Quasi-independence for nodal lines - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2019

Quasi-independence for nodal lines

Résumé

We prove a quasi-independence result for level sets of a planar centered stationary Gaussian field with covariance $(x,y)\mapsto\kappa(x-y)$. As a first application, we study percolation for nodal lines in the spirit of [BG16]. In the said article, Beffara and Gayet rely on Tassion's method ([Tas16]) to prove that, under some assumptions on $\kappa$, most notably that $\kappa \geq 0$ and $\kappa(x)=O(|x|^{-325})$, the nodal set satisfies a box-crossing property. The decay exponent was then lowered to $16+\varepsilon$ by Beliaev and Muirhead in [BM17]. In the present work we lower this exponent to $4+\varepsilon$ thanks to a new approach towards quasi-independence for crossing events. This approach does not rely on quantitative discretization. Our quasi-independence result also applies to events counting nodal components and we obtain a lower concentration result for the density of nodal components around the Nazarov and Sodin constant from [NS15].
Fichier principal
Vignette du fichier
Rivera_Vanneuville_Quasi-independence_for_nodal_lines_2.pdf (612.51 Ko) Télécharger le fichier
H_s.pdf (19.89 Ko) Télécharger le fichier
X_s.pdf (20.13 Ko) Télécharger le fichier
boundary.pdf (28.44 Ko) Télécharger le fichier
components.pdf (38.91 Ko) Télécharger le fichier
face-centered.pdf (3.05 Ko) Télécharger le fichier
interior.pdf (29.36 Ko) Télécharger le fichier
triangles_nodal.pdf (28.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01634287 , version 1 (13-11-2017)
hal-01634287 , version 2 (18-12-2017)
hal-01634287 , version 3 (07-03-2019)

Identifiants

Citer

Alejandro Rivera, Hugo Vanneuville. Quasi-independence for nodal lines. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2019, 55 (3), pp.1679-1711. ⟨10.1214/18-AIHP931⟩. ⟨hal-01634287v3⟩
338 Consultations
282 Téléchargements

Altmetric

Partager

More