist two trees T (x), T (x) such that:

• br(T (x)) = br(T (x)) = x;
• RW1/x is recurrent on T(x) and transient on T (x).

Proof. We will construct spherically symmetric trees satisfying both conditions. Denoting by
[y] be the integer part of ym first construct the sequence (li)i∈N∗ inductively as follows:

l1 = [x] , l2 =

[
x2

l1

]
, l3 =

[
x3

l1l2

]
, . . . , ln =

[
xn∏n−1
i=1 li

]
, . . .

and let T (x) be the tree where vertices at distance i from o have li children, so that the sizes

of the levels of T (x) are given by |Tn| =
∏n
i=1 li. We construct the tree T (x) from the degree

sequence (l′i)i∈N by posing l′i = 2li if i can be written under the form i = k2, and l′i = li
otherwise. Notice that |Tn| = 2[

√
n]|Tn|.

We first show that both trees have branching number x. Since they are spherically symmetric,
it is enough to check that their growth rate is x; the case x = 1 is trivial, so assume x > 1.
From the definition,

xn −
n−1∏
i=1

li 6
n∏
i=1

li 6 x
n hence xn − xn−1 6 |Tn| 6 xn

so gr(T ) = x; the case of T follows directly.
The recurrence or transience of the critical random walks can be determined using lemma 2.12:∑ 1

λnc |Tn|
>
∑ 1

λnc x
n

= +∞

so the critical walk on T (x) is recurrent, while for x > 1,∑ 1

λnc |Tn|
6
∑ 1

λnc (xn − xn−1)2[
√
n]

=
x

x− 1

∑ 1

2[
√
n]
<∞

so the critical walk on T (x) is transient. In the case x = 1 one gets
∑

2−[
√
n] <∞ instead, and

the conclusion is the same. �

Proposition 3.2. For every k ∈ N∗ and λc ∈ (0, 1), there exists a tree T with critical drift
λc(T ) = λc and such that the ratio C(λ)/(λ−λc)k remains bounded and away from 0 as λ→ λ+

c .

Proof. We construct a spherically symmetric tree T which satisfies the conditions of this propo-
sition in a similar way as before. Letting x = 1/λc > 1, define inductively

l1 = [x] , l2 =

[
x2

2kl1

]
, l3 =

[
x3

3kl1l2

]
, . . . , ln =

[
xn

nk
∏n−1
i=1 li

]
, . . .

and let T be the spherically symmetric tree with degree sequence (li). It is easy to check that
br(T ) = x like in the previous proposition; in a similar way,

xn − nk
n−1∏
i=1

li 6 n
k

n∏
i=1

li 6 x
n hence

xn

nk
− xn−1

(n− 1)k
6 |Tn| 6

xn

nk
.

Using Proposition 2.11, the equivalent resistance at parameter λ > λc is given by

R(λ) =
∑ 1

λn|Tn|
>
∑ nk

(λx)n
∼ Ck

(λ− λc)k+1

with a lower bound of the same order but with a different constant, leading to the conclusion. �
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We end this subsection with the following proposition, showing that discontinuities can occur
elsewhere than at λc:

Proposition 3.3. There exists a tree T such that the function C(λ, T ) is not continuous on
(λc, 1).

Proof. Let 0 < λ1 < λ2 < 1. By proposition 3.1, there exists Ta, Tb such that λc(Ta) =
λ1, λc(Tb) = λ2 and

C(λ1, Ta) = 0, C(λ2, Tb) > 0.

We construct a tree T as follows T1 = {x1, x2} and T x1 = Ta, T
x2 = Tb, then

λc(T ) = λ1.

We can see that the function C(λ, T ) is discontinuous at λ2. �

Note that continuity properties at λ > 1 are actually easier to obtain, and we will investigate
them further below.

3.2. The convergence of law of first k-steps. If limλ→λc,λ>λc C(λ, T ) > 0, by lemma 6.16

the limit of the function ϕλ,k(y1, . . . , yk) when λ decreases to λc exists. If limλ→λc,λ>λc C(λ, T ) =
0, the situation is more delicate and we cannot yet conclude on the limit of the function
ϕλ,k(y1, . . . , yk) when λ decreases to λc. Indeed, convergence does not always hold, as we will
see in a counterexample. The idea of what follows is easy to describe: we are going to construct
a very inhomogeneous tree with various subtrees of higher and higher branching numbers, at
locations alternating between two halves of the whole tree; a biased random walk will wander
until it finds the first such sub-tree inside which it is transient, and escape to infinity within
this subtree with high probability.

Proposition 3.4. There exists a tree T such that the function ϕλ,1(y0, y1) does not converge
as λ→ λc.

Notation. Let T, T ′ be two trees and A ⊂ V (T ). We can construct a new tree by grafting a

copy of T ′ at all the vertices of A; we will denote this new tree by T
A⊕
T ′. Note that for all

x ∈ A, (T
A⊕
T ′)x ' T ′. In the case A = {x}, we will use the simpler notation T

x⊕
T ′ for T

{x}⊕
T ′.

Proof. Fix ε > 0 small enough. By Proposition 3.1, for all 0 < a 6 1, there exists a tree,
denoted by Ta, such that its branching number is 1

a and C(a, Ta) = 0. Let H = Z, seen as a
tree rooted at 0, so that the integers is the vertices of H (see the Figure 1). We are going to
construct a tree inductively.

Let (ai)i>1 be a decreasing sequence such that a1 < 1 and denoted ac := lim ai; assume

ac > 0. Choose a sequence bi such that bi ∈ (ai+1, ai) for all i. First, set H0 := (H
−2⊕
Ta1)

2⊕
Ta2 .

We consider the biased random walk RWb1 , then it is recurrent on Ta1 and transient on Ta2 . On
H0, the biased random walk RWb1 is transient, and in addition we know that it stays eventually
within the copy of Ta2 . There exists then N1 > 2 such that the probability that the limit walk
remains in that copy after time N1 − 1 is greater than 1− ε.

Then we set H1 = (H0
−N1⊕

Ta3). On H1, the walk of bias b1 is still transient and still has
probability at least 1− ε to escape through the copy of Ta2 , because Ta3 is grafter too far to be
relevant. On the other hand, consider the biased random walk RWb2 : it is still transient on H1

but only through the new copy of Ta3 . There exists then N2 > 2 such that the probability that
the limit walk remains in that copy after time N2 − 1 is greater than 1− ε.

We can set H2 := (H1
N2⊕
Ta4) and continue this procedure to graft all the trees Tai , further

and further from the origin and alternatively on the left and on the right; we denote by H∞

the union of all the Hk.
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Figure 1. Tree H∞

It remains to show that the function ϕλ,1(0, 1) for the biased random walk on the tree H∞

does not converge. We have br(H∞) = maxi br(Tai) = 1
ac

and ϕbi,1(0, 1) > 1−ε if i is odd while

ϕbi,1(0,−1) > 1− ε if i is even. Then,

∀k > 0,

{
ϕbi,1(0, 1) > 1− ε if i = 2k + 1

ϕbi,1(0, 1) 6 ε if i = 2k + 2

This implies that the function ϕλ,1(0, 1) does not converge when λ go to ac. �

The tree we just constructed is tailored to be extremely inhomogeneous. At the other end of
the spectrum, some trees have enough structure for all the functions we are considering to be
essentially explicit:

Definition 3.5. A tree T is called periodic (or finite type ) if, for all v ∈ V (T ) \ {o}, there is

an adjacency-preserving bijection f : T v → T f(v) with f(v) in a fixed, finite neighborhood of
the root of T .

Definition 3.6. Let T be a finite tree and L(T ) be the set of leafs of T . We set T 1 = T
L(T )⊕

T ,

T 2 = T 1
L(T 1)⊕

T , . . . , Tn = Tn−1
L(Tn−1)⊕

T for every n > 2. We continue this procedure an infinite
number of times to obtain an infinite tree. This infinite tree is called T -finite type and denoted
by T∞,T . Note that T∞,T is also a periodic tree.

Definition 3.7. Let T be a periodic tree and u, v ∈ V (T ). We say that u and v have the same
type if there is an adjacency-preserving bijection f : T u → T v. We denote by type (u, v) :=
{w ∈ V (T v) : w has the same type with u}.

Fact 3.8 (see Lyons [12], theorem 5.1). Let T be a periodic tree and (y0 = o, y1, y2, . . . , yk) be a
simple path on T . Then the function ϕλ,k(y0, y1, . . . , yk) converges when λ decreases to λc(T ).
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Moreover, the limit of this function is:

lim
λ→λc

ϕλ,k(y0, y1, . . . , yk) =
k−1∏
i=0

∑
v∈ type (yi,yi+1)

λ|v|c .

To keep this paper self-contained, in the rest of this section we provide a proof of a particular
case of fact 3.8:

Proposition 3.9. Let T be a finite tree and (y0 = o, y1, y2, . . . , yk) be a simple path on T∞,T .
Then the function ϕλ,k(y0, y1, . . . , yk) of T∞,T converges when λ decreases to λc(T

∞,T ).

Before showing the proposition 3.9, we study an explicit example of a tree of finite type.

Example 3.10. We define a finite tree T as follows: T1 = {x1, x2}
T2 = {y} and x2 is parent of y

Tn = ∅ for all n > 3

We can see that T∞,T is 1-super-periodic. By theorem 2.7, we obtain br(T∞,T ) = gr(T∞,T ).
Recall that ln is the number of children of a vertex at distance n from o. It is easy to see that
ln+1 = ln + ln−1 for all n > 1 et l1 = 2, l2 = 3. Then we obtain,

ln = (1 +
2
√

5

5
)(1 +

√
5

2
)n + (1− 2

√
5

5
)(1−

√
5

2
)n for all n > 1.

This implies that λc(T
∞) = 2

1+
√

5
. We have

+∞∑
n=1

(
∑

e−∈T∞n

λnc )−1 =
+∞∑
n=1

(1+
√

5
2 )n

ln
= +∞.

By theorem 2.14, the biased random walk RWλc(T∞,T ) on T∞ is recurrent. It remains to show

that ϕλ,1(o, x1) converges; after the calculations, we obtain

ϕλ,1(o, x1) =
λ

1 + 2λC̃(λ, T∞,T )
,

and then ϕλ,1(o, x1) converges to λc when λ go to λc.

Lemma 3.11. Let T be a tree such that deg o = d0 and{
T1 = {x1, x2, . . . , xd0}

for all t ∈ {1, 2, . . . , d0} , λc(T ) = λc(T
xi) = λc and C(λc, T ) = C(λc, T

xi) = 0

Then for all i, C̃(λ, T o, xi) =
(dxi−1)λC̃(λ,Txi )

d0(1+(dxi−1)λC̃(λ,Txi ))
, where dxi = deg xi. In particular, if

C̃(λ,T 0,xi)

C̃(λ,Txi )
converges towards a limit when λ go to λc, then this limit is equal to

(dxi−1)λc
d0

.

