Acyclic edge coloring through the Lovász Local Lemma - Archive ouverte HAL
Article Dans Une Revue Theoretical Computer Science Année : 2017

Acyclic edge coloring through the Lovász Local Lemma

Résumé

We give a probabilistic analysis of a Moser-type algorithm for the Lovász Local Lemma (LLL), adjusted to search for acyclic edge colorings of a graph. We thus improve the best known upper bound to acyclic chromatic index, also obtained by analyzing a similar algorithm, but through the entropic method (basically counting argument). Specifically we show that a graph with maximum degree ∆ has an acyclic proper edge coloring with at most ⌈3.74(∆ − 1)⌉ + 1 colors, whereas, previously, the best bound was 4(∆ − 1). The main contribution of this work is that it comprises a probabilistic analysis of a Moser-type algorithm applied to events pertaining to dependent variables.
Fichier principal
Vignette du fichier
1407.5374.pdf (220.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01632338 , version 1 (22-01-2018)

Identifiants

Citer

Dimitrios M. Thilikos, Ioannis Giotis, Lefteris Kirousis, Kostas I. Psaromiligkos. Acyclic edge coloring through the Lovász Local Lemma. Theoretical Computer Science, 2017, 665, pp.40 - 50. ⟨10.1016/j.tcs.2016.12.011⟩. ⟨hal-01632338⟩
174 Consultations
179 Téléchargements

Altmetric

Partager

More