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Abstract

The Disjoint Paths Problem asks, given a graph G and a set of pairs of terminals

(s1, t1), . . . , (sk, tk), whether there is a collection of k pairwise vertex-disjoint paths

linking si and ti, for i = 1, . . . , k. In their f(k) · n3 algorithm for this problem,

Robertson and Seymour introduced the irrelevant vertex technique according to

which in every instance of treewidth greater than g(k) there is an “irrelevant” vertex

whose removal creates an equivalent instance of the problem. This fact is based

on the celebrated Unique Linkage Theorem, whose – very technical – proof gives

a function g(k) that is responsible for an immense parameter dependence in the

running time of the algorithm. In this paper we give a new and self-contained proof

of this result that strongly exploits the combinatorial properties of planar graphs

and achieves g(k) = O(k3/2 · 2k). Our bound is radically better than the bounds

known for general graphs.
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1 Introduction

One of the most studied problems in graph theory is the Disjoint Paths Problem

(DPP): Given a graph G and a set P of k pairs of terminals, (s1, t1), . . . , (sk, tk), decide

whether G contains k vertex-disjoint paths P1, . . . , Pk where Pi has endpoints si and ti,

i = 1, . . . , k. In addition to its numerous applications in areas such as network routing

and VLSI layout, this problem has been the catalyst for extensive research in algorithms

and combinatorics [27]. DPP is NP-complete, along with its edge-disjoint or directed

variants, even when the input graph is planar [16–18, 28]. The celebrated algorithm of

Roberson and Seymour solves it however in f(k) ·n3 steps, where f is some computable

function [22]. This implies that, when we parameterize DPP by the number k of pairs of

terminals, the problem is fixed-parameter tractable. The Robertson-Seymour algorithm

is the central algorithmic result of the Graph Minors series of papers, one of the deepest

and most influential bodies of work in graph theory.

The basis of the algorithm in [22] is the so-called irrelevant-vertex technique which

can be summarized very roughly as follows. As long as the input graph G violates certain

structural conditions, it is possible to find a vertex v that is solution-irrelevant: every

collection of paths certifying a solution to the problem can be rerouted to an equivalent

one, that links the same pairs of terminals, but in which the new paths avoid v. One

then iteratively removes such irrelevant vertices until the structural conditions are met.

By that point the graph has been simplified enough so that the problem can be attacked

via dynamic programming.

The following two structural conditions are used by the algorithm in [22]: (i) G

excludes a clique, whose size depends on k, as a minor and (ii) G has treewidth bounded

by some function of k. When it comes to enforcing Condition (ii), the aim is to prove

that in graphs without big clique-minors and with treewidth at least g(k) there is always

a solution-irrelevant vertex. This is the most complicated part of the proof and it

was postponed until the later papers in the series [23, 24]. The bad news is that the

complicated proofs also imply an immense parametric dependence, as expressed by the

function f, of the running time on the parameter k. This puts the algorithm outside the

realm of feasibility even for elementary values of k.

The ideas above were powerful enough to be applicable also to problems outside the

context of the Graph Minors series. During the last decade, they have been applied to

many other combinatorial problems and now they constitute a basic paradigm in param-

eterized algorithm design (see, e.g., [6, 7, 9, 12, 13, 15]). However, in most applications,

the need for overcoming the high parameter dependence emerging from the structural

theorems of the Graph Minors series, especially those in [23, 24], remains imperative.

Hence two natural directions of research are: simplify parts of the original proof for

the general case or focus on specific graph classes that may admit proofs with better

parameter dependence. An important step in the first direction was taken recently by

Kawarabayashi and Wollan in [14] who gave an easier and shorter proof of the results
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in [23, 24]. While the parameter dependence of the new proof is certainly much better

than the previous, immense, function, it is still huge: a rough estimation from [14] gives

a lower bound for g(k) of magnitude 222Ω(k)

which in turn implies a lower bound for f(k)

of magnitude 2222Ω(k)

.

In this paper we offer a solid advance in the second direction, focusing on planar

graphs (see also [20,26] for previous results on planar graphs). We show that, for planar

graphs, g(k) is single exponential. In particular we prove the following result.

Theorem 1. Every instance of DPP consisting of a planar graph G with treewidth at

least 82 · k3/2 · 2k and k pairs of terminals contains a vertex v such that every solution

to DPP can be replaced by an equivalent one whose paths avoid v.

The proof of Theorem 1 is presented in Section 3 and deviates significantly from

those in [14, 23, 24]. It is self-contained and exploits extensively the combinatorics of

planar graphs. Given a DPP instance defined on a planar graph G, we prove that if

G contains as a subgraph a subdivision of a sufficiently large (exponential in k) grid,

whose “perimeter” does not enclose any terminal, then the “central” vertex v of the grid

is solution-irrelevant for this instance. It follows that the “area” provided by the grid is

big enough so that every solution that uses v can be rerouted to an equivalent one that

does not go so deep in the grid and therefore avoids the vertex v.

Combining Theorem 1 with known algorithmic results, it is possible to reduce, in

22O(k) ·n2 steps, a planar instance of DPP to an equivalent one whose graph has treewidth

2O(k). Then, using standard dynamic programming on tree decompositions, a solution, if

one exists, can be found in 22O(k) ·n steps. The parametric dependence of this algorithm

is a step forward in the study of the parameterized complexity of DPP on planar graphs.

This algorithm is abstracted in the following theorem, whose proof is in Section 4.

Theorem 2. There exists an algorithm that, given an instance (G,P) of DPP, where

G is a planar n-vertex graph and |P| = k, either reports that (G,P) is a NO-instance

or outputs a solution of DPP for (G,P). This algorithm runs in 22O(k) · n2 steps.

An extended abstract of this work, without any proofs, appeared in [2]. Some of our

ideas have proved useful in the recent breakthrough result of Cygan et al. that establishes

fixed-parameter tractability for k-disjoint paths on planar directed graphs [5].

2 Basic definitions

Throughout this paper, given a collection of sets C we denote by ∪∪∪∪∪∪∪∪∪C the set ∪x∈Cx, i.e.,

the union of all sets in C.
All graphs that we consider are finite, undirected, and simple. We denote the vertex

set of a graph G by V (G) and the edge set by E(G). Every edge is a two-element subset

of V (G). A graph H is a subgraph of a graph G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
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E(H) ⊆ E(G). Given two graphs G and H, we define G ∩H = (V (G) ∩ V (H), E(G) ∩
V (H)) and G ∪H = (V (G) ∪ V (H), E(G) ∪ V (H)). Given a S ⊆ V (G), we also denote

by G[S] the subgraph of G induced by S.

A path in a graph G is a connected acyclic subgraph with at least one vertex whose

vertices have degree at most 2. The length of a path P is equal to the number of its

edges. The endpoints of a path P are its vertices of degree 1 (in the trivial case where

there is only one endpoint x, we say that the endpoints of P are x and x). An (x, y)-path

of G is any path of G whose endpoints are x and y.

A cycle of a graph G is a connected subgraph of G whose vertices have degree 2. For

graphs G and H the cartesian product is the graph whose vertex set is V (G)×V (H) and

whose edge set is {{(v, v′), (w,w′)} | ({v, w} ∈ E(G) ∧ v′ = w′) ∨ (v = w ∧ {v′, w′} ∈
E(H))}.

The Disjoint Paths problem. The problem that we examine in this paper is the

following.

Disjoint Paths (DPP)

Input: A graph G, and a collection P = {(si, ti) ∈ V (G)2, i ∈ {1, . . . , k}} of

pairs of 2k terminals of G.

Question: Are there k pairwise vertex-disjoint paths P1, . . . , Pk in G such that

for i ∈ {1, . . . , k}, Pi has endpoints si and ti?

We call the k-pairwise vertex-disjoint paths certifying a YES-instance of DPP a solution

of DPP for the input (G,P). Given an instance (G,P) of DPP, we say that a non-

terminal vertex v ∈ V (G) is irrelevant for (G,P), if (G,P) is a YES-instance if and

only if (G \ v,P) is a YES-instance. We denote by PDPP the restriction of DPP on

instances (G,P) where G is a planar graph.

Minors. A graph H is a minor of a graph G, if there is a function φ : V (H)→ 2V (G),

such that

i. For every two distinct vertices x and y of H, G[φ(x)] and G[φ(y)] are two vertex-

disjoint connected subgraphs of G and

ii. for every two adjacent vertex x and y of H, G[φ(x)∪φ(y)] is a connected subgraph

of G.

We call the function φ minor model of H in G.