Proof. We can see that

C̃(λ, T o, xi) =
1

d0

[
mc+m2(1− c)c+m3(1− c)2c+ · · ·

]
=

1

d0
mc

∞∑
k=0

(m(1− c))k,

where m =
(dxi−1)λ

1+(dxi−1)λ and c = C̃(λ, T xi). Then we obtain C̃(λ, T o, xi) =
(dxi−1)λC̃(λ,Txi )

d0(1+(dxi−1)λC̃(λ,Txi ))
.

If C̃(λ,T 0,xi)

C̃(λ,Txi )
converges and as C̃(λc, T

xi) = 0, then C̃(λ,T 0,xi)

C̃(λ,Txi )
converges towards

(dxi−1)λc
d0

. �

Proof of proposition 3.9. First, the biased random walk RWλc on T∞ is recurrent (see [12],
theorem 5.1). Recall that L(T ) is the set of all leafs of finite tree T and Si be the set of all
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finite paths starting at origin, ending at one element of L(T ) and pass through xi. We have,
for all x ∈ L(T ), (T∞)x ' T∞ and we apply several times successive Lemma 3.11 to obtain

C̃(λ, T∞, xi) =
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, T γ|γ|),

where fγi (λ) =
mγiλ

mγi−1 (1+mγiλC(λ,T γi )) and mγi = dγi − 1. Since C̃(λ, T γ|γ|) = C̃(λ, T∞), then

C̃(λ, T∞, xi) =
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, T∞).

By Lemma 6.16, we obtain

ϕλ,1(xi) =
C̃(λ, T∞, xi)

C̃(λ, T∞)
=
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ).

We observe that for all γ ∈ Si,mγ0 = m(γ|γ|), this implies that ϕλ,1(xi) converges when λ
decreases towards λc(T

∞) and

�(3) lim
λ→λc(T∞)

ϕλ,1(xi) =
∑
γ∈Si

λ|γ|c .

Remark 3.12. The equation (3) gives us a way to calculate the critical value of RWλ on T∞,
as the solution of the equation

mo∑
i=1

∑
γ∈Si

x|γ| = 1.

4. The continuity of effective conductance

We end the first half of the paper with a few results on the conductance functions of trees,
namely we give a criterion for the continuity of C(λ, T ) in λ and study the set of conductance
functions of spherically symmetric trees of bounded degree.

4.1. Left- and right-continuity.

Lemma 4.1. Let T be a locally finite tree, then C(λ, T ) is right continuous on [0, 1].

Proof. We define Sn := inf {k > 0 : d(o,Xk) = n} where Xn is RWλ. Then

C(λ, T ) = π(o) lim
n→+∞

P(Sn < So).

We set C(λ, n) := π(o)P(Sn < S0). It is easy to see that C(λ, n) > C(λ, n + 1). Moreover,
by theorem 2.9, C(λ, n) is a continuous increasing function for each n. It implies that C(λ, T )
is the decreasing limit of increasing functions. Therefore C(λ, T ) is right continuous. �

Definition 4.2. Let T be a locally finite tree. For each x ∈ T , we let Xx
n denote the biased

random walk on T x (i.e Xx
0 = x,∀n > 0 : Xx

n ∈ T x). We say that T is uniformly transient if

∀λ > λc,∃αλ > 0, ∀x ∈ T,P(∀n > 0, Xx
n 6= x) > αλ.

It is called weakly uniformly transient if there exists a sequence of finite pairwise disjoint
cut-sets Πn, such that

∀λ > λc,∃αλ > 0, ∀x ∈
+∞⋃
k=1

Πk,P(∀n > 0, Xx
n 6= x) > αλ.

We can see that if λc(T ) = 1, then T is uniformly transient.

Theorem 4.3. Let T be a uniformly transient tree. Then C(λ, T ) is left continuous on (λc, 1].
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Proof. Fix λ1 > λc, we will prove that C(λ, T ) is left continuous at λ1. Choose λ0 ∈ (λc, λ1).
By theorem 2.9, we can find a constant α > 0 (does not depend on λ ∈ [λ0, λ1]) such that

∀λ ∈ [λ0, λ1],∀x ∈ V (T ),P(∀n > 0, Xx
n 6= x) > α.

We give a family of conductances c(e)e∈E(T ) ∈ [0, 1]E , and Yn that is the associated random

walk. Let A ⊂ [0, 1]E be a subset of elements of [0, 1]E such that Yn is transient. Then we
define the following function

A 3 c(e)e∈E 7→ ψ(c(e)e∈E) := Cc(e)e∈E (o↔∞).

Recall that Tk is the collection of all the vertices at distance k from the root: then we have

C(λ, T ) = ψ(λ, λ, . . . λ︸ ︷︷ ︸
|T1|

, λ2, λ2, . . . λ2︸ ︷︷ ︸
|T2|

, . . . .).

We will abuse notation until the end of the argument, writing

ψ(λ1, λ
2
2, λ

3
3, . . .) for ψ(λ1, λ1, . . . λ1︸ ︷︷ ︸

|T1|

, λ2
2, λ

2
2, . . . λ

2
2︸ ︷︷ ︸

|T2|

, . . .)

so that in particular C(λ, T ) = ψ(λ, λ2, λ3, . . .).
Let ε > 0, we choose L ∈ N such that (1−α)L < ε. For λ ∈ (λ0, λ1) we have |C(λ1, T )− C(λ, T )| =∣∣ψ(λ1, λ

2
1, λ

3
1, . . .)− ψ(λ, λ2, λ3, . . .)

∣∣ and by the triangular inequality, we get

(4) |C(λ1, T )− C(λ, T )| 6
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣+
∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)

∣∣
where b := (λL+k)k>1 and b1 := (λL+k

1 )k>1.

Let λ′ ∈ [λ0, λ1] we denote Sλ
′

n the first hitting point of Tn by the random walk with conduc-
tances

(λ, λ, . . . λ︸ ︷︷ ︸
|T1|

, λ2, λ2, . . . λ2︸ ︷︷ ︸
|T2|

, . . . , λL, λL, . . . λL︸ ︷︷ ︸
|TL|

, (λ′)L+1, . . . (λ′)L+1︸ ︷︷ ︸
|TL+1|

, (λ′)L+2, . . . (λ′)L+2︸ ︷︷ ︸
|TL+2|

), . . .

We can see that the law of Sλ1L and the law of SλL are identical. When the random walk reaches

TL, it returns to o with a probability strictly smaller than (1− α)L. It implies that

(5)
∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)

∣∣) 6 2(1− α)L 6 2ε.

It remains to estimate
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣. By theorem 2.9, we have

ψ(λ1, . . . , λ
L
1 , b1) > 0 and ψ(λ, . . . , λL, b) > 0.

We apply the lemma 2.16 to obtain

(6) ∃δ > 0,∀λ ∈ [λ0, λ1] such that λ1 − λ < δ :
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣ < ε.

We combine (4), (5) and (6) to get

∃δ > 0, ∀λ ∈ [λ0, λ1] such that λ1 − λ < δ : |C(λ1, T )− C(λ, T )| 6 3ε.

This implies that C(λ, T ) is left continuous at λ1. �

In the same method as in the proof of theorem 4.3, we can prove the slightly stronger result
(the proof of which we omit):

Theorem 4.4. Let T be a weakly uniformly transient tree: then the equivalent conductance
C(λ, T ) is left continuous on (λc, 1].
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4.2. Conductance functions. Let S denote the set of spherically symmetric trees. Fix m ∈
N∗, and we set

Am := {T ∈ S;∀x ∈ T, deg x 6 m} and

Fm :=
{
f ∈ C0([0, 1]) : ∃T ∈ Am, C(λ, T ) = f(λ)

}
,F :=

{
f ∈ C0([0, 1]) : ∃T,C(λ, T ) = f(λ)

}
.

Definition 4.5. Let Tn be a sequence of trees. We say that Tn converges locally towards T∞

if ∀k, ∃n0,∀n > n0, T
n
6k = T∞6k, where T6n is a tree defined by{

V (T6n) := {x ∈ T, d(0, x) 6 n}
E(T6n) = E|V (T6n)×V (T6n)

We are now ready to prove Theorem 1.5. We need the following lemma:

Lemma 4.6. Let (fn)n be a sequence of functions in Fm. Assume that fn converges uniformly
towards f . Then, there exists a function g ∈ Fm such that

∀λ, f(λ) 6 g(λ).

Proof. Let (Tn)n be a sequence of elements of Am such that

∀n, fn(λ) = C(λ, Tn).

Since the degree of vertices of Tn are bounded by m, we can apply the diagonal extraction
argument. After renumbering indices, there exists a subsequence of (Tn)n, denoted also by
(Tn)n, converges locally towards some tree, denote by T∞. As for all n, Tn ∈ Am, then T∞ ∈
Am.

We set g(λ) = C(λ, T∞). It remains to show that

∀λ, f(λ) 6 g(λ).

Assume that there exists λ0 such that f(λ0) > g(λ0). We set c = f(λ0) − g(λ0) > 0. The
sequence fn(λ0) converges towards f(λ0), thus

∃l1 > 0, ∀n > l1, fn(λ0) > f(λ0)− c

4
.

Moreover the sequence Cn(λ0, T
∞) := π(o)Pλ0(Sn < So) decreases towards g(λ0), It implies

that
∃l2 > 0,∀n > l2, Cn(λ0, T

∞) < g(λ0) +
c

4
.

We take l > 0 such that {
fl(λ0) > f(λ0)− c

4
Cl(λ0, T

∞) < g(λ0) + c
4

We have Cl(λ0, T
l) = Cl(λ0, T

∞), then Cl(λ0, T
l) < g(λ0) + c

4 .

Moreover, the sequence Ck(λ0, T
l) decreases towards fl(λ0) when k goes to +∞, thus

f(λ0)− c

4
< fl(λ0) < g(λ0) +

c

4
.

Then we obtain c < c
4 . It is a contradiction. �

Remark 4.7. The lemma 4.6 is still valid if we take Am := {T ∈ T; ∀x ∈ T, deg x 6 m} and
(fn)n converges simply to f , where T denote the set of locally finite trees.

Proof of theorem 1.5. Fix a diagonal extraction and we take the function g(λ) as in the proof
of the lemma 4.6. We will prove that f = g.

By lemma 4.6, we have f(λ) 6 g(λ). Assume that there exists λ0 such that 0 < f(λ0) < g(λ0).
We prove that

∀λ < λ0, f(λ) = 0.

By proposition 2.11, if we set β0 = 1
λ0

, then∀n,R(λ0, T
n) =

∑+∞
k=1

βk0
|Tnk |

R(λ0, T
∞) =

∑∞
k=1

βk0
|T∞k |
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We write

R(λ0, T
n) =

+∞∑
k=1

βk0∣∣Tnk ∣∣ =
∑
k6n

βk0∣∣Tnk ∣∣ +
∑
k>n

βk0∣∣Tnk ∣∣ .
As ∀k > n, |Tnk | = |T∞k |, then

R(λ0, T
n) =

∑
k6n

βk0∣∣T∞k ∣∣ +
∑
k>n

βk0∣∣Tnk ∣∣ .
We know that {

limn→∞R(λ0, T
n) = 1

f(λ0) <∞
limn→∞R(λ0, T

∞) = 1
g(λ0) <

1
f(λ0)

We obtain

lim
n→+∞

∑
k>n

βk0∣∣Tnk ∣∣ =
1

f(λ0)
− 1

g(λ0)
> 0.

