Irrelevant vertices for the planar Disjoint Paths Problem - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series B Année : 2017

Irrelevant vertices for the planar Disjoint Paths Problem

Résumé

The Disjoint Paths Problem asks, given a graph $G$ and a set of pairs of terminals $(s_{1},t_{1}),\ldots,(s_{k},t_{k})$, whether there is a collection of $k$ pairwise vertex-disjoint paths linking $s_{i}$ and $t_{i}$, for $i=1,\ldots,k.$ In their $f(k)\cdot n^{3}$ algorithm for this problem, Robertson and Seymour introduced the irrelevant vertex technique according to which in every instance of treewidth greater than $g(k)$ there is an "irrelevant" vertex whose removal creates an equivalent instance of the problem. This fact is based on the celebrated Unique Linkage Theorem, whose - very technical - proof gives a function $g(k)$ that is responsible for an immense parameter dependence in the running time of the algorithm. In this paper we give a new and self-contained proof of this result that strongly exploits the combinatorial properties of planar graphs and achieves $g(k)=O(k^{3/2}\cdot 2^{k}).$ Our bound is radically better than the bounds known for general graphs.
Fichier principal
Vignette du fichier
1310.2378.pdf (1.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01632343 , version 1 (22-01-2018)

Identifiants

Citer

Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, et al.. Irrelevant vertices for the planar Disjoint Paths Problem. Journal of Combinatorial Theory, Series B, 2017, 122, pp.815-843. ⟨10.1016/j.jctb.2016.10.001⟩. ⟨hal-01632343⟩
310 Consultations
99 Téléchargements

Altmetric

Partager

More