Grids. Let m,n ≥ 1. The (m × n)-grid is the Cartesian product of a path of length

m − 1 and a path of length n − 1. In the case of a square grid where m = n, we say

that n is the size of the grid. Given that n,m ≥ 2, the corners of an (m × n)-grid are
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its vertices of degree 2. When we refer to a (m × n)-grid we will always assume an

orthogonal orientation of it that classifies its corners to the upper left, upper right, down

right, and down left corner of it.

Given that Γ is an (m× n)-grid, we say that a vertex of G is one of its centers if its

distance from the set of its corners is the maximum possible. Observe that a square grid

of even size has exactly 4 centers. We also consider an (m × n)-grid embedded in the

plane so that, if it has more than 2 faces then the infinite one is incident to more than

4 vertices. The outer cycle of an embedding of an (m × n)-grid is the one that is the

boundary of its infinite face. We also refer to the horizontal and the vertical lines of an

(m × n)-grid as its paths between vertices of degree smaller than 4 that are traversing

it either “horizontally” or “vertically” respectively. We make the convention that an

(m× n)-grid contains m vertical lines and n horizontal lines. The lower horizontal line

and the higher horizontal line of Γ are defined in the obvious way (see Figure 1 for an

example).

Figure 1: A drawing of the (6 × 6)-grid. The four white round vertices are its corners

and the four grey square vertices are its centers. The cycle formed by the “fat” edges is

the outer cycle.

Plane graphs Whenever we refer to a planar graph G we consider an embedding of

G in the plane Σ = R2. To simplify notation, we do not distinguish between a vertex of

G and the point of Σ used in the drawing to represent the vertex or between an edge
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and the arc representing it. We also consider a plane graph G as the union of the points

corresponding to its vertices and edges. That way, edges and faces are considered to

be open sets of Σ. Moreover, a subgraph H of G can be seen as a graph H, where the

points corresponding to H are a subset of the points corresponding to G.

Recall that ∆ ⊆ Σ is an open (resp. closed) disc if it is homeomorphic to {(x, y) :

x2 + y2 < 1} (resp. {(x, y) : x2 + y2 ≤ 1}). Given a cycle C of G we define its open-

interior (resp. open-exterior) as the connected component of Σ \C that is disjoint from

(resp. contains) the infinite face of G. The closed-interior (resp. closed-exterior) of C is

the closure of its open-interior (resp. open-exterior). Given a set A ⊆ Σ, we denote its

interior (resp. closure) by int(A) (resp. clos(A)). An open (resp. closed) arc I in R2 is

any set homeomorphic to the set {(x, 0) | x ∈ (0, 1)} (resp. {(x, 0) | x ∈ [0, 1]}) and the

endpoints of I are defined in the obvious way. We also define trim(I) as the set of all

points of the arc I except for its endpoints.

Outerplanar graphs. An outerplanar graph is a plane graph whose vertices are all

incident to the infinite face. If an edge of an outerplanar graph is incident to its infinite

face then we call it external, otherwise we call it internal. The weak dual of an out-

erplanar graph G is the graph obtained from the dual of G after removing the vertex

corresponding to the infinite face of the embedding. Notice that if the outerplanar graph

G is biconnected, then its weak dual is a tree. We call a face of an outerplanar graph

simplicial if it corresponds to a leaf of the graph’s weak dual.

Treewidth. A tree decomposition of a graph G is a pair (T, χ), consisting of a rooted

tree T and a mapping χ : V (T ) → 2V (G), such that for each v ∈ V (G) there exists

t ∈ V (T ) with v ∈ χ(t), for each edge e ∈ E(G) there exists a node t ∈ V (T ) with

e ⊆ χ(t), and for each v ∈ V (G) the set {t ∈ V (T ) | v ∈ χ(t)} is connected in T.

The width of (T, χ) is defined as w(T, χ) := max
{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
.

The tree-width of G is defined as

tw(G) := min
{

w(T, χ)
∣∣ (T, χ) is a tree decomposition of G

}
.

We need the next proposition that follows directly by combining the main result

of [10] and (5.1) from [21].

Proposition 1. If G is a planar graph and tw(G) ≥ 4.5 · k + 1, then G contains a

(k × k)-grid as a mimor.

Our algorithmic results require the following proposition. It follows from the main

result of [19] (see also Algorithm (3.3) in [22]). The parametric dependence of k in the

running time follows because the algorithm in [19] uses as a subroutine the algorithm

in [4] that runs in 2k
O(1) · n steps.
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Proposition 2. There exists an algorithm that, given an n-vertex graph G and a positive

integer k, either outputs a tree decomposition of G of width at most k or outputs a

subgraph G′ of G with treewidth greater than k and a tree decomposition of G′ of width

at most 2k, in 2k
O(1) · n steps.

3 Irrelevant vertices in graphs of large treewidth

In this section we prove our main result, namely Theorem 1. We introduce the notion

of cheap linkages and explore their structural properties in Subsections 3.1 and 3.4.

In Subsection 3.7 we bring together the structural results to show the existence of an

irrelevant vertex in a graph of large treewidth.

3.1 Configurations and cheap linkages

In this subsection we introduce some basic definitions on planar graphs that are necessary

for our proof.

Tight concentric cycles. Let G be a plane graph and let D be a disk that is the

closed interior of some cycle C of G. We say that D is internally chordless if there is no

path in G whose endpoints are vertices of C and whose edges belong to the open interior

of C.

Let C = {C0, . . . , Cr}, be a sequence of cycles in G. We denote by Di the closed-

interior of Ci, i ∈ {0, . . . , r}, and we say that D = {D0, . . . , Dr} is the disc sequence of

C. We call C concentric, if for all i ∈ {0, . . . , r − 1}, the cycle Ci is contained in the

open-interior of Di+1. The sequence C of concentric cycles is tight in G, if, in addition,

• D0 is internally chordless.

• For every i ∈ {0, . . . , r − 1}, there is no cycle of G that is contained in Di+1 \Di

and whose closed-interior D has the property Di ( D ( Di+1.

Lemma 1. There exists an algorithm that given a positive integer r, an n-vertex plane

graph G, and a T ⊆ V (G), either outputs a tree decomposition of G of width at most

9 · (r + 1) · d
√
|T |+ 1 e) or an internally chordless cycle C of G such that there exists a

tight sequence of cycles C0, . . . , Cr in G where

• C0 = C and

• all vertices of T are in the open exterior of Cr.

Moreover, this algorithm runs in 2(r·
√
|T |)O(1) · n steps.
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Figure 2: An example of a plane graph G and a tight sequence of 3 concentric cycles

in it. Notice that the addition to G of any of the dashed edges makes this collection of

cycles non-tight.

Proof. Let x = |T |+1 and y = 2(r+1) ·d
√
x e. From Proposition 1, if tw(G) ≥ 4.5 ·y+1,

then G contains as a minor a (y × y)-grid Γ. We now observe that the grid Γ contains

as subgraphs x pairwise disjoint (2(r + 1) × 2(r + 1))-grids Γ1, . . . ,Γx. Note that each

Γi, i ∈ {1, . . . , x} contains a sequence of r+1 concentric cycles that, given a minor model

φ of Γ in G, can be used to construct, in linear time, a sequence of r+1 concentric cycles

Ci = {Ci0, Ci1, . . . , Cir} in G such that for every i, j ∈ {1, . . . , x}, where i 6= j, all cycles

in Cj are in the open exterior of Cir.

Note that at least one, say Cir, of the cycles in {C1
r , . . . , C

x
r } should contain all the

vertices of T in its open exterior. Let e be any edge of Ci0. Let also f be the face of G

that is contained in the open interior of Ci0 and is incident to e. Let Jf be the graph

consisting of the vertices and the edges that are incident to f . It is easy to verify that,

Jf contains an internally chordless cycle C that contains the edge e. Given Ci0, the

cycle C can be found in linear time. Notice now that G contains a tight sequence of

cycles C0, C1, . . . , Cr such that C0 = C and where, for h ∈ {0, . . . , r}, Ch is in the closed

interior of Cih. The result follows as the open exterior of Cr contains the open exterior

of Cir and therefore contains all vertices in T .

The algorithm runs as follows: it first uses the algorithm of Proposition 2 for k =

4.5 · y. If the algorithm outputs a tree decomposition of G of width at most k, then

we are done. Otherwise it outputs a subgraph G′ of G where tw(G′) > k and a tree

decomposition of G′ of width ≤ 2k. We use this tree decomposition in order to find a

minor model φ of the (y × y)-grid Γ in G′. This can be done in 2k
O(1)

= 2(r·
√
|T |)O(1) · n

steps using the algorithm in [1] (or, alternatively, the algorithm in [11]). Clearly, φ is also
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a minor model of Γ in G. We may now use φ, as explained above, in order to identify,

in linear time, the required internally chordless cycle C in G.