Now we take β > β0 and we apply the proposition 2.11 in order to get

R(
1

β
, Tn) =

+∞∑
k=0

βk∣∣Tnk ∣∣ >
∑
k>n

βk∣∣Tnk ∣∣ > (
β

β0
)n
∑
k>n

βk0∣∣Tnk ∣∣ > (
β

β0
)n(

1

f(λ0)
− 1

g(λ0)
).

It implies that limn→+∞ fn( 1
β ) = limn→+∞

1
R( 1

β
,Tn)

= 0. It means

∀λ < λ0, f(λ) = 0.

As f 6= 0, we define λp := inf {0 6 λ 6 1 : f(λ) > 0}. We proved that

∀λ > λp, f(λ) = g(λ).

As the sequence (fn)n converges uniformly to f , then f is continuous, and then f(λp) = 0. By
lemma 4.1, g is right continuous. Then we obtain

f(λp) = lim
λ→λp

f(λ) = lim
λ→λp

g(λ) = g(λp) = 0.

Moreover f and g are two increasing functions, then ∀λ ∈ [0, 1], f(λ) = g(λ). �

5. Self-avoiding walks

5.1. Walks and bridges. In this section, we review some definitions on the self-avoiding walk,
bridges and connective constant (see [6],[17]). Denote by cn the number of self-avoiding walks
of length n, starting at origin on the graph considered. If G is transitive, the sequence c

1/n
n

converges to a constant when n goes to infinity. This constant is called the connective constant
of G.

Definition 5.1. An n-step bridge in the plane Z2 (or half-plane H) is an n-step self-avoiding
walk (SAW ) γ such that

∀i = 1, 2, . . . , n, γ1(0) < γ1(i) 6 γ1(n)

where γ1(i) is the first coordinate of γ(i). An n-step zero-bridge is an n-step SAW γ such that
γ1(0) 6 γ1(i) 6 γ1(n), ∀i = 1, 2, . . . , n. Let bn denote the number of all n-step bridges with
γ(0) = 0. By convention, set b0 = 1.

We have bm+n ≥ bm · bn, hence we can define

µb = lim
n→+∞

b
1
n = sup

n
b

1
n
n .

Moreover, bn ≤ µnb ≤ µn.

Definition 5.2. An n-step half-space walk is an n-step SAW γ with γ1(0) < γ1(i),∀i.

We set hn is the number of all n-step half-space walk with γ(0) = 0.
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Definition 5.3. The span of an n-step SAW γ is

max
0≤i≤n

γ1(i)− min
0≤i≤n

γ1(i).

Definition 5.4. Given a bridge (respectively a zero-bridge) γ of length n, γ is called an ir-
reducible bridge (respectively irreducible zero-bridge) if it can not be decomposed into two
bridges (respectively zero-bridges) of length strictly smaller than n. It means, we can not find
i ∈ [1, n− 1] such that γ|[0,i], γ|[i,n] are two bridges (respectively zero-bridges). The set of all
irreducible-bridges is denoted by iSAW .

5.2. Kesten’s and Lawler’s measures. For this section, we refer the reader to ([9],[4]) for a
more precise description. Denote by SAW∞ the set of all self-avoiding walks on the plane Z2

or half-plane H. In this part, we review the Kesten measure. He defined a probability measure
on the SAW∞ of half-plane from the finite bridges. We let B denote the set of bridges starting
at origin and B0 the set of zero-bridges starting at origin. We let also I denote the set of
irreducible bridges starting at origin and I0 the set of irreducible zero-bridges starting at origin.
Let pn denote the number of irreducible bridges starting at origin, of length n and qn denote
the number of irreducible zero-bridges starting at origin of length n.

We will define a notion of concatenation of paths. If γ1 =
[
γ1

0 , γ
1
1 , . . . , γ

1
m

]
and γ2 =[

γ2
0 , γ

2
1 , . . . , γ

2
n

]
are two SAWs, we define γ1 ⊕ γ2 to be the (m + n)-step walk (not necessarily

self-avoiding walk)

γ1 ⊕ γ2 :=
[
0, γ1

1 , . . . , γ
1
m, γ

1
m + γ2

1 − γ2
0 , . . . , γ

1
m + γ2

n − γ2
0

]
.

Similarly, we can define γ1 ⊕ γ2 ⊕ · · · ⊕ γk. We begin with the following equality

Fact 5.5 (Kesten [9], Theorem 5). We have

+∞∑
n=1

pn
µn

= 1.

Let us now to define the Kesten measure on the SAW∞ in the half-plane. We fix β 6 1
µ and

let Qβ denote the probability measure on I defined by

Qβ(ω) =
β|ω|

Zβ
, ω ∈ I

where Zβ =
∑

ω∈I β
|ω|. By the fact 5.5 and the remark 5.6 below, Zβ is finite and thus Qβ is a

probability measure on I.

Remark 5.6. We have also Λβ <∞ if β < 1
µ . If β > 1

µ then Zβ = +∞, and then Qβ can not

be defined.

If k > 1, we consider the product space Ik and define the product probability measure Qβ
k . We

write Qβ
j for an extension to SAW in H as follows, Qβ(ω) = 0 if ω is not of form ω1⊕ω2⊕· · ·⊕ωk

and

Qβ
j (H \ Ik) = 0;Qβ

j (ω1 ⊕ ω2 ⊕ · · · ⊕ ωk) = Qβ(ω1)×Qβ(ω2)× · · · ×Qβ(ωk).

We define Qβ
∞ on I∞, it is called the β-Kesten measure on SAW∞ in half-plane.

Fact 5.7. Under the β-Kesten measure, the infinite self-avoiding walk, denoted by ω∞,βK , does

not reach the line Ox almost surely. Moreover, if β < 1
µ , we have then

P(lim sup
n
<ω∞,βK (n) = +∞) = 1;P(lim inf

n
<ω∞,βK (n) = −∞) = 1.

Now, we define an other probability measure on SAW∞ in half-plane from the finite zero-
bridges. Then
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Fact 5.8 (see [4]). For every β ∈ (0, 1
µ ], we have

+∞∑
n=0

qnβ
n < +∞.

In the same way, we can define a probability measure Lβ on I0. The infinite half-plane SAW
starting at 0 is obtained by choosing

ω1 ⊕ ω2 ⊕ . . . ,

where ω1, ω2, . . . are independent; ω1 is chosen from Lβ; ω2, ω3 . . . are chosen from Qβ. The
law of infinite half-plane SAW is called β-Lawler measure.

Fact 5.9. Under the β-Lawler measure, the infinite self-avoiding walk, denoted by ω∞,βL , reaches
the line Ox with a probability p which satisfy 0 < p < 1 and it reaches the line Ox a finite number
of times almost surely. Moreover, if β < 1

µ , then

P(lim sup
n
<ω∞,βL (n) = +∞) = 1 and P(lim inf

n
<ω∞,βL (n) = −∞) = 1.

5.3. The self-avoiding tree. Consider the self-avoiding walks in the lattice Z2 starting at the
origin. We construct a tree TZ2 from these self-avoiding walks: the vertices of TZ2 are the finite
self-avoiding walks and two such vertices joined when one path is an extension by one step of
the other. Formally, denote by Ωn the set of self-avoiding walks of length n starting at the origin
and V :=

⋃+∞
n=0 Ωn. Two elements x, y ∈ V are adjacent if one path is an extension by one step

of the other. We then define TZ2 = (V,E). We can define with the same way for TH, TQ, where
H is a half-plane and Q is a quarter-plane.

We know that gr(TZ2) = br(TZ2) = µ where µ is the connective constant of lattice Z2. We
calculate the branching number and the growth rate of TH and TQ, that is the contents of the
following proposition.

Proposition 5.10. Let TH, TQ be defined as above. Then,

gr(TH) = br(TH) = gr(TQ) = br(TQ) = µ,

where µ is the connective constant of the lattice Z2.

Notation. In [9], Kesten proved that all bridges in a half-plane can be decomposed into a
sequence of irreducible bridges in a unique way. For every m ∈ N∗, we set:

Am := {ω ∈ iSAB, |ω| 6 m} .

An infinite self-avoiding walk is called “m-good” if it possesses a decomposition into irreducible
bridges in Am. We can construct a tree Tm from these m-good walks, which we will refer to as
the m-good tree.

Proof of proposition 5.10. We know that (see [1], [7]) there exists a constant B and n0 ∈ N
such that ∀n > n0 : cn 6 bne

B
√
n. This implies that gr(TH) = µ. Let bmn be the number of

bridges of length n which possess a decomposition in Am. Then, ∀n, |Tmn | > bmn .
We have Tm ⊂ TH, then br(Tm) 6 br(TH). Moreover, Tm is m-super-periodic, so we can

apply theorem 2.7 to get br(Tm) = gr(Tm). Then ∀m, br(TH) > br(Tm) = gr(Tm). We will

prove that lim gr(Tm) = µ. We have bm+n > bmbn, bmn1+n2
> bmn1

bmn2
and µ = limn→∞ b

1
n
n . Fix

ε > 0, there exists n0 such that

∀n > n0,
∣∣∣µ− (bn)

1
n

∣∣∣ 6 ε.
For each n > n0, bn = bnn and bknn > (bnn)k = (bn)k by sub-additivity. It implies that

(bnkn)
1
kn > (bn)

1
n .
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The sequence (bnl )
1
l increases toward µn, then (bnkn)

1
kn →

k→∞
µn 6 gr(Tn). We obtain gr(Tn) >

µ − ε and then µ > gr(Tn) > µ − ε, ∀n > n0. This implies that lim gr(Tn) = µ and then
br(TH) > µ.

We apply the proposition 2.3 in order to get br(TH) 6 gr(TH) = µ. This implies that
br(TH) = µ and in the same method we obtain gr(TQ) = br(TQ) = µ. �

5.4. Self-avoiding walks in a wedge. Let Cθ be a cone of angle θ of H. Denote by Tθ the
tree which is constructed from the self-avoiding walks in Cθ.

Theorem 5.11. Denote by br(Tθ) (respectively gr(Tθ)) the branching number (respectively the
growth rate) of Tθ. Then br(Tθ) = gr(Tθ) = µ where µ is the connective constant of Z2.

In order to prove this theorem, we have to show the convergence of the connective constants
of strips of H with increasing widths and the associated convergence of the branching numbers
of the trees constructed from self-avoiding walks of these strips.

The convergence of connective constant. Let (BL)L be the sequence of strips of H where BL is a
strip between three lines =z = 0 and =z = L. We show the convergence of connective constant
of BL towards the connective constant of Z2. We need the following lemma.