Linkages. A linkage in a graph G is a non-empty subgraph L of G whose connected

components are all paths. The paths of a linkage are its connected components and we

denote them by P(L). The terminals of a linkage L are the endpoints of the paths in

P(L), and the pattern of L is the set
{
{s, t} | P(L) contains a path from s to t in G

}
.

Two linkages are equivalent if they have the same pattern.

Segments. Let G be a plane graph and let C be a cycle in G whose closed-interior is

D. Given a path P in G we say that a subpath P0 of P is a D-segment of P , if P0 is a

non-empty (possibly edgeless) path obtained by intersecting P with D. For a linkage L

of G we say that a path P0 is a D-segment of L, if P0 is a D-segment of some path P in

P(L).

Figure 3: An example of a CL-configuration Q = (C, L) where C contains 5 cycles and

L has 7 paths. Q has 13 segments. Linkage paths A, B, C, D, E, F , and G, contain

2, 2, 2, 1, 1, 2, 3 of these segments respectively. Also the eccentricities of the segments

of A, are 0 and 2, of B are 3 and 4. Notice that one of the two segments of A has two

3-chords, each having 2 semi 3-chords.
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CL-configurations. Given a plane graph G, we say that a pair Q = (C, L) is a CL-

configuration of G of depth r if C = {C0, . . . , Cr} is a sequence of concentric cycles in

G, L is a linkage of G, and Dr does not contain any terminals of L. A segment of Q is

any Dr-segment of L. The eccentricity of a segment P of Q is the minimum i such that

V (Ci∩P ) 6= ∅. A segment of Q is extremal if it is has eccentricity r. Observe that if C is

tight then any extremal segment is a subpath of Cr. Given a cycle Ci ∈ C and a segment

P of Q we define the i-chords of P as the connected components of P ∩ int(Di) (notice

that i-chords are open arcs). For every i-chord X of P , we define the i-semichords of

P as the connected components of the set X \Di−1 (notice that i-semichords are open

arcs). Given a segment P that does not have any 0-chord, we define its zone as the

connected component of Dr \P that does not contain the open-interior of D0 (a zone is

an open set).

Figure 4: An example of a CL-configuration (C, L) where the linkage L is C-cheap. Only

the 5 concentric cycles of C and a cropped part of the linkage L are depicted. Notice

that the collection of concentric cycles C is not tight.

A CL-configuration Q = (C, L) is called reduced if the graph L ∩∪∪∪∪∪∪∪∪∪C is edgeless. Let

Q = (C, L) be a CL-configuration of G and let E• be the set of all edges of the graph

L ∩∪∪∪∪∪∪∪∪∪C. We then define G∗ as the graph obtained if we contract in G all edges in E•.

We also define Q∗ as the pair (C∗, L∗) obtained if in L and in the cycles of C we contract

all edges of E•. Notice that Q∗ is a reduced CL-configuration of G∗. We call (Q∗, G∗)
the reduced pair of G and Q.
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Cheap linkages. Let G be a plane graph and Q = (C, L) be a CL-configuration of G

of depth r. We define the function c : {L | L is a linkage of G} → N so that

c(L) = |E(L) \
⋃

i∈{0,...,r}

E(Ci)|.

A linkage L of G is C-cheap, if there is no other CL-configuration Q′ = (C, L′) such that

L′ has the same pattern as L and c(L) > c(L′). Intuitively, the function c defined above

penalizes every edge of the linkage that does not lie on some cycle Ci.

Observation 1. Let Q = (C, L) be a CL-configuration and let (G∗,Q∗ = (C∗, L∗)) be

the reduced pair of G and Q. Then

• If L is C-cheap, then L∗ is C∗-cheap.

• If C is tight in G, then C∗ is tight in G∗.

Figure 5: An example of a convex CL-configuration (C, L). In the picture, only the 5

cycles in C and a cropped portion of L is depicted.

3.2 Convex configurations

We introduce CL-configurations with particular characteristics that will be useful for

the subsequent proofs. We then show that these characteristics are implied by tightness

and cheapness.

Convex CL-configurations. A segment P of Q is convex if the following three con-

ditions are satisfied:

(i) it has no 0-chord and
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(ii) for every i ∈ {1, . . . , r}, the following hold:

a. P has at most one i-chord

b. if P has an i-chord, then P ∩ Ci−1 6= ∅.

c. Each i-chord of P has exactly two i-semichords.

(iii) If P has eccentricity i < r, there is another segment inside the zone of P with

eccentricity i+ 1.

We say Q is convex if all its segments are convex.

Observation 2. Let Q = (C, L) be a CL-configuration and let (G∗,Q∗ = (C∗, L∗)) be

the reduced pair of G and Q. Then Q is convex if and only Q∗ is convex.

Figure 6: A visualization of the conditions of Lemma 2.

The proof of the following lemma uses elementary topological arguments.

Lemma 2. Let ∆1,∆2 be closed disks of R2 where int(∆1)∩ int(∆2) = ∅ and such that

∆1 ∪∆2 is also a closed disk. Let ∆3 = R2 \ int(∆1 ∪∆2) and let Y = bnd(∆3) ∩∆2

and Q = trim(∆1∩∆2). Let P be a closed arc of R2 whose endpoints are not in ∆1∪∆2

and such that Y ∩ P = ∅ and Q∩ P 6= ∅. Then int(∆1)∩ P has at least two connected

components.

Proof. Let q be some point in Q ∩ P . Let Q′ be an open arc that is a subset of int(∆1)

and has the same endpoints as Y . Notice that q and x belong to different open disks

defined by the cycle Q′ ∪ Y . Therefore P should intersect Q′ or Y . As Y ∩ P = ∅, P

intersects Q′. As Q′ ⊆ int(∆1), int(∆1) ∩ P has at least one connected component.

Assume now that int(∆1) ∩ P has exactly one connected component. Clearly, this

connected component will be an open arc I such that at least one of the endpoints of

I, say q, belongs to Q. Moreover, there is a subset P ′ of P that is a closed arc where

P ′ ∩ I = ∅ and whose endpoints are q and one of x and y, say y. As int(∆1) ∩ P has
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exactly one connected component, it holds that P ′ ∩ int(∆1) = ∅. Let Q′ be an open

arc that is a subset of int(∆1) and has the same endpoints as Y . Notice that q and y

belong to different open disks defined by the cycle Q′∪Y . Therefore P ′ should intersect

int(∆1) or Y , a contradiction as P ′ ⊆ P and Y ∩ P = ∅.

Lemma 3. Let G be a plane graph and Q = (C, L) be a CL-configuration of G where C
is tight in G and L is C-cheap. Then Q is convex.

Proof. By Observations 1 and 2, we may assume that Q is reduced. Consider any

segment of Q. We show that it satisfies the three conditions of convexity. Conditions

(i) and (ii).b follow directly from the tightness of C. Condition (iii) follows from the fact

that L is C-cheap. In the rest of the proof we show Conditions (ii).a. and (ii).c. For

this, we consider the minimum i ∈ {0, . . . , r} such that one of these two conditions is

violated. From Condition (i), i ≥ 1. Let W be a segment of Q containing an i-chord X

for which one of Conditions (ii).a, (ii).c is violated.

We now define the set Q according to which of the two conditions is violated. We

distinguish two cases:

Case 1. Condition (ii).c is violated. From Condition (ii).b, X \Di−1 contains more than

two i-semichords of X. Let J1 be the biconnected outerplanar graph defined by the

union of Ci−1 and the i-semichords of X that do not have an endpoint on Ci. As there

are at least three i-semichords in X, J1 has at least one internal edge and therefore at

least two simplicial faces. Moreover there are exactly two i-semichords of X, say K1,

K2, that have an endpoint in Ci and K1 and K2 belong to the same, say F ′, face of J1.

Let ∆2 be the closure of a simplicial face of J1 that is not F ′.

Case 2. Condition (ii).c holds while Condition (ii).a is violated. Let J2 be the bicon-

nected outerplanar graph defined by the union of Ci−1 and the connected components

of W \Di−1 that do not contain endpoints of W in their boundary. Notice that the rest

of the connected components of W \Di−1 are exactly two, say K1 and K2. Notice that

K1 and K2 are subsets of the same face, say F ′, of J2. As there are at least two i-chords

in W , J2 contains at least one internal edge and therefore at least two simplicial faces.

Let ∆2 be the closure of a simplicial face of J2 that is not F ′.