Lemma 5.12 (The subadditivity property). Let L, n be two positive natural numbers, we denote
by bLn the number of bridges of length n starting at origin in the strip BL. Then,{

∀L, n,m ∈ N∗ : b2Ln+m > b
L
mb

L
n

∀L, n, k ∈ N∗ : b2Lkn > (bLn)k

Remark 5.13. bkLkn > (bLn)k is much easier by sub-additivity.

Proof of Lemma 5.12. We divide the strip B2L into two small strip of size L, B1
2L, B

2
2L (see the

figure 1)
We denote by Sz the symmetry with respect to the line which goes through z and orthogonal

to the line Ox. We consider γ1, γ2 two bridges in the strip B1
2L of length m and n, we concatenate

γ1, γ2, we obtain a path γ12 := γ1 ⊕ γ2.
We can see thatγ12 is a bridge of B2L of length m+ n. This implies that

for all L, n,m ∈ N∗, b2Ln+m > b
L
mb

L
n .

Next, if one takes the third bridge γ3 of B1
2L of length p, we concatenate γ1, γ2, γ3 as follows.{

γ123 = γ12 ⊕ γ3 if <(γ12(|γ12|)) 6 L
γ123 = γ12 ⊕ Sγ12(|γ12|)(γ3) if <(γ12(|γ12|)) > L

We can see that γ123 is a bridge of B2L of length m + n + p. If we take m = n = p, then
b2L3n > (bLn)3. We repeat the same strategy to obtain the result of lemma 5.12. �

Proposition 5.14. We denote by µL the connective constant of the strip BL, then limL µL = µ
where µ is the connective constant of Z2.

Proof. We define bQn the number of bridges of Q of length n, then
∀L : limn(bLn)

1
n = µL

∀L : bLL = bQL
limn(bQn )

1
n = µ

∀L, n, k : b2Lkn > (bLn)k

From these relations, we prove that limL µL = µ. Let ε > 0, we take n0 such that:∣∣∣(bQn )
1
n − µ

∣∣∣ 6 ε,∀n > n0. The sequence (b2n0
kn0

)
1
kn0 converges towards µ2n0 . Moreover b2n0

kn0
>

(bn0
n0

)k, thus (b2n0
kn0

)
1
kn0 > (bn0

n0
)

1
n0 .

By making k tend to +∞, we obtain µ2n0 > µ − ε. As the sequence (µL)L is an increasing
sequence, thus ∀L > 2n0 : µL > µ− ε.

This implies that the sequence µL converge towards µ when L goes to +∞. �
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Figure 2. A concatenation of 3 bridges in B1
2L.

Proposition 5.15. limL br(TBL) = µ.

Proof. Recall the definition of Am in the proof of Proposition 5.10. An infinite self-avoiding
walk of BL is called “m-good walk” if it possesses a decomposition into irreducible bridges in

Am. We construct a tree TmBL from these m-good walks. We set bL,mn be the number of bridges of
BL of length n which possess a decomposition in Am. We know that all bridges in a half-plane
can decompose into a sequence of irreducible bridges of the unique way. This implies that all
bridges in the strip BL can decompose into a sequence of irreducible bridges of the unique way.

Then for all n,
∣∣∣(TmBL)n

∣∣∣ > bL,mn .

We obtain,

{
∀L, n, k : b2Lnk > (bLn)k

∀L,m, n, k : b2L,mnk > (bL,mn )k

Let ε > 0, we apply the proposition 5.14, there exists L0 such that: µ > µL0 > µ− ε.
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Moreover, µL0 = lim(bL0
n )

1
n , there is also m: (bL0

m )
1
m > µL0 − ε. Then,

(b2L0,m
km )

1
km > (bL0,m

m )
1
m = (bL0

m )
1
m > µL0 − ε > µ− 2ε.

We obtain gr(TmB2L0
) > µ− 2ε. As TmB2L0

is (m+ 2L0)-super-periodic and gr(TmB2L0
) < +∞, we

apply the theorem 2.7 to get gr(TmB2L0
) exists and gr(TmB2L0

) = br(TmB2L0
). Moreover TmB2L0

⊂
TB2L0

, then br(TB2L0
) > µ− 2ε. The sequence br(TBL) is an increasing sequence, we obtain:

∀L > 2L0 : br(TBL) > µ− 2ε.

Moreover br(TBL) 6 µ because TBL ⊂ TH. This implies that limL br(TBL) = µ. �

Proof of Theorem 5.11. Let ε > 0, we apply the proposition 5.14 and 5.15, there exists a con-
stant L such that: br(TBL) > µ− ε and gr(TBL) > µ− ε.

We take N such that: N tan θ > L. We have the cone Cθ contains a strip of size greater than
L, origin at (N tan θ, 0). This implies that br(Tθ) > µ− ε; gr(Tθ) > µ− ε.

As ε is arbitrary, then br(Tθ) = µ and gr(Tθ) = µ. �

5.5. Continuity of C on TH. Now, we apply the results in Section 4.1 for the self-avoiding
trees TH and TZ2 .

Theorem 5.16. The function C(λ, TH) (or C(λ, TZ2)) is continuous on ( 1
µ , 1), where µ is the

connective constant of the lattice Z2.

Proof. The right continuity of C(λ, TH) is a consequence of the lemma 4.1.
In order to prove the left continuous, we seek to apply the theorem 4.4. For this, we prove

that TH is weakly uniformly transient. In the half-plane H, we define a sequence of rectangles
(Rn)n>1 where Rn is the rectangle with 4 vertices

(−n, 0); (−n, n); (n, n); (n, 0).

We define a sequence of pairwise disjoint cut-sets from these rectangles as follows:

Πn :=

{
γ : γ(|γ|) ∈ Rn and ∀k < |γ| , γ(k) ∈

o
Rn

}
.

We set Γ :=
⋃

Πn. It remains to verify that

∀λ > λc(=
1

µ
),∃αλ > 0, ∀x ∈ Γ,P(∀n > 0, Xx

n 6= x) > αλ.

Recall that TQ denote the self-avoiding tree from a quarter-plane. We can see that, for every
x ∈ Γ, T x contains the tree TH or TQ. We conclude thank to the proposition 5.10. �

Remark 5.17. The self-avoiding trees TH and TZ2 are not uniformly transient.

Recall that Bn is a strip of H and TBn is the self-avoiding tree which is constructed from
self-avoiding walks in Bn. Let fn(λ) := C(λ, TBn).

Theorem 5.18. The sequence of functions (fn)n converges uniformly towards a continuous
function f if and only if RWλc on TH is recurrent, where 1

λc
= µ is the connective constant of

lattice Z2.

In order to prove the theorem 5.18, we need the following lemma.

Lemma 5.19. For all k, fk(
1
µ) = 0.

Proof. We use the theorem 2.14 for this proof.
We fix k ∈ N∗ and for each n, we define the rectangle Rn with 4 vertices

(−n, 0); (−n, k); (n, k); (n, 0).

We define a sequence of cut-sets from these rectangles as follows

Πn := {γ : <(γ(|γ|)) ∈ {−n, n} ;∀k < |n| , |<(γ(k)| < n and 0 6 =(γ(k)) 6 k} .
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We will estimate
(∑

e∈Πn
c(e)

)−1
. We can see that a self-avoiding walk γ ∈ Πn of length i

can expand into a bridge of length i+ k + 1 and as γ ∈ Πn then n 6 |γ| 6 2kn, it implies that

∑
e∈Πn

c(e) 6
2kn∑
i=n

bi+k+1

µi
6 3k

2kn∑
i=n

bi
µi
6 2k3kn,

and then ∑
n

(∑
e∈Πn

c(e)

)−1

>
∑
n

1

2k3kn
= +∞.

It means RW 1
µ

on TBk is recurrent and then fk(
1
µ) = 0. �

Proof of Theorem 5.18. Assume that (fn)n converges towards a continuous function f . We will
prove that RW ( 1

µ , TH) is recurrent.

We set g(λ) = C(λ, TH), we prove that ∀λ > 1
µ , f(λ) = g(λ).

We fix λ > 1
µ and define a sequence of pairwise disjoint cut-sets On by considering the first

time reaches the rectangles (as in the proof of the theorem 5.16).
Let T be an arbitrary tree and C denote its cut set. We set T (0↔ C) := {x ∈ T : ∃y ∈ C, x 6 y}.

We can see that

∀n, TBn(0↔ On) = TH(0↔ On).

We proved that limλc(TBn) = 1
µ , then we can find l > 0 such that λc(TBl) < λ. Then we set

m = C(λ, TBl) > 0.

Then, there exists k > 0 such that

∀n > k,

{
Pλ(0↔ On) > g(λ)− ε

(1−m)n < ε

We obtain

∀i > k + l, fi(λ) > g(λ)− 2ε

Then g(λ) > f(λ) > g(λ)− 2ε. This implies that f(λ) = g(λ).
Since f is a continuous function, thus

f(
1

µ
) = lim

λ→ 1
µ

f(λ) = lim
λ→ 1

µ

g(λ) = g(
1

µ
).

By lemma 5.19, we have f( 1
µ), and then RW 1

µ
on TH is recurrent.

Conversely, if RW 1
µ

on TH is recurrent, it is easy to see that

∀λ ∈ [0, 1] , f(λ) = g(λ).

By theorem 5.16 and moreover g( 1
µ) = 0, we have then g is continuous function and then f

is continuous. �

In the same way, we can prove the following:

Proposition 5.20. With the same notations as in the proof of the proposition 5.10, set fn(λ) :=
C(λ, Tn). Then the sequence of functions (fn)n converges towards a continuous function f if
and only if RWλc on TH is recurrent, where 1

λc
= µ is the connective constant of lattice Z2.

6. The biased walk on the self-avoiding tree

We now begin the study of our main object of interest, which is the biased random walk
on the self-avoiding tree. We will use the results obtained in the previous section to prove
properties of the limit walk; in the next section, we will gather a few natural conjectures.
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6.1. The limit walk. Let λ ∈ [0,+∞]. We consider the biased random walk RWλ on TH or
TZ2 . By proposition 5.10, we have λc(TH) = λc(TZ2) = 1

µ . We take λ > λc, the biased random

walk is transient. Then almost surely, the random walk do not reach Tk after n steps, with n
large enough. We can then define the limit walk, denoted by ω∞λ in the following way:

ω∞λ (i) = xi ⇔
{

xi ∈ Ti
∃n0,∀n > n0 : Xn ∈ T xi

}
We can see that ω∞λ is a random ray. Denote by Pλ be the law of ω∞λ in the half-plane and
Qλ be the law of ω∞λ in the plane. We can see also that Pλ (respectively Qλ) is a probability
measure on SAW∞ in the half-plane (respectively the plan).

We remove all of finite branch of TR where R is a regular lattice, then we obtain a tree which
have no leaf, denoted by TSLR.