In both of the above cases, we set ∆1 = Di−1, ∆3 = R2 \ int(∆1 ∪ ∆2), Y =

bnd(∆3) ∩ ∆2, and Q = trim(∆1 ∩ ∆2). Notice that Y = bnd(∆2) \ Q, therefore

Y ⊆W .

We claim that L∩Q 6= ∅. Suppose not. We consider W ′ as the path in W ∪Q that

contains Q as a subset and has the same endpoints as W . Then, L′ = (L \W ) ∪W ′
is a linkage, equivalent to L, where c(L′) < c(L), a contradiction to the fact that L is

C-cheap. We just proved that L∩Q 6= ∅ which in turn implies that L contains a segment

P for which P ∩Q 6= ∅. We distinguish two cases:

Case A. W 6= P . This implies that W ∩ P = ∅. As Y ⊆W , it follows that Y ∩ P = ∅.

Therefore, by Lemma 2, int(∆1)∩P has at least two connected components, therefore P
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Figure 7: The two cases of the proof of Lemma 3. In the left part is depicted an i-chord

X that has 6 i-semichords and in the right part is depicted a segment W and the way it

crosses the cycles Di and Di−1. In the figure on the right the segment W has 7 i-chords

and 14 i-semichords.

has at least two (i− 1)-chords. If i > 1, then Condition (ii).a is violated for i− 1, which

contradicts the choice of i. If i = 1, then P has at least one 0-chord, which violates

Condition (i), that, as explained at the beginning of the proof, holds for every segment

of Q.

Case B. W = P . Recall that Y ⊆ W therefore Y ⊆ P . Let p1 and p2 be the endpoints

of Q. As Q is reduced there exists two disjoint closed arcs Z1 and Z2 with endpoints

p1, p
′
1 and p2, p

′
2 respectively, such that

• pi is an endpoint of Zi, i ∈ {1, 2}.

• Zi ⊆ clos(Q), i ∈ {1, 2}, and

• P ∩ Zi = {pi}, i ∈ {1, 2}.

Consider also a closed arc Y ′ that is a subset of int(∆2) ∪ {p′1, p′2} that does not

intersect L and whose endpoints are p′1 and p′2. Let now ∆′1 = ∆1, let ∆′2 be the closed

disk defined by the cycle clos(Q \ (Z1 ∪ Z2)) ∪ Y ′ that is a subset of ∆2. Let also

∆′3 = R2 \ int(∆′1 ∪ ∆′2) and Q′ = trim(∆′1 ∩ ∆′2). As Y ′ does not intersect L, we

obtain Y ′ ∩ P = ∅. Observe that Z1, Q
′, Z2 form a partition of Q. As Q ∩ P 6= ∅ and

(Zi \ {pi}) ∩ P = ∅, i ∈ {1, 2}, we conclude that Q′ ∩ P 6= ∅.

By applying Lemma 2, int(∆′1)∩P has at least two connected components. Therefore

P has at least two (i− 1)-chords. This yields a contradiction, as in Case A.
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3.3 Bounding the number of extremal segments

In this subsection we prove that the number of extremal segments is bounded by a linear

function of the number of linkage paths.

Out-segments, hairs, and flying hairs. Let G be a plane graph and Q = (C, L) be

a CL-configuration of G of depth r. An out-segment of L is a subpath P ′ of a path in

P(L) such that the endpoints of P ′ are in Cr and the internal vertices of P ′ are not in

Dr. A hair of L is a subpath P ′ of a path in P(L) such that one endpoint of P ′ is in Cr,

the other is a terminal of L, and the internal vertices of P ′ are not in Dr. A flying hair

of L is a path in P(L) that does not intersect Cr.

Given a linkage L of G and a closed disk D of R2 whose boundary is a cycle of G, we

define outD(L) to be the graph obtained from the graph (L ∪ bnd(D)) \ int(D) after

dissolving all vertices of degree 2. For example outDr(L) is a plane graph consisting

of the out-segments, the hairs, the flying hairs of L, and what results from Cr after

dissolving its vertices of degree 2 that do not belong in L. Let f be a face of outDr(L)

that is different from int(Dr). We say that f is a cave of outDr(L) if the union of the

out-segments and extremal segments in the boundary of f is a connected set. Recall

that a segment of Q is extremal if it is has eccentricity r, i.e., it is a subpath of Cr.

Given a plane graph G, we say that two edges e1 and e1 are cyclically adjacent

if they have a common endpoint x and appear consecutively in the cyclic ordering of

the edges incident to x, as defined by the embedding of G. A subset E of E(G) is

cyclically connected if for every two edges e and e′ in E there exists a sequence of edges

e1, . . . , er ∈ E where e1 = e, er = e′ and for each i ∈ {1, . . . , r − 1} ei and ei+1 are

cyclically adjacent.

Let Q = (C, L) be a CL-configuration. We say that Q is touch-free if for every path

P of L, the number of the connected components of P ∩ Cr is not 1.

Lemma 4. Let G be a plane graph and Q = (C, L) be a touch-free CL-configuration of

G where C is tight in G and L is C-cheap. The number of extremal segments of Q is at

most 2 · |P(L)| − 2.

Proof. Let (G∗,Q∗ = (C∗, L∗)) be the reduced pair of G and Q. Notice that, by Ob-

servation 1, C∗ is tight in G and L∗ is C∗-cheap. Moreover, it is easy to see that Q∗
is touch-free and Q and Q∗ have the same number of extremal segments which are all

trivial paths (i.e., paths consisting of only one vertex). Therefore, it is sufficient to prove

that the lemma holds for Q∗. Let ρ be the number of extremal segments of Q∗.
Let J = outD∗r (L∗) and k = |P(L∗)|. Notice that the number of extremal segments

of Q∗ is equal to the number of vertices of degree 4 in J .

The terminals of L∗ are partitioned in three families

• flying terminals, T0: endpoints of flying hairs.
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• invading terminals T1: these are endpoints of hairs whose non terminal endpoint

has degree 3 in J .

• bouncing terminals T2: these are endpoints of hairs whose non terminal endpoint

has degree 4 in J .

A hair containing an invading and bouncing terminal is called invading and bouncing

hair respectively.

Recall that |T0|+ |T1|+ |T2| = 2k.

Claim 1. The number of caves of J is at most the number of invading terminals.

Proof of claim 1. Clearly, a hair cannot be in the common boundary of two caves.

Therefore it is enough to prove that the set obtained by the union of a cave f and

its boundary contains at least one invading hair. Suppose this is not true. Consider

the open arc R obtained if we remove from bnd(f) all the points that belong to out-

segments. Clearly, R results from a subpath R+ of C∗r after removing its endpoints, i.e.,

R = trim(R+).

Notice that because f is a cave, R is a non-empty connected subset of C∗r . Moreover,

R∩L∗ is non-empty, otherwise L∗′ = (L∗ \ (bnd(f))∪R is also a linkage with the same

pattern as L∗ where c(L∗′) < c(L∗), a contradiction to the fact that L∗ is C∗-cheap. Let

Y be a connected component of R ∩ L∗. As Q∗ is reduced, Y consists of a single vertex

y in the open set R. Notice that Y is a subpath of a segment Y ′ of Q∗. We claim

that Y ′ is not extremal. Suppose to the contrary that Y ′ is extremal. Then Y ′ = Y

and there should be two distinct out-segments that have y as a common endpoint. This

contradicts the fact that y ∈ R.

By Lemma 3, Q∗ is convex, therefore one of the endpoints of the non-extremal

segment Y ′ is y and thus is in R as well. This means that y is the endpoint of one

out-segment which again contradicts the fact that y ∈ R. This completes the proof of

Claim 1.

Let J− be the graph obtained from J by removing all hairs and notice that J− is a

biconnected outerplanar graph. Let S be the set of vertices of J− that have degree 4.

Notice that, because Q∗ is touch-free, |S| is equal to the number of vertices of J that

have degree 4 minus the number of bouncing terminals. Therefore,

ρ = |T2|+ |S|. (1)

Notice that if we remove from J− all the edges of C∗r , the resulting graph is a forest Ψ

whose connected components are paths. Observe that none of these paths is a trivial

path because Q∗ is touch-free. We denote by κ(Ψ) the number of connected components

of Ψ. Let F be the set of faces of J− that are different from D∗r . F is partitioned into

the faces that are caves, namely F1 and the non-cave faces, namely F0. By the Claim 1,

|F1| ≤ |T1|.
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Figure 8: Examples of the graphs J and J− in the proof of Lemma 4 (the outer face in

the picture corresponds to the interior of Dr). The faces that are caves contain the word

cave. FH: flying hair, BH: bouncing hair, IH: invading hair. The forest Ψ = J−\E(Cr) has

6 edges and 4 connected components. The weak dual T of J− is depicted with dashed

lines. The large white square vertices are the rich vertices of T .

To complete the proof, it is enough to show that

|S| ≤ |T1| − 2 (2)

Indeed the truth of (2) along with (1), would imply that ρ is at most |T2| + |S| ≤
|T2|+ |T1| − 2 ≤ |T | − 2 = 2k − 2.

We now return to the proof of (2). For this, we need two more claims.

Claim 2: |F0| ≤ κ(Ψ)− 1.

Proof. We use induction on κ(Ψ). Let K1, . . . ,Kκ(Ψ) be the connected components of Ψ.

If κ(Ψ) = 1 then all faces in F are caves, therefore |F0| = 0 and we are done. Assume

now that Ψ contains at least two connected components.

We assert that there exists at least one connected component Kh of Ψ with the

property that only one non-cave face of J− contains edges of Kh in its boundary. To

see this, consider the weak dual T of J−. Recall that, as J− is biconnected, T is a

tree. Let K∗i be the subtree of T containing the duals of the edges in E(Ki), i ∈
{1, . . . , κ(Ψ)}, and observe that E(K∗1 ), . . . , E(K∗κ(Ψ)) is a partition of E(T ) into κ(Ψ)

cyclically connected sets. We say that a vertex of T is rich if it is incident with edges in

more than one members of {K∗1 , . . . ,K∗κ(Ψ)}, otherwise it is called poor (see Figure 8).

Notice that a vertex of T is rich if and only if its dual face in J− is a non-cave. We call

a subtree K∗i peripheral if V (K∗i ) contains at most one rich vertex of T . Notice that the

claimed property for a component in {K1, . . . ,Kκ(Ψ)} is equivalent to the existence of a

peripheral subtree in {K∗1 , . . . ,K∗κ(Ψ)}. To prove that such a peripheral subtree exists,

consider a path P in T intersecting the vertex sets of a maximum number of members of
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{K∗1 , . . . ,K∗κ(Ψ)}. Let e∗ be the first edge of P and let K∗h be the unique subtree whose

edge set contains e∗. Because of the maximality of the choice of P , V (K∗h) contains

exactly one rich vertex vh, therefore K∗h is peripheral and the assertion follows. We

denote by fh the non-cave face of J− that is the dual of vh.

Let H− be the outerplanar graph obtained from J− after removing the edges of Kh.

Notice that this removal results in the unification of all faces that are incident to the

edges of Kh, including fh, to a single face f+. By the inductive hypothesis the number

of non-cave faces of H− is at most κ(Ψ)−2. Adding back the edges of Kh in J− restores

fh as a distinct non-cave face of J−. If f+ was a non-cave of H− then |F0| is equal to

the number of non-cave faces of H−, else |F0| is one more than this number. In any case,

|F0| ≤ κ(Ψ)− 1, and the claim follows.

Claim 3: |V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2.

Proof. Let T be the weak dual of J−. Observe that |F0| + |F1| = |F | = |V (T )| =

|E(T )|+ 1 = |E(Ψ)|+ 1 = |V (Ψ)| −κ(Ψ) + 1. Therefore |V (Ψ)| = |F0|+ |F1|+κ(Ψ)− 1.

Recall that, by Claim 1, |F1| ≤ |T1| and, taking into account Claim 2, we conclude that

|V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2. Claim 3 follows.

Notice now that a vertex of J− has degree 4 iff it is an internal vertex of some path

in Ψ. Therefore, as all connected components of Ψ are non-trivial paths, it holds that

|V (Ψ)| = |S|+ |L(Ψ)| = |S|+ 2 ·κ(Ψ), where L(Ψ) is the set of leaves of Ψ. By Claim 3,

|S|+ 2 · κ(Ψ) = |V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2⇒ |S| ≤ |T1| − 2.

Therefore, (2) holds and this completes the proof of the lemma.

3.4 Bounding the number and size of segment types

In this section we introduce the notion of segment type that partitions the segments into

classes of mutually “parallel” segments. We next prove that, in the light of the results

of the previous section, the number of these classes is bounded by a linear function

of the number k of linkage paths. In Subsections 3.5 and 3.6 we show that if one of

these equivalence classes has size more than 2k, then an equivalent cheaper linkage can

be found. All these facts will be employed in the culminating Subsection 3.7 in order

to prove that a cheap linkage cannot go very “deep” into the cycles of a cheap CL-

configuration. That way we will be able to quantify the depth at which an irrelevant

vertex is guaranteed to exist.

Types of segments. Let G be a plane graph and let Q = (C, L) be a convex CL-

configuration of G. Let S1, S2 be two segments of Q and let P and P ′ be the two paths

on Cr connecting an endpoint of S1 with an endpoint of S2 and passing through no other

endpoint of S1 or S2. We say that S1 and S2 are parallel, and we write S1 ‖ S2, if
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(1) no segment of Q has both endpoints on P.

(2) no segment of Q has both endpoints on P ′.

(3) the closed-interior of the cycle P ∪ S1 ∪ P ′ ∪ S2 does not contain the disk D0.

A type of segment is an equivalence class of segments of Q under the relation ‖ .
Given a linkage L of G and a closed disk D of R2 whose boundary is a cycle of G,

we define inD(L) to be the graph obtained from (L ∪ bnd(D)) ∩D after dissolving all

vertices of degree 2.

Notice that inDr(L) is the biconnected outerplanar graph formed if we dissolve all

vertices of degree 2 in the graph that is formed by the union of Cr and the segments of

Q. As Q is convex, one of the faces of inDr(L) contains the interior of D0 and we call

this face central face. We define the segment tree of Q, denoted by T (Q), as follows.

• Let T− be the weak dual of inDr(L) rooted at the vertex that is the dual of the

central face.

• Let Q be the set of leaves of T−. For each vertex l ∈ Q do the following: Notice

first that l is the dual of a face l∗ of inDr(L). Let W1, . . . ,Wρl be the extremal

segments in the boundary of l∗ (notice that, by the convexity of Q, for every l,

ρl ≥ 1). Then, for each i ∈ {1, . . . , ρl}, create a new leaf wi corresponding to the

extremal segment Wi and make it adjacent to l.

The height of T (Q) is the maximum distance from its root to its leaves. The real height

of T (Q) is the maximum number of internal vertices of degree at least 3 in a path from

its root to its leaves plus one. The dilation of T (Q) is the maximum length of a path all

whose internal vertices have degree 2 and are different from the root.

Observation 3. Let G be a plane graph and let Q = (C, L) be a convex CL-configuration

of G. Then the dilation of T (Q) is equal to the maximum cardinality of an equivalence

class of ||.

Observation 4. Let G be a plane graph and let Q = (C, L) be a convex CL-configuration

of G. Then the height of T (Q) is upper bounded by the dilation of T (Q) multiplied by

the real height of T (Q).

The following lemma is an immediate consequence of Lemma 4 and the definition of a

segment tree. The condition that L∩Cr 6= ∅ simply requires that the CL-configuration

that we consider is non-trivial in the sense that the linkage L enters the closed disk Dr.

Lemma 5. Let G be a plane graph and Q = (C, L) be a touch-free CL-configuration of

G where C is tight in G, L is C-cheap, and L ∩ Cr 6= ∅. Then Q is convex and the real

height of the segment tree T (Q) is at most 2 · |P(L)| − 3.
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Figure 9: The graph inDr(L) for some convex CL-configuration Q = (C, L) and the tree

T (Q). Internal edges in inDr(L) of the same type are drawn as lines of the same type.

Q has 11 extremal segments, as many as the leaves of T (Q). The relation ‖ has 19

equivalent classes. The dilation of T (Q) is 4, its height is 8 and its real height is 4.

Proof. Certainly, the convexity of Q follows directly from Lemma 3. We examine the

non-trivial case where T (Q) contains at least one edge. We first claim that |P(L)| ≥ 2.

Assume to the contrary that L consists of a single path P . AsQ is convex and L∩Cr 6= ∅,

Q has at least one extremal segment. Suppose now that Q has more than one extremal

segment all of which are connected components of Cr∩P . Let P1 and P2 be the closures

of the connected components of L \Dr that contain the terminals of P . Let pi ∈ V (Cr)

be the endpoint of Pi that is not a terminal, i ∈ {1, 2}. Let also P ′ be any path in Cr
between p1 and p2. Notice now that P1 ∪ P ′ ∪ P2 is a cheaper linkage with the same

pattern as L, a contradiction to the fact that L is C-cheap. Therefore we conclude that

Q has exactly one extremal segment, which contradicts the fact that Q is touch-free.