6.2. The case λ = +∞ and percolation. First, we review some definitions on the percolation
theory. Percolation was introduced by Broadbent and Hammersley in 1957 [3]. For p ∈ [0, 1], we
consider the triangular lattice T, a site of T is open with probability p or close with probability
1− p, independently of the others.

This can also be seen as a random coloring (in black or white) of the faces of hexagonal lattice
T∗ dual of T.

We define the exploration curve as follows. Let Ω be a simply connected subgraph of the
triangular lattice and A,B be two points on its boundary. Then we can divide the hexagonal
cells of ∂Ω into two arcs, going from A to B in two directions (clockwise and counter-clockwise).
These arcs will be denoted by B and W such that A,B, B,W is in the clockwise direction.
Assume that all of hexagons in B are colored in black and all of hexagons in W are colored
in white. The color of the hexagonal faces in Ω is chosen at random (black with probability p
and white with probability 1− p), independently of the others. We define the exploration curve
γ starting at A and ending at B which separates the black component containing B from the
white component containing W.

Then the exploration curve γ is a self-avoiding walk using the vertices and edges of hexagonal
lattice T∗. We can define this interface γ by an equivalent way: It is a self-avoiding walk. At
each step, γ look at its three neighbors on hexagonal lattice. One is occupied by the last step
of γ. For the next step, γ chooses randomly one of these neighbors which have not yet occupied
by γ. If there is just one neighbor which has not yet occupied, we choose this neighbor and if
there are two neighbors, we choose the right neighbor with probability p and the left neighbor
with probability 1− p.

We know that there exists pc ∈ [0, 1] such that for p < pc there is almost surely no infinite
cluster, while for p > pc there is almost surely an infinite cluster. This parameter is called
critical point. We can see in [2], the critical point of site-percolation on the triangular lattice
equals 1

2 . The lower bound of critical point was proved by Harris in [8]. A similar theorem in
the case of bond percolation on square lattice by Kesten in [10].

For this section and the next section, we take Ω = T∗+. The hexagons on the boundary of Ω
(∂Ω) and on the right of origin (denoted by ∂+Ω) are colored in black and the hexagons on ∂Ω
and on the left of origin ( ∂−Ω) are colored in white. In this case, the exploration curve is an
(random) infinite self-avoiding walk. Denoted by TT∗+ be the self-avoiding tree is constructed

from the self-avoiding walks in T∗+. For simplify, we set T = T∗+.
In the case λ = +∞, by the construction of the exploration curve, the limit walk ω∞ on

TSLT has the same law with the exploration curve γ. Then all the properties of γ is until valid
for ω∞ of RW∞. One of these properties is γ reaches the boundary of Ω an infinite times almost
surely. This property is until valid in the case RWλ, for all λ > λc (see theorem 6.3 below).

6.3. An inequality.

Theorem 6.1. Let λ > λc and A be a subset of Ω \ {0} which is surrounded by a simple curve
γ, and such that Ω \ A is simply connected. We denote ω∞ (respectively ω∞,A) the limit walk
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of RWλ for the tree TΩ (respectively TΩ\A). We denote by P (respectively P̃) the associated
probability measure, then

P(ω∞ ∩ γ 6= ∅) > P̃(ω∞,A ∩ γ 6= ∅).

Proof. We prove this theorem by a coupling method. Recall a family of random variables

(Ux)x in the section 2.3. We set W0 = 0, W̃0 = 0 almost surely. Assume that we constructed

(W0,W1, . . . ,Wn) and (W̃0, W̃1, . . . , W̃n). We construct Wn+1 and W̃n+1 as follow:

• If Wn /∈ ∂A, we set:

Wn+1 = UWn and W̃n+1 = Wn+1.

• If Wn ∈ ∂A and W̃n ∈ ∂A, let Y be a random variable of uniform law on [0, 1] and

C(λ, TWn
Ω ) (respectively C(λ, TWn

Ω\A)) is the effective conductance of parameter λ on the

tree TWn
Ω (respectively TWn

Ω\A). By the corollary 2.10, we obtain

C(λ, TWn
Ω ) > C(λ, TWn

Ω\A).

We take randomly a value of Y (uniform law):

– If Y ∈
[
0, C(λ, TWn

Ω\A)
]
, for all k > n+ 1, we set

Wk = Υ, W̃k = Υ.

– If Y ∈
[
C(λ, TWn

Ω\A), C(λ, TWn
Ω )

]
, we set

Wn+1 = Wn−1 and for all k > n+ 1 : W̃k = Υ.

– If Y ∈
[
C(λ, TWn

Ω ), 1
]
, we set:

Wn+1 = Wn−1 and W̃n+1 = W̃n−1.

• If Wn ∈ ∂A and W̃n = Υ, let Y be a random variable of uniform law on [0, 1] and

C(λ, TWn

Ω\A) is the effective conductance of parameter λ on the tree TWn

Ω\A. We take

randomly a value of Y (uniform law):

– If Y ∈
[
0, C(λ, TWn

Ω\A)
]
, for all k > n+ 1, we set:

Wk = Υ

– If Y ∈
[
C(λ, TWn

Ω\A), 1
]
,

Wn+1 = Wn−1.

Let µ (respectively ν) be the law of random walk (Wn)n (respectively (W̃n)n). We can see
that

P̃(ω∞,A ∩ γ 6= ∅) = µ(∃n > 0,Wn = Υ) and P(ω∞ ∩ γ 6= ∅) = ν(∃n > 0, W̃n = Υ).

By the construction of Wn and W̃n, we have

µ(∃n > 0,Wn = Υ) 6 ν(∃n > 0, W̃n = Υ).

This completes the proof of theorem. �

Remark 6.2. The random walks Wn and W̃n are not the biased symmetric random walks. Then
the coupling in the proof of theorem 6.1 is not a coupling between the biased symmetric random
walks on TΩ and TΩ\A. The theorem 6.1 is until valid if we replace a subset A and a curve γ
by any subset B and C such that if we want to reach B, we must be through C.
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6.4. Some property of Pλ and Qλ. We will prove the following theorem:

Theorem 6.3. For all λ > λc, under the Pλ (or Qλ) measure, the infinite self-avoiding walk
reaches the line Ox ( i.e the line Z⊗ {0}) an infinity of times almost surely.

In order to prove the theorem 6.3, we need the following function:

Π : x ∈ V (T ) 7→ x|x| ∈ Z2 where T = TH or T = TZ2 .

The proof of theorem 6.3 consists of several steps. The first step, we study the trajectory of
the biased random walk Xn. We prove that, under the Pλ-measure and Qλ-measure, it reaches
the line Ox almost surely. In the second step, we prove that it reaches the line Ox an infinite
number of times almost surely. The third step, we prove that under Qλ -measure, the limit
walk reaches the line Ox an infinite number of times almost surely and the last step we prove
that under Pλ -measure, the limit walk reaches the line Ox an infinite number of times almost
surely.

The first step. In this step, we study the trajectory of RWλ. We begin with the following
lemma:

Lemma 6.4. Let λ > λc, we consider the biased symmetric random walk RWλ on TZ2 or TH.
Then lim sup |<(Π(Xn))| = +∞ almost surely.

Proof. We prove the lemma in the case TH. In the same way, we obtain the result for TZ2 .
Assume that p = P(lim sup |<(Π(Xn))| < +∞) > 0, thus 1 − p = P(lim sup |<(Π(Xn))| =

+∞) < 1, then
∃n0 > 0 : P(−n0 6 <(Π(Xn)) 6 n0, ∀n) = q > 0.

For each i > 0, we set T i := inf {n : =(Π(Xn)) = i}. It is easy to see that T i < +∞ on the
event {−n0 6 <(Π(Xn)) 6 n0,∀n}, because the biased random walk is transient. We remark
that, at time T i, we can always go towards the left or the right. We define:

Si := {∃!k : |<(Π(Xk))| = n0 + 1,=(Xk) = i and ∀n 6= k : −n0 6 <(Π(Xn)) 6 n0} .
If the walk is at time T i, we go towards the left or the right to reach the domain

{<z = n0 + 1}
⋃
{<z = −n0 − 1} ,

and after, we go back to XT i . We need at most 2n0 steps to do it. Then, there exist a constant
c > 0 such that P(Si) > cq,∀i.

Moreover,
⋃+∞
i=0 Si ⊂ {|<X(Xn)| 6 n0 + 1,∀n} and these Si are disjoints. Then,

P({|<(Π(Xn))| 6 n0 + 1,∀n}) >
∑

P(Si) = +∞

This is a contradiction and then lim sup |<(Xn)| = +∞ almost surely. �

Theorem 6.5. Let λ > λc. We consider the biased random walk RWλ on TZ2 or TH. Then,

|{n > 0 : =(Π(Xn)) = 0}| > 1,

almost surely.

Proof. To simplify, we set Yn := Π(Xn). We will prove this theorem by contradiction. First, we
prove that |{n > 0,=Yn = 0}| > 1 a.s for the tree TZ2 .

We set: p = P(∀n > 0,=(Yn) > 0). Assume that p > 0, then

P(∃n > 0,=(Yn) = 0) = 1− p < 1

We write {∃n > 0 : =(Yn) = 0} =
⋃+∞
n=1 {∃0 < k 6 n : =(Yk = 0)}.

As the sequence ({k 6 n : =(Yk) = 0})n is an increasing sequence. Thus,

P(∃n : =(Yn) = 0) = lim
n

P(∃k ∈ (0, n] : =(Yk) = 0).

Let ε > 0, there exist then n0 such that: ∀n > n0,P(∃k ∈ (0, n] : =(Yk) = 0) > 1− p− ε.
We know that the biased random walk does not reach the line Ox with a probability p > 0.

By lemma 6.4, the random walk Xn must reach the domain H := {<(z) = n0}
⋃
{<(z) = −n0}
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with a probability 1. We consider the first time S, that the random walk Xn reaches H and
we assume that it reaches the line {<(z) = n0}. We go on the random walk one step to reach
the line {<(z) = n0 + 1}. We consider a new half-plane at origin YS . We have also the random
walk after the time S will stay in this half-plan with a probability p. Thus,

P(∀k 6 n0 : =(Yk) > 0 and ∃k > n0 : =(Yk) = 0) =
λp2

1 + 3λ
.

As two events

{∀k 6 n0 : =(Yk) > 0;∃k > n0 : =(Yk) = 0)} and {∃k ∈ (0, n0] : =(Yk) = 0}

are disjoint and they are included in the event {∃n > 0 : =(Yn) = 0}, then:

P({∃n > 0 : =(Yn) = 0}) = 1− p > 1− p− ε+
λp2

1 + 3λ
.

If we take ε small enough, we will find a contradiction. It implies p = 0.
Now, we prove that |{n : =(Yn) = 0}| > 1 a.s for the tree TH. We set p = P(∃n > 0 : =(Yn) =

0). Assume that p > 0, as the random walk in the domain {=(z) > 0} of half-plane is the same
law with the random walk in this domain of the plan. It implies that the random walk Xn on
the plan does not reach the line Ox with a positive probability. That is a contradiction with
the step 1 and then p = 0. �

The second step. The goal of this step is to prove the following theorem:

Theorem 6.6. Let λ > λc. We consider the biased symmetric random walk RWλ on TZ2 or
TH. Then,

|{n > 0 : =(Yn) = 0}| = +∞,
almost surely.