This completes the proof that |P(L)| ≥ 2.

Recall that, by the construction of T (Q) there is a 1–1 correspondence between the

leaves of T (Q) and the extremal segments of Q. From Lemma 4, T (Q) has at most

2 · |P(L)| − 2 leaves. Also T (Q) has at least 2 leaves, because Q is touch-free. It is

known that the number of internal vertices of degree ≥ 3 in a tree with r ≥ 2 leaves is

at most r− 2. Therefore, T (Q) has at most 2 · |P(L)|− 4 internal vertices of degree ≥ 3.

Therefore the real height of T (Q) is at most 2 · |P(L)| − 3.

3.5 Tidy grids in convex configurations

In this subsection we prove that the existence of many “parallel” segments implies the

existence of a big enough grid-like structure.
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Topological minors. We say that a graph H is a topological minor of a graph G if

there exists an injective function φ0 : V (H) → V (G) and a function φ1 mapping the

edges of H to paths of G such that

• for every edge {x, y} ∈ E(H), φ1({x, y}) is a path between φ0(x) and φ0(y).

• if two paths in φ1(E(H)) have a common vertex, then this vertex should be an

endpoint of both paths.

Given the pair (φ0, φ1), we say that H is a topological minor of G via (φ0, φ1).

Tilted grids and L-tidy grids. Let G be a graph. A tilted grid of G is a pair

U = (X ,Z) where X = {X1, . . . , Xr} and Z = {Z1, . . . , Zr} are both collections of r

vertex-disjoint paths of G such that

• for each i, j ∈ {1, . . . , r} Ii,j = Xi ∩ Zj is a (possibly edgeless) path of G,

• for i ∈ {1, . . . , r} the subpaths Ii,1, Ii,2, . . . , Ii,r appear in this order in Xi.

• for j ∈ {1, . . . , r} the subpaths I1,j , I2,j , . . . , Ir,j appear in this order in Zj .

• E(I1,1) = E(I1,r) = E(Ir,r) = E(Ir,1) = ∅,

• Let

GU = (
⋃

i∈{1,...,r}

Xi) ∪ (
⋃

i∈{1,...,r}

Zi)

and let G∗U be the graph taken from the graph after contracting all edges in⋃
(i,j)∈{1,...,r}2 Ii,j . Then G∗U contains the (r × r)-grid Γ as a topological minor

via a pair (χ0, χ1) such that

A. the upper left (resp. upper right, down right, down left) corner of Γ is mapped

via χ0 to the (single) endpoint of I1,1 (resp. I1,r, Ir,r, and Ir,1).

B.
⋃
e∈E(Γ) χ1(e) = G∗U (this makes G∗U to be a subdivision of Γ).

We call the subgraph GU of G realization of the tilted grid U and the graph G∗U represen-

tation of U . We treat both GU and G∗U as plane graphs. We also refer to the cardinality

r of X (or Z) as the capacity of U . The perimeter of GU is the cycle X1 ∪Z1 ∪Xr ∪Zr.
Given a graph G and a linkage L of G we say that a tilted grid U = (X ,Z) of G is an

L-tidy tilted grid of G if DU ∩ L = ∪∪∪∪∪∪∪∪∪Z where DU is the closed-interior of the perimeter

of GU .

Lemma 6. Let G be a plane graph and let Q = (C, L) be a convex CL-configuration of

G. Let also S be an equivalence class of the relation ‖. Then G contains a tilted grid

U = (X ,Z) of capacity d|S|/2e that is an L-tidy tilted grid of G.
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Figure 10: A visualisation of the proof of Lemma 6. It holds that σ1 = 0 and σ5 = 4,

m = 5, m′ = 3. The two shadowed regions indicate the two connencted components of

DS ∩AC .

Proof. Let C = {C0, . . . , Cr} and let S = {S1, . . . , Sm}. For each i ∈ {1, . . . ,m}, let σi
be the eccentricity of Si and let σmax = max{σi | i ∈ {1, . . . ,m}} and σmin = min{σi |
i ∈ {1, . . . ,m}}. Convexity allows us to assume that S1, . . . , Sm are ordered in a way

that

• σ1 = σmin,

• σm = σmax, and

• for all i ∈ {1, . . . ,m− 1}, σi+1 = σi + 1.

• for all i ∈ {1, . . . ,m}, Ii,σi = Si ∩ Cσi is a subpath of Cσi .

Let m′ = dm2 e and let x, x′ (resp. y, y′) be the endpoints of the path S1 (resp. Sm′) such

that the one of the two (x, y)-paths (resp. (x′, y′)-paths) in Cr contains both x′, y′ (x, y)

and the other, say P (resp. P ′), contains none of them. Let DS be the closed-interior

of the cycle S1 ∪ P ′ ∪ Sm′ ∪ P . Let also AC be the closed annulus defined by the cycles
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Cσmax−(m′−1) and Cσmax . Let ∆ be any of the two connected components of DS ∩ AC .

We now consider the graph

(L ∪∪∪∪∪∪∪∪∪∪C) ∩∆.

It is now easy to verify that the above graph is the realization GU of a tilted grid

U = (X ,Z) of capacity m′, where the paths in X are the portions of the cycles

Cσmax−(m′−1), . . . , Cσmax cropped by ∆, while the paths in Z are the portions of the

paths in {S1, . . . , Sm′} cropped by ∆ (see Figure 10). As S is an equivalence class of ‖,
it follows that U is L-tidy, as required.

3.6 Replacing linkages by cheaper ones

In this section we prove that a linkage L of k paths can be rerouted to a cheaper one,

given the existence of an L-tidy tilted grid of capacity greater than 2k. Given that L is a

cheap linkage, this will imply an exponential upper bound on the capacity of an L-tidy

tilted grid.

Let G be a plane graph and let L be a linkage in G. Let also D be a closed disk in

the surface where G is embedded. We say that L crosses vertically D if the outerplanar

graph defined by the boundary of D and L ∩ D has exactly two simplicial faces. This

naturally partitions the vertices of bnd(D)∩L into the up and down ones. The following

proposition is implicit in the proof of Theorem 2 in [3] (see the derivation of the unique

claim in the proof of the former theorem). See also [8] for related results.

Proposition 3. Let G be a plane graph and let D be a closed disk and a linkage L of G

of order k that crosses D vertically. Let also L ∩D consist of r > 2k lines. Then there

is a collection N of strictly less than r mutually non-crossing lines in D each connecting

two points of bnd(D) ∩ L, such that there exists some linkage R that is a subgraph of

L \ int(D) such that R ∪∪∪∪∪∪∪∪∪∪N is a linkage of the graph (G \D) ∪∪∪∪∪∪∪∪∪∪N that is equivalent

to L.

Lemma 7. Let k, k′, ρ be integers such that 0 ≤ ρ ≤ k′ ≤ k. Let Γ be a (k × k′)-grid

and let {pup
1 , . . . , pup

ρ } (resp. {pdown
1 , . . . , pdown

ρ }) be vertices of the higher (resp. lower)

horizontal line arranged as they appear in it from left to right. Then the grid Γ contains

ρ pairwise disjoint paths P1, . . . , Pρ such that, for every h ∈ [ρ], the endpoints of Ph are

pup
h and pdown

h .

Proof. We use induction on ρ. Clearly the lemma is obvious when ρ = 0. Let (i, j) ∈ [k]2

such that pup
ρ (resp. pdown

ρ ) is the i-th (resp. j-th) vertex of the higher (lower) horizontal

line counting from left to right. We examine first the case where i ≥ j. Let Pρ be the

path created by starting from pup
ρ , moving k′ − 1 edges down, and then i − j edges to

the left. For h ∈ [ρ − 1] let P
(down)′
h be the path created by starting from pdown

h and

moving one edge up (clearly, P
(down)′
h consists of a single edge). We also denote by
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Figure 11: An example of the proof of Lemma 7, where k = 16, k′ = 11, and ρ = 5. The

white vertices of the higher (resp. lower) horizontal line are the vertices in {pup
1 , . . . , pup

5 }
(resp. {pdown

1 , . . . , pdown
5 }).

p
(down)′
i the other endpoint of P

(down)′
i . We now define Γ′ as the subgrid of Γ that occurs

from Γ after removing its lower horizontal line and, for every h ∈ [i, k], its h-th vertical

line. By construction, none of the edges or vertices of Pρ belongs in Γ′. Notice also

that the higher (resp. lower) horizontal line of Γ′ contains all vertices in {pup
1 , . . . , pup

ρ−1}
(resp. {p(down)′

1 , . . . , p
(down)′
ρ−1 }). From the induction hypothesis, Γ′ contains ρ−1 pairwise

disjoint paths P ′1, . . . , P
′
ρ−1 such that for every h ∈ [ρ − 1], the endpoints of Ph are pup

h

and p
(down)′
h . It is now easy to verify that P ′1 ∪ P

(down)′
1 , . . . , P ′ρ−1 ∪ P

(down)′
ρ−1 , Pρ is the

required collection of pairwise disjoint paths. For the case where i < j, just reverse the

same grid upside down and the proof is identical (see Figure 11).

Lemma 8. Let Γ be a (k × k)-grid embedded in the plane and assume that the vertices

of its outer cycle, arranged in clockwise order, are:

{vup
1 , . . . , vup

k , vright
2 , . . . , vright

k−1 , v
down
k , . . . , vdown

1 , vleft
k−1, . . . , v

left
2 , vup

1 }.

Let also H be a graph whose vertices have degree 0 or 1 and they can be cyclically arranged

in clockwise order as

{xup
1 , . . . , xup

k , x
down
k , . . . , xdown

1 , xup
1 }

such that if we add to H the edges formed by pairs of consecutive vertices in this cyclic

ordering, the resulting graph H+ is outerplanar. Let V 1 be the vertices of H that have

degree 1 and let H1 = H[V 1]. Then H1 is a topological minor of Γ via some pair (φ0, φ1),

satisfying the following properties:

1. φ0(xup
i ) = vup

i , i ∈ {1, . . . , k} ∩ V 1
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2. φ0(xdown
i ) = vdown

i , i ∈ {1, . . . , k} ∩ V 1.

Proof. Let U = {xup
1 , . . . , xup

k } ∩ V
1 and D = {xdown

1 , . . . , xdown
k } ∪ V 1. We define φ0 as

in the statement of the lemma. In the rest of the proof we provide the definition of φ1.

We partition the edges of H1 into three sets: the upper edges EU that connect vertices

in U , the down edges EL that connect vertices in D, and the crosssing edges EC that

have one endpoint in U and one in D. As |V (H1)| ≤ 2k we obtain that |E(H1)| ≤ k

and therefore |EU |+ |ED|+ |EC | = |E(H1)| ≤ k. We set ρ = |EC |.
We recursively define the depth of an edge {xup

i , x
up
j } in EU as follows: it is 0 if there

is no edge of EU with an endpoint in {xup
i+1, . . . , x

up
j−1} and is i > 0 if the maximum

depth of an edge with an endpoint in {xup
i+1, . . . , x

up
j−1} is i − 1. The depth of an edge

{xdown
i , xdown

j } is defined analogously. It directly follows, by the definition of depth that:

qup = max{depth(e) | e ∈ EU}+ 1 ≤ |EU | (3)

qdown = max{depth(e) | e ∈ ED}+ 1 ≤ |ED| (4)

We now continue with the definition of φ1 as follows:

Figure 12: An example of the proof of Lemma 8. On the left, the (16 × 16)-grid G is

depicted along with the way the graph H (depicted on the right) is (partially) routed in

it. In the figure qup = 3, qdown = 2, k′ = 11, and ρ = 5.

• for every edge e = {xup
i , x

up
j } in EU , of depth l and such that i < j, let φ1(e) be

the path defined if we start in the grid G from vup
i , move l steps down, then j − i

steps to the right, and finally move l steps up to the vertex vup
j (by “number of

steps” we mean number of edges traversed).
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• for every edge e = {xdown
i , xdown

j } in ED, of depth l and such that i < j, let φ1(e)

be the path defined if we start in the grid G from vdown
i , move l steps up, then

j − i steps to the right, and finally move l steps down to the vertex vdown
j .

Notice that the above two steps define the values of φ1 for all the upper and down edges.

The construction guarantees that all paths in φ1(EU ∪ ED) are mutually non-crossing.

Also, the distance between φ0(U) and some horizontal line of Γ that contains edges of the

images of the upper edges is max{depth(e) | e ∈ EU} that, from (3), is equal to qup − 1.

Symmetrically, using (4) instead of (3), the distance between φ0(D) and the horizontal

lines of Γ that contain edges of the images of the down edges is equal to qdown − 1. As

a consequence, the graph

Γ′ = Γ \ {x ∈ V (Γ) | distΓ(x, φ0(U)) < qup ∨ distΓ(x, φ0(D)) < qdown}

is a (k×k′)-grid Γ′, where k′ = k− (qup + qdown), whose vertices do not appear in any of

the paths in φ1(EU ∪ ED). Given a crossing edge e = {xup
i , x

down
j } ∈ EC , we define the

path P up
e as the subpath of Γ created if we start from xup

i and then go qup steps down.

Similarly, we define P down
e as the subpath of Γ created if we start from xdown

j and then go

qdown steps up. Notice that each of the paths P up
e (resp. P down

e ) share only one vertex,

say pup
e (resp. pdown

e ), with Γ′ that is one of their endpoints (these endpoints are depicted

as white vertices in the example of Figure 12). We use the notation {pup
1 , . . . , pup

ρ } (resp.

{pdown
1 , . . . , pdown

ρ }) for the vertices of the set {pup
e | e ∈ EC} (resp. {pdown

e | e ∈ EC})
such that, for every h ∈ [ρ], there exists an e ∈ EC such that pup

h is an endpoint of P up
e

and pdown
h is an endpoint of P down

e . We also agree that the vertices in {pup
1 , . . . , pup

ρ }
(resp. {pdown

1 , . . . , pdown
ρ }) are ordered as they appear from left to right in the upper

(lower) horizontal line of Γ′ (this is possible because of the outeplanarity of H+).

Notice that ρ = |E(H1)| − (|EU | + |ED|) ≤ k − (|EU | + |ED|) which by (3) and (4)

implies that ρ ≤ k′.
As ρ ≤ k′ ≤ k, we can now apply Lemma 7 on Γ′, {pup

1 , . . . , pup
ρ } and

{pdown
1 , . . . , pdown

ρ } and obtain a collection {Pe | e ∈ EC} of ρ pairwise disjoint paths

in Γ′ between the vertices of {pup
e | e ∈ EC} and the vertices of {pdown

e | e ∈ EC}. It is

now easy to verify that {P up
e ∪ Pe ∪ P down

e | e ∈ EC} is a collection of ρ vertex disjoint

paths between U and D. We can now complete the definition of φ1 for the crossing edges

of H by setting, for each e ∈ EC , φ(e) = P up
e ∪ Pe ∪ P down

e . By the above construction

it is clear that (φ1, φ2) provides the claimed topological isomorphism.

Lemma 9. Let G be a graph with a linkage L consisting of k paths. Let also U = (X ,Z)

be an L-tidy tilted grid of G with capacity m. Let also ∆ be the closed-interior of the

perimeter of GU . If m > 2k, then G contains a linkage L′ such that

1. L and L′ are equivalent,

2. L′ \∆ ⊆ L \∆, and
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3. |E(∪∪∪∪∪∪∪∪∪Z ∩ L′)| < |E(∪∪∪∪∪∪∪∪∪Z ∩ L)|.

Proof. We use the notation X = {X1, . . . , Xm} and Z = {Z1, . . . , Zm}. Let GU be the

realization of U in G and let G∗ (resp. L∗) be the graph (resp. linkage) obtained from G

(resp. L) if we contract all edges in the paths of
⋃

(i,j)∈{1,...,r}2 Ii,j , where Ii,j = Xi ∩Zj ,
i, j ∈ {1, . . . ,m}. We also define X ∗ and Z∗ by applying the same contractions to their

paths. Notice that U∗ = (X ∗,Z∗) is an L∗-tidy tilted grid of G∗ with capacity m and

that the lemma follows if we find a linkage L′∗ such that the above three conditions

are true for ∆∗, L∗, L′∗, and Z∗, where ∆∗ is the closed-interior of the perimeter of G∗U
(recall that G∗U is the representation of U that is isomorphic to GU∗).

Let G∗− = (G∗ \∆∗) ∪∪∪∪∪∪∪∪∪∪Z and apply Proposition 3 on G∗−, ∆∗, and L∗. Let N be

a collection of strictly less than m mutually non-crossing lines in D each connecting two

points of bnd(∆∗)∩L∗ and a linkage R ⊆ L∗\int(∆∗) such that L0 = R∪∪∪∪∪∪∪∪∪∪N is a linkage

of the graph (G∗\∆∗)∪∪∪∪∪∪∪∪∪∪N that is equivalent to L∗. Let H = (L0∩∆∗)∪(L∗∩bnd(∆∗)).