Proof of theorem 6.6 in the case TH. Denote by A the following event:

A := {|{n > 0 : =Yn = 0}| =∞} .

We can write:

A = {∀k, ∃n > k : =Yn = 0} .
Suppose that P(A) < 1, we have then P(Ac) > 0. We write the event Ac under the form:

Ac := {∃k, ∀n > k : =Yn > 0} .

We set Acm := {∀n > m : =Yn > 0}, then Ac =
⋃
Acn.

We can see that it is an increasing union, thus ∃n0 : P(Acn0
) > 0 and then P(∀n > n0 : =Xn >

0) = c > 0.
Now, we consider the random walk until time n0. Denote by Ωn0 the set of all configurations

(Y0, Y1, . . . , Yn0). For each ω ∈ Ωn0 , we define the event Aω as follows: The random walk does
not reach the line Ox after time n0 and (Y0, Y1, . . . , Yn0) = ω, then∑

ω∈Ωn0

P(Aω) = c > 0.

As the cardinal of Ωn0 is finite, then there exists ω0 ∈ Ωn0 such that: P(Aω) = c1 > 0.
We add a new line under the line Ox and we consider a new half-plane H′ with the origin at

O′ (see the Figure 4).
We consider the biased random walk RWλ on TH′ . We consider the random walk begin at

O′, it comes to O in the first step, and after it does a trajectory as the configuration ω0, we
obtain a configuration ω′0 (see the figure 2). The random walk on TH and TH′ do not have the
same law until the time n0, but as n0 fix, therefore the configuration Aω′0 occurs with a positive
probability, where Aω′0 is defined as the same way with Aω0 . This means that the biased random

walk on TH′ does not reach the line O′x with a positive probability. It is a contradiction and
then P(A) = 1, that concludes the proof of theorem 6.6 in the case TH.
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Figure 3. A configuration ω

Figure 4. A new half-plane H′

Proof of theorem 6.6 in the case TZ2. Suppose that the random walk reaches the line Ox an
infinite number of times with a probability strictly greater than 1.

By using the same argument as in the case TH, then there exists a configuration ω and a
number n0 such that P(Aω) > 0 where Aω is an event that the random walk does not reach the
line Ox after the time n0 and (Y0, Y1, . . . , Yn0) = ω (see Figure 5).

Figure 5. A configuration of Aω
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Let A1 = (a1, 0), B1 = (b1, 0) . . . , Ak = (ak, 0), Bk = (bk, 0) be k point of intersections of
the line Z × {0} with ω along the curve ω such that there exists a self-avoiding walk Cai in
ω starting at (ai, 0) and ending at (bi, 0) which is below the line Z × {0}. Let (a, 0) be the
last point of intersection of the line Z × {0} with ω before that the random walk does not
reach the line Z × {0}. We set A := (x, 0) be one of (ai, 0) or (bi, 0) which maximize the first
coordinate. We take B = (x, 1) and we consider a new plan P with the origin at B as in the
figure 4, and we consider the random walk RWλ on the tree THP from the self-avoiding walks
in the half-plane of the plan P. Let C = (Ca1 , Ca2 , . . . , Cal) be a set of l self-avoiding walks in
ω which connect (ai, 0) to (bi, 0). If there exist i, j such that [aj ∧ bj , aj ∨ bj ] ⊂ [ai ∧ bi, ai ∨ bi],
then we remove the self-avoiding walk Caj in C. Finally, we obtain a set of self-avoiding walk
C ′ = (C ′a1 , C

′
a2 , . . . , C

′
am) which there are not i, j such that [aj ∧ bj , aj ∨ bj ] ⊂ [ai ∧ bi, ai ∨ bi]

and we can assume that C ′ = (Ca1 , Ca2 , . . . , Cam) and that a1 > a2 > · · · > am and for all
i ∈ [1,m] , ai < bi, this hypothesis implies that A ≡ (b1, 0). We consider the configuration ω′ as
follows (see the Figure 6):

Set u = sup {1 6 i 6 m : ai > a}. Then we define the self-avoiding walk ω′1 := ([BA] , Ca1 , [(b2, 0), (a1, 0)] , Ca2 , [(b3, 0), (a2, 0)] , . . . , Cau , [(au, 0)(au, 1)])
ω′2 := ([(au, 1), (am, 1)] , [(am, 1), (am, 0)] , Cam , [(bm, 0), (am−1, 0)] . . . , Cau+1 , [(bu+1, 0), (a, 0)])

ω′3 := ω|[t,n0] where ω(t) = (a, 0)

We take ω′ := ω′1 ⊕ ω′2 ⊕ ω′3.
Then, we can see that the random walk reach a finite number of times the half-plane of P

with a strictly positive probability. This is a contradiction with the case TH that we proved in
the first case. �

Figure 6. The configuration ω′

Remark 6.7. All of results that we proved in the first step and second step for TZ2 and TH, are
still valid for TSLH and TSLZ2. We can see that it is suffice to prove the theorem 6.3 in the
case TSLH and TSLZ2, (it means the biased random walk on TSLH and TSLZ2 reach the line
Ox an infinite number of times).

The third step. In this step, we give a proof of theorem 6.3 in the case Qλ-measure. We start
with the following definition

Definition 6.8. Let C be a closed, simple curve of Z2. The interior of C, denoted by I(C) is
a sub-domain of R2 which is surrounded by C (see the figure 7). Denote by S(C) is the area of
this domain. The exterior of C is defined by

E(C) := R2 \ I(C).

Lemma 6.9. Let ((a1, 0), (a2, 0), . . . , (a2n,0)) be a sequence of points on the line Z × {0} such
that a1 < a2 < · · · < a2n. For each i, we denote γi the self-avoiding walk starting at (a2i−1, 0)
and ending at (a2i, 0) which is below the line Z× 0. Suppose that

∀i, γi ∩ γj = ∅.
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Figure 7. A closed, simple curve C of Z2 with its interior in red

We set A :=
⋃
γi and B = ∂A ∪ ((∪ni=1 [a2i−1, a2i])× {0}) where,

∂A :=
{
z ∈ Z2 : ∃x ∈ A, 0 < d(x, z) 6

√
2
}

Then there exists a self-avoiding walk in B starting at (a1 − 1, 0) and ending at (a2n+1, 0).

Proof. The statement is intuitively clear, but its proof is a little messy; we postpone it to
Appendix A. �

Remark 6.10. By the same argument as in the proof of Lemma 6.9 (see Appendix A), we can
see that: Given v ∈ Z× {0} such that there exists an infinite self-avoiding walk which is below
the line Z× {0} starting at v, there exists a self-avoiding walk in B starting at v and ending at
(a2n + 1, 0).

Proof of theorem 6.3 in the case Qλ-measure. Denote by A the following event:

A := {|{n > 0 : =ω∞λ (n) = 0}| =∞} .
We can write A under the form:

A := {∀k,∃n > k : =ω∞λ (n) = 0} .
Assume that P(A) < 1, then P(Ac) > 0. By the symmetry, the following event has a positive
probability

Ac1 := {∃k, ∀n > k : =ω∞λ (n) < 0}
We set Acm := {∀n > m : =ω∞λ (n) < 0}, then Ac1 =

⋃
Acn.

We can see that it is an increasing union, thus ∃n0 : P(Acn0
) > 0 and then P(∀n > n0 :

=ω∞λ (n) < 0) = c > 0.
Now we consider the limit walk until the step n0, (ω∞λ (0), ω∞λ (1), . . . , ω∞λ (n0)). By using the

same argument as in the second step, there exist ω(0), ω(1), . . . , ω(n0) such that the following
event has a strictly positive probability (see Figure 8):

B :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) < 0

We fix k > 0 and define:

D := ({=z > 0} ∩
{
<z < inf

06i6n0

<ω∞λ (i)

}
) ∪ ({=z > 0} ∩

{
<z > sup

06i6n0

<ω∞λ (i)

}
)

Let V be a subset of Z \ D such that for all x ∈ V , there exists an infinite self-avoiding walk
starting at x and it does not reach the path (ω∞λ (0), ω∞λ (1), . . . , ω∞λ (n0)).

For each x ∈ V , we denote by γx the path starting at x, which does not reach the path
(ω(0), . . . , ω(n0)), and reaches the domain D at only one point and such that, for each z ∈ γx, z
belong to the line Z×{0} or z belong to the boundary of self-avoiding walk (ω(0), ω(1), . . . , ω(n0)).
By the lemma 6.9 and the remark 6.10, γx as above exists. We set then p := supx∈V |γx|.
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Figure 8. A configuration of B

Let T be a tree defined by: 
∣∣T i∣∣ = 1 for all i 6 p

T p = {v}
T
v

= TQ
We apply the theorem 6.6, almost surely, the random walk reaches the line Ox an infinite

number of times, and thus, it reaches the line Ox at least k times almost surely. Every time
it reaches the line Ox at a point x, we can go on the random walk at most p step to reach
the domain D (we can do it, because TSLZ2 have no leaf and then x belong to V ). Then, the
limit walk stays within the half-plane =z < 0 after the step n0 with a probability smaller than
(1− C(λ, T )), where C(λ, T ) is the effective conductance for the tree T . In general, we have:

∀k > 0 : P(B) 6 (1− C(λ, T ))k

As we have C(λ, T ) > 0 (because it contains the tree TQ), then P(B) = 0. That is a contradic-
tion, and it implies the theorem 6.3 in the case Qλ-measure. �

The last step. In this section, we give a proof of theorem 6.3 in the case Pλ-measure. We
begin with the following:

Proposition 6.11. We consider the biased random walk RWλ on TSLH. Let (Bn)n be the
sequence of strips of H where Bn is the strip between two lines =z = 0 and =z = n. We define
ps := limn br(TBn), where TBn is a tree which is constructed from the self-avoiding walks in Bn.
Suppose that λ > 1

ps
. Then the limit walk ω∞λ touch the line Ox an infinite number of times

almost surely.
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Figure 9. A configuration of B with a path γx

Proof. We fix λ > ps. First, we prove that there exists L > 0 such that the limit walk on the
tree TSLH reaches the strip BL almost surely.

Assume that, for all L > 0, the limit walk reaches the strip BL a finite number of times with
a strictly positive probability. We take L0 such that λ > 1

br(TBL0
) . We use the same argument

as in the second step, then there exists a sequence of vertices of H, ω(0), ω(1), . . . , ω(n0) such
that the following event has a strictly positive probability (see the figure):

B′ :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) > L0

We set b := sup06i6n0
<ω∞λ (i)− inf06i6n0 <ω∞λ (i). Let T̂ be a tree defined by:


∣∣∣T̂i∣∣∣ = 1 for all t 6 b

T̂b = v

T̂ v = TBL0

By theorem 6.6, we know that the random walk reaches the line Ox an infinite number of
times and then it must to reach the line =z = L0 an infinite number of times almost surely. By
using the same argument as in the third step, then:

∀k > 0 : P(B′) 6 (1− C(λ, TBL0
))k
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Figure 10. The random walk reaches the line Z × {0} at z and it go to D by
the path γz

As we have C(λ, TBL0
) > 0 (because we have taken λ > λc(TBL0

), then P(B′) = 0. That is a
contradiction. We conclude that there exists L > 0 such that the limit walk on the tree TSLH
reaches the strip BL almost surely.