Notice that in H, the set V (L0∩∆∗) contains the vertices of H of degree 1 while the rest

of the vertices of H have degree 0 and all edges of H have their endpoints in V (L0∩∆∗).

Recall that the (m × m)-grid Γ is a topological minor of G∗U via some pair (χ0, χ1)

satisfying the conditions A and B in the definition of tilted grid.

We are now in position to apply Lemma 8 for the (m×m)-grid Γ and H. We obtain

that H1 = L0 ∩ ∆∗ is a topological minor of Γ via some pair (φ0, φ1). We now define

the graph

L =
⋃

e∈E(H1)

E(φ1(e)).

Notice that L is a subgraph of Γ. We also define the graph

Q =
⋃

e∈E(L)

χ1(e)

which, in turn, is a subgraph of G∗U . Observe that L′∗ = R ∪ Q is a linkage of G∗ that

is equivalent to L∗. This proves Condition 1. Condition 2 follows from the fact that

R ⊆ L∗ \ int(∆∗). Notice now that, as |N | < m, E(∪∪∪∪∪∪∪∪∪Z∗ ∩ Q) is a proper subset of

E(∪∪∪∪∪∪∪∪∪Z∗). By construction of L′∗, it holds that E(∪∪∪∪∪∪∪∪∪Z ∩L′∗) = E(∪∪∪∪∪∪∪∪∪Z ∩Q). Moreover, as

U∗ = (X ∗,Z∗) is an L∗-tidy tilted grid of G∗, it follows that E(∪∪∪∪∪∪∪∪∪Z∗) = E(∪∪∪∪∪∪∪∪∪Z∗ ∩ L∗).
Therefore, Condition 3 follows.

3.7 Existence of an irrelevant vertex

We now bring together all results from the previous subsections in order to prove The-

orem 1.

Lemma 10. There exists an algorithm that, given an instance (G,P = {(si, ti) ∈
V (G)2, i ∈ {1, . . . , k}}) of PDPP, either outputs a tree-decomposition of G of width

at most 9 · (k ·2k+2 + 1) · d
√

2k + 1 e or outputs an irrelevant vertex x ∈ V (G) for (G,P).

This algorithm runs in 22O(k) · n steps.
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Proof. Let T = {s1, . . . , sk, t1, . . . , tk}. By applying the algorithm of Lemma 1, for r =

k ·2k+2 either we output a tree-decomposition of G of width at most 9(r+1) ·d
√

2k + 1 e)
or we find an internally chordless cycle C of G such that G contains a tight sequence of

cycles C = {C0, . . . , Cr} in G where C0 = C and all vertices of T are in the open exterior

of Cr. From Lemma 1, this can be done in 2(r·
√
|T |)O(1) · n = 22O(k) · n steps.

Assume that G has a linkage whose pattern is P and, among all such linkages, let L

be a C-cheap one. Our aim is to prove that V (L ∩ C0) = ∅, i.e., we may pick x to be

any of the vertices in D0.

First, we can assume that k ≥ 2. Otherwise, if k = 1, the fact that L is C-cheap,

implies that L ∩Dr−1 = ∅⇒ L ∩D0 = ∅ and we are done.

For every i ∈ {0, . . . , r}, we define Q(i) = (C(i), L(i)) where C(i) = {C0, . . . , Ci} and

L(i) is the subgraph of L consisting of the union of the connected components of L

that have common points with Di. As r + 1 > k, at least one of Q(i), i ∈ {0, . . . , r} is

touch-free. Let Q′ = (C′, L′) be the touch-free CL-configuration in {Q(1), . . . ,Q(r)} of

the highest index, say h. In other words, C′ = C(h) and L′ = L(h). Moreover, C′ is tight

in G and L′ is C′-cheap. Let k′ be the number of connected components of L′. We set

d = r− h and observe that k′ ≤ k− d, while C′ has r′ = r+ 1− d > 0 concentric cycles.

Again, we assume that k′ ≥ 2 as, otherwise, the fact that L′ is C′-cheap implies that

L′ ∩Dr′−1 = ∅⇒ L′ ∩D0 = ∅ and we are done. Therefore 0 ≤ d ≤ k − 2.

As C′ is tight in G and L′ is C′-cheap, by Lemma 3, Q′ is convex. To prove that

V (L ∩ C0) = ∅ it is enough to show that all segments of Q have positive eccentricity

and for this it is sufficient to prove that all segments of Q′ have positive eccentricity.

Assume to the contrary that some segment P0 of Q′ has eccentricity 0. Then, from the

third condition in the definition of convexity we can derive the existence of a sequence

P0, . . . , Pr′−1 of segments such that for each i ∈ {0, . . . , r′ − 1}, Pi+1 is inside the zone

of Pi. This implies the existence in the segment tree T (Q′) of a path of length r′

from its root to one of its leaves, therefore T (Q′) has height r′. By Lemma 5, the real

height of T (Q′) is at most 2k′ − 3. By Observation 4, the dilation of T (Q′) is at least
r′

2k′−3 ≥
k·2k+2−d

2k−2d > k·2k+2

2k = 2k+1. By Observation 3 and Lemma 6, G contains an

L′-tidy tilted grid U = (X ,Z) of capacity > 2k. From Lemma 9, G contains another

linkage L′′ with the same pattern as L′ and such that c(L′′) < c(L′), a contradiction to

the fact that L′ is C′-cheap.

Since V (L ∩ C0) = ∅, any vertex of G in the closed-interior of C0 is irrelevant.

Proof of Theorem 1. The proof follows from Lemma 10, taking into account that, for

every k ≥ 1,

82 · k3/2 · 2k > 9 · (k · 2k+2 + 1) · d
√

2k + 1 e)
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4 An algorithm for PDPP

In this section we prove Theorem 2. In particular, we briefly describe an algorithm that,

given an instance (G,P) of DPP where G is planar, provides a solution to PDPP, if

one exists, in 22O(k) · nO(1) steps.

Our algorithm is based on the following proposition.

Proposition 4 ( [25]). There exists an algorithm that, given an instance (G,P) of

PDPP and a tree decomposition of G of width at most w, either reports that (G,P)

is a NO-instance or outputs a solution of PDPP for (G,P) in 2O(w logw) · n steps.

Proof of Theorem 2. By applying the algorithm of Lemma 10, we either find an irrele-

vant vertex v for (G,P) or we obtain a tree-decomposition of G of width 2O(k). In the first

case, we again look for an irrelevant vertex in the equivalent instance (G,P)← (G\v,P).

This loop breaks if the second case appears, namely when a tree decomposition of G

of width 2O(k) is found. Then we apply the algorithm of Proposition 4, that solves the

problem in 22O(k) ·n steps. As, unavoidably, the loop will break in less than n steps, the

claimed running time follows.
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[9] Petr A. Golovach, M. Kamiński, D. Paulusma, and D. M. Thilikos. Induced packing

of odd cycles in a planar graph. In 20th International Symposium on Algorithms

and Computation, ISAAC 2009, volume 5878 of LNCS, pages 514–523. Springer,

Berlin, 2009.

[10] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with

respect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012.

[11] Illya V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1–9,

2004.

[12] Ken-ichi Kawarabayashi and Yusuke Kobayashi. The induced disjoint path problem.

In 13th Conference on Integer Programming and Combinatorial Optimization, IPCO

2008, volume 5035 of Lecture Notes in Computer Science, pages 47–61. Springer,

Berlin, 2008.

[13] Ken-ichi Kawarabayashi and Bruce Reed. Odd cycle packing. In 42nd ACM Sym-

posium on Theory of Computing, STOC 2010, pages 695–704. ACM, 2010.

[14] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor

algorithm: the unique linkage theorem. In 42nd ACM Symposium on Theory of

Computing, STOC 2010, pages 687–694. ACM, 2010.

[15] Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for finding an induced

cycle in planar graphs and bounded genus graphs. In 20th ACM-SIAM Symposium

on Discrete Algorithms, SODA 2009, pages 1146–1155. ACM-SIAM, 2009.

30



[16] Mark R. Kramer and Jan van Leeuwen. The complexity of wire-routing and finding

minimum area layouts for arbitrary VLSI circuits. Advances in Comp. Research,

2:129–146, 1984.

[17] James F. Lynch. The equivalence of theorem proving and the interconnection prob-

lem. ACM SIGDA Newsletter, 5:31–36, 1975.

[18] Matthias Middendorf and Frank Pfeiffer. On the complexity of the disjoint paths

problem. Combinatorica, 13(1):97–107, 1993.
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