We fix a number L such that the limit walk reaches the domain BL an infinite number of
times almost surely. Now, we prove that the limit walk reaches an infinite number of times the
line Ox almost surely.

Assume that P(|n : =ω∞(n) = 0 < +∞|) > 0, then there exists n0; z1, z2, . . . , zn0 such that
the following event occurs with a strictly positive probability:

C :=

{
ω∞λ (0) = 0;ω∞λ (1) = z1; . . . ;ω∞λ (n0) = zn0

∀n > n0 : =ω∞λ (n) > 0

Let T ∗ be a tree defined by |T
∗
i | = 1 for all t 6 L

T ∗L = {v}
(T ∗)v = TBL

Recall that Yn := ΠXn. Let U be a set of naturals n such that: <Yn = sup06i6n;Yi∈BL <Yi or
<Yn = inf06i6n;Yi∈BL <Yi. For each n ∈ U , we go on the walk in the vertical direction until it
reaches the line Ox. When it reaches the line Ox, it remains reach the line Ox with a probability
which is greater than c × C(λ, T ∗) where c is a constant that does not depend on n (see the
figure 11).
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Figure 11. A configuration of B’

As the walk touches the line Ox an infinite number of times almost surely, we have then
|U | = +∞, p.s. This implies that P(C) = 0. That is a contradiction.

In order to complete the proof of Theorem 6.3, we must have ps = br(TH). This equality is
the content of Proposition 5.15. �

Remark 6.12. In the prove of the proposition 6.11, if P(B′) = 0, we have then P(B”) > 0,
where

B” :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) < L0

By the same argument with the case P(B′) > 0, we can find a contradiction.

Theorem 6.13. For all λ > λc, we have

Rλ(lim sup
n
<ω∞λ (n) = +∞) = 1;Rλ(lim inf

n
<ω∞λ (n) = −∞) = 1,

where R ∈ {P,Q}.

Proof of theorem 6.13 in the case Z2. Assume that P(lim supn<ω∞λ (n) = +∞) < 1, we have
then P(∃A > 0, ∃n0 > 0, ∀n > n0 : <ω∞λ (n) < A) > 0.

Now we consider the limit walk until the step n0, (ω∞λ (0), ω∞λ (1), . . . , ω∞λ (n0)). By using the
same argument as in the proof of theorem 6.6, there exists ω(0), ω(1), . . . , ω(n0) such that the
following event have a strictly positive probability:
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Figure 12.

M :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : <ω∞λ (n) < 0

By the symmetry, the theorem 6.3 implies that the infinite self-avoiding walk touches the line
Oy an infinite number of times almost surely. Then, we use the same argument as in the third
step 6.4 to find a contradiction, and then P(lim supn<ω∞λ (n) = +∞) = 1. By the symmetry,
we also have P(lim infn<ω∞λ (n) = −∞) = 1. �

Proof of theorem 6.13 in the case half-plane H. We perform the procedure of the prove of theo-
rem 6.3 to obtain: The trajectory of the biased random walk Xn reaches the line {0}×Z+ almost
surely, then it reaches the line {0} × Z+ an infinite number of times almost surely. Finally, we
use the same argument as in the third step 6.4 to conclude. �

Remark 6.14. The theorems 6.3 and 6.13 are still valid in the other regular lattices such as
hexagonal lattice, triangular lattice.

6.5. The law of first k-steps of limit walk. We consider the biased random walk RWλ on
TH. Recall that ω∞λ is the associated limit walk and Pλ denote its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (TH) such that (y1, y2, . . . , yk) is a simple
path. For each λ > λc, recall that the law of first k-steps is defined by:

(7) ϕλ,k(y1, y2, . . . , yk) = Pλ(ω∞λ (1) = y1, ω
∞
λ (2) = y2, . . . , ω

∞
λ (k) = yk).

We prove the continuity of this function.
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Theorem 6.15. For every k ∈ N∗ and (y1, y2, . . . , yk) ∈ V k, the function ϕλ,k is a continuous
function of λ on (λc,+∞).

We begin with some notation. Let T be a tree and x ∈ V (T ), recall that C(λ, T x) denote
the effective conductance of biased random walk Xx

n on the tree T x. If y ∈ (T x)1, we define

C(λ, T x, y) := P(∀n > 0, Xx
n > x;Xx

1 = y).

In order to prove the theorem 6.15, we need the following lemma:

Lemma 6.16. We have

ϕλ,k(y1, y2, . . . , yk) =
C(λ, T 0, y1)

C̃(λ, T 0)
· C(λ, T y1 , y2)

C̃(λ, T y1)
· · · C(λ, T yk−1 , yk)

C̃(λ, T yk−1)
.

Proof of lemma 6.16. We prove this lemma in the cases k = 1 and k = 2. In the case k > 3, we
use the same method.

The case k = 1 We let Ci(λ, T ) denote the probability return to origin k times before go to
the infinite for the biased random walk on the tree T . We define the events A := {ω∞λ (1) = y1}
and Ai denote the random walk return to origin k times before goes to the infinite by passing
through y1. In other words,

Ai := {ω∞λ (1) = y1; |n > 0 : Xn = o| = k} .
The events Ai are disjoints, then we can see that

A =
+∞⋃
i=0

Ai.

We have P(A0) = C(λ, T o, y1);P(Ai) = C(λ, T o, y1)Ci(λ, T o), ∀i > 1, we obtain then

P(A) =
+∞∑
i=0

P(Ai) = (1 +
+∞∑
i=1

Ci(λ, T o))C(λ, T o, y1).

Moreover, by the Markov property, we have also

(1 +
+∞∑
i=1

Ci(λ, T o)) =
+∞∑
i=0

(1− C̃(λ, T o))i =
1

C̃(λ, T o)
.

Then we obtain ϕλ,1(y1, y2, . . . , yk) = P(A) = C(λ,T o,y1)

C̃(λ,T o)
.

The case k = 2 We define the events A := {ω∞λ (1) = y1, ω
∞
λ (2) = y2} and Aij denote the

random walk returns to origin i times and after the last time that it returns to origin, it returns
to y1 j times. In other word,

Aij := {ω∞λ (1) = y1;ω∞λ (2) = y2; |n > 0 : Xn = o| = i; |n > Si : Xn = y1| = j} ,
where Si satisfy XSi = o; |0 < n < Si : Xn = o| = i− 1. Then

A =

+∞⋃
i=0

+∞⋃
j=0

Aij .

The events Aij are disjoints, thus

P(A) =
+∞∑
i=0

+∞∑
j=0

P(Aij).

Moreover, it is easy to see that

P(Aij) = Ci(λ, T 0)× C(λ, T 0, y1)× Cj(λ, T y1)× C(λ, T y1 , y2).

Then we get

P(A) =

+∞∑
i=0

+∞∑
j=0

Ci(λ, T 0)× C(λ, T 0, y1)× Cj(λ, T y1)× C(λ, T y1 , y2).
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Then

P(A) =
+∞∑
i=0

Ci(λ, T 0)× C(λ, T 0, y1)
+∞∑
j=0

Cj(λ, T y1)× C(λ, T y1 , y2).

By the Markov property, we have

+∞∑
j=0

Cj(λ, T y1) =
1

C̃(λ, T y1)
;

+∞∑
j=0

Ci(λ, T 0) =
1

C̃(λ, T 0)
.

We get P(A) = C(λ,T 0,y1)

C̃(λ,T 0)
× C(λ,T y1 ,y2)

C̃(λ,T y1 )
. �

Proof of theorem 6.15. By lemma 6.16, we have

ϕλ,k(y1, y2, . . . , yk) =
C(λ, T 0, y1)

C̃(λ, T 0)
× C(λ, T y1 , y2)

C̃(λ, T y1)
× · · · × C(λ, T yk−1 , yk)

C̃(λ, T yk−1)
.

It is enough to prove that C(λ, T yi , yi+1) and C(λ, T yi) are continuous. For the continuity
of C(λ, T yi), we use the same method as in the proof of theorem 5.16. For the continuity
of C(λ, T yi , yi+1), this function can be written in terms of λ and C(λ, T yi+1). It implies the
continuity of this function. �

Remark 6.17. Theorem 6.15 is still valid in the case TZ2. Beside, let k ∈ N∗ and z ∈ V (TH).
We define

ϕ(λ, k, z) := Pλ(ω∞λ (k) = z).

Then ϕ(λ, k, z) is a continuous function on ( 1
µ ,+∞). Indeed, we can write

ϕ(λ, k, z) =
∑

γ∈SAW ;γ(0)=0,γ(k)=z

C(λ, T 0, γ(1))

C̃(λ, T 0)
× C(λ, T γ(1), γ(2))

C̃(λ, T γ(1))
× · · · × C(λ, T γ(k−1), z)

C̃(λ, T γ(k−1))
.

7. The critical probability measure through biased random walk

7.1. The critical probability measure. In this section, H is the upper-half plane and we
now consider the self-avoiding tree T defined by either T = TH or T = TZ2 . We aim to construct
a critical probability measure through the biased random walk on self-avoiding tree. First, we
review the construction of Madras and Slade (see [14] for detail). Recall that bn be the number
of all n-step bridges that begin at 0 and Bn denote the set of all n-step bridges that begin at
0. Given n > m and an m-step self-avoiding walk γ in H. Let PBm,n(γ) denote the fraction of
n-step bridges that extend γ, it means

(8) PBm,n(γ) =
|Fn(γ) ∩Bn|

bn
=
|Fn(γ)|
bn

,

where Fn(γ) is the set of all n-step bridges which extend γ. The equality (8) is the probability
that a long bridge (uniformly chosen from among all n-step bridges) is an extension of γ. Define

(9) PBm(ω) := lim
n→∞

PBm,n(γ).

Fact 7.1 ([14], Theorem 8.3.1). Let γ be an m-step self-avoiding walk in H. Then the limit (9)
exists.

The existence of the measures PBm allows us to define a measure PB∞ on the set SAW∞ of H.
For each γ∞ ∈ SAW∞, denote γ∞ [0,m] be γ∞(0), γ∞(1), . . . , γ∞(m), then

PB∞(γ∞ [0,m] = γ) = PBm(γ), for every γ.

Fact 7.2 ([14], Theorem 8.3.2). PB∞ is the 1
µ -Kesten measure, where µ is the connective constant

of the square lattice.

We state now the main theorem of this section.
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Theorem 7.3. Recall that for all m > 1, Tm is the m-good tree. Fix k > 1 and y1, y2, . . . , yk ∈
V (TH), the function ϕm,λ,k(y1, . . . , yk) (respectively ϕH,λ,k(y1, . . . , yk)) denote the law of first
k-steps of RWλ on Tm (respectively TH). Then,

(1) The function ϕm,λ,k(y1, . . . , yk) converges towards a limit, denoted by ϕm,λm,k(y1, . . . , yk)
when λ decreases towards λm = λc(T

m).
(2) The function ϕm,λm,k(y1, . . . , yk) converges towards a limit, denoted by ϕλc,k(y1, . . . , yk).
(3) Moreover, we have the following diagram

ϕm,λ,k(y1, . . . , yk)
m→+∞
λ>λc(TH)

//

λ→λc(Tm)
��

ϕH,λ,k(y1, . . . , yk)

?
��

ϕm,λm,k(y1, . . . , yk)m→+∞
// ϕλc,k(y1, . . . , yk)

Proof of points 1 and 2 of Theorem 7.3. It is suffices to prove the theorem in the case
k = 2 and we use the same method for all k > 3. By fact 3.8, we have

for all i ∈ {1, 2, 3} lim
λ→λc(Tm)

ϕm,λ,2(y0 = 0, y1 = xi) =
∑
γ∈Si

λ|γ|m ,

where Si is a set of all irreducible bridges which pass through xi and λc(T
m) = λm. Let pi,n be

the number of irreducible bridges of length n which are pass through xi, we obtain

lim
λ→λc(Tm)

ϕm,λ,2(y0 = 0, yi) =

m∑
n=1

pi,nλ
n
m.

This implies that ϕm,λm,2(y0 = 0, y1 = xi) =
∑m

n=1 pi,nλ
n
m. Moreover, for all m,λm > λc(=

λc(TH)) since Tm ⊂ TH. Then,

ϕm,λm,2(y0 = 0, y1 = xi) >
m∑
n=1

pi,nλ
n
c .

We need to prove that ϕm,λm,2(y0 = 0, y1 = xi) converges. Assume that there exists a subse-
quence (mk)k such that{

∀i ∈ {1, 2, 3} , limk→+∞ ϕ
mk,λmk ,2(y0 = 0, y1 = xi) = αi

α1 >
∑+∞

n=1 p1,nλ
n
c

We can see that α1 + α2 + α3 = 1 and for all i ∈ {1, 2, 3} , αi >
∑+∞

n=1 p1,nλ
n
c . By Fact 5.5,

we have
∑3

i=1

∑+∞
n=1 pi,nλ

n
c = 1 and then 1 = α1 + α2 + α3 >

∑3
i=1

∑+∞
n=1 pi,nλ

n
c = 1. That

is a contradiction. It implies that for all i ∈ {1, 2, 3} , αi =
∑+∞

n=1 pi,nλ
n
c . We conclude that

ϕm,λm,2(y0 = 0, y1 = xi) converges towards
∑+∞

n=1 pi,nλ
n
c when m→ +∞. �

Proof of point 3 of Theorem 7.3. It remains to prove that

lim
m→+∞,λ>λc(TH)

ϕm,λ,k(y1, . . . , yk) = ϕH,λ,k(y1, . . . , yk).

It is suffices to prove the theorem in the case k = 2, the same method will extend for all k > 3.
Fix λ > λc(TH) and ε > 0. By the proof of proposition 5.10, we have limm→+∞ λc(T

m) =
λc(TH). Then there exists m0 > 0 such that,{

∀m > m0, λ > λc(T
m)

∀m > m0, (1− C(λ, Tm))m < ε

Let T be a tree defined by: |Ti| = 1 for all i 6 m
Tp = {v}
T v = Tm

We choose n0 (depends on m) such that for all n > n0, (1− C(λ))n < ε. By considering the
self-avoiding walks in the rectangle whose vertices are ((−n0, 0); (−n0,m0); (n0,m0); (n0, 0)) and
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a simple argument, we can see that for all i > m0n0,
∣∣ϕi,λ,k(y1, . . . , yk)− ϕH,λ,k(y1, . . . , yk)

∣∣ < 2ε.
Since ε is arbitrary, this complete the proof of theorem. �

Remark 7.4. • Theorem 7.3 allows us to define a critical probability measure Pλc on
TH. We can see that this critical probability measure is exactly Kesten’s measure as in
Section 5.2.
• Let T (m) = TZ2,m be the finite tree which is construct from self-avoiding walks starting

at origin of length smaller than m. Fix k > 1 and y1, y2, . . . , yk ∈ V (TZ2), recall that

T (m)∞,T (m) is T (m)-finite type and ϕm,λ,k(y1, . . . , yk) is the law of first k steps of RWλ

on T (m)∞,T (m). Then the function ϕm,λ,k(y1, . . . , yk) converges towards a limit, denoted

by ϕm,λm,k(y1, . . . , yk) when λ decreases towards λm = λc(T (m)∞,T (m)). We hope that
the function ϕm,λm,k(y1, . . . , yk) converges when m→∞.

7.2. Conjectures. If we take the cut-set Πn := Tn and we set c(e) = ( 1
µ)|e|, then∑

n

(
∑
e∈Πn

c(e))−1 =
+∞∑
n=1

µn

cn
.

If the prediction of Nienhuis holds, we obtain

+∞∑
n=1

µn

cn
> c

+∞∑
n=1

1

n
11
32

= +∞

By Theorem 2.14, we can establish the following conjecture.

Conjecture 7.5. The biased random walk RWλc on TH (or TZ2) is recurrent.

Finally, we believe that for every k > 1 and y1, y2, . . . , yk ∈ V (TH),

lim
λ→λc(TH)

ϕH,λ,k(y1, . . . , yk) = ϕλc,k(y1, . . . , yk).

Conjecture 7.6. The following convergence diagram holds

ϕm,λ,k(y1, . . . , yk)
m→+∞
λ>λc(TH)

//

λ→λc(Tm)
��

ϕH,λ,k(y1, . . . , yk)

λ→λc(TH)
��

ϕm,λm,k(y1, . . . , yk)m→+∞
// ϕλc,k(y1, . . . , yk)

Appendix A. Proof of Lemma 6.9

We give here an algorithm to prove Lemma 6.9. By a recursive argument, it is suffices to
prove lemma in the case n = 1. Let ω := γ1 and ω′ be a self-avoiding walk in Z2 \ ω, starting
at (a1 − 1, 0) and ending at (a2 + 1, 0). Then we obtain a polygon ωω′ (see the figure 5).

We follow the following algorithm:
INPUT: Two self-avoiding walk ω and ω′.
OUTPUT: A self-avoiding walk γ which is in B.
1. Let γ := ω′, U := {x ∈ γ \B}
2. We choose an element z = (a, b) of U
Case 1: If the edge (z, (a, b+1)) ∈ γ and the square (z, (a, b+1), (a+1, b+1), (a+1, b)) ∈ ωγ.

We remove the edge (z, (a, b + 1)) and we add 3 edges ((a, b + 1), (a + 1, b + 1)); ((a + 1, b +
1), (a+ 1, b)); ((a, b+ 1), (a+ 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 2: If the edge (z, (a, b+1)) ∈ γ and the square (z, (a, b+1), (a−1, b+1), (a−1, b)) ∈ ωγ.
We remove the edge (z, (a, b + 1)) and we add 3 edges ((a, b + 1), (a − 1, b + 1)); ((a − 1, b +
1), (a− 1, b)); ((a, b+ 1), (a− 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 3: If the edge (z, (a, b−1)) ∈ γ and the square (z, (a, b−1), (a+1, b−1), (a+1, b)) ∈ ωγ.
We remove the edge (z, (a, b − 1)) and we add 3 edges ((a, b − 1), (a + 1, b − 1)); ((a + 1, b −
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Figure 13. The self-avoiding walk ω (in red) and ω′ (in blue) and the polygon
between ω and ω′.

1), (a+ 1, b)); ((a, b− 1), (a+ 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 4: If the edge (z, (a, b−1)) ∈ γ and the square (z, (a, b−1), (a−1, b−1), (a−1, b)) ∈ ωγ.
We remove the edge (z, (a, b − 1)) and we add 3 edges ((a, b − 1), (a − 1, b − 1)); ((a − 1, b −
1), (a− 1, b)); ((a, b− 1), (a− 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 5: If the edge (z, (a+1, b)) ∈ γ and the square (z, (a+1, b), (a+1, b−1), (a, b−1)) ∈ ωγ.
We remove the edge (z, (a + 1, b)) and we add 3 edges ((a + 1, b), (a + 1, b − 1)); ((a + 1, b −
1), (a, b)); ((a, b + 1), (a + 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 6: If the edge (z, (a+1, b)) ∈ γ and the square (z, (a+1, b), (a+1, b+1), (a, b+1)) ∈ ωγ.
We remove the edge (z, (a + 1, b)) and we add 3 edges ((a + 1, b), (a + 1, b + 1)); ((a + 1, b +
1), (a, b+ 1)); ((a, b+ 1), (a+ 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 7: If the edge (z, (a−1, b)) ∈ γ and the square (z, (a−1, b), (a−1, b−1), (a, b−1)) ∈ ωγ.
We remove the edge (z, (a + 1, b)) and we add 3 edges ((a − 1, b), (a − 1, b − 1)); ((a − 1, b −
1), (a, b− 1)); ((a, b− 1), (a− 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (an + 1, 0).

Case 8: If the edge (z, (a−1, b)) ∈ γ and the square (z, (a−1, b), (a−1, b+1), (a, b+1)) ∈ ωγ.
We remove the edge (z, (a + 1, b)) and we add 3 edges ((a − 1, b), (a − 1, b + 1)); ((a − 1, b +
1), (a, b+ 1)); ((a, b+ 1), (a− 1, b)) to γ. We choose a new self-avoiding walk τ in γ starting at
(a1 − 1, 0) and ending at (a2 + 1, 0).

3. Let γ := τ ;U := {x ∈ γ \B}.
4. While U 6= Ø go back to 2.
5. Return γ.
We can see that whenever U is not empty, we can decrease the area of the interior of the

polygon ωγ. Indeed, for example if we are in the case 5, we have seven possibilities as in the
figure 14. The first possibility (the left picture in Figure 14), the area of the interior of the
polygon ωγ decrease 1. The second possibility (the right picture in Figure 14), the area of
interior of the polygon ωγ decrease at least 1 (the blue zone). Similarly, the possibilities in
Figures 15, 16 and 17, the area of interior of the polygon ωγ decrease at least 1.

Since the ere of the initial polygon is finite, then we can find a self-avoiding walk which is in
B, starting at (a1 − 1, 0) and ending at (an + 1, 0) after a finite steps of algorithm.
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Figure 14. The self-avoiding walk ω (in red) and ω′ (in blue and the polygon
between ω and ω′).

Figure 15. The self-avoiding walk ω (in red) and ω′ (in blue and the polygon
between ω and ω′).
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