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Abstract

We give a probabilistic analysis of a Moser-type algorithm for the Lovász Local
Lemma (LLL), adjusted to search for acyclic edge colorings of a graph. We thus
improve the best known upper bound to acyclic chromatic index, also obtained
by analyzing a similar algorithm, but through the entropic method (basically
counting argument). Specifically we show that a graph with maximum degree
∆ has an acyclic proper edge coloring with at most ⌈3.74(∆ − 1)⌉ + 1 colors,
whereas, previously, the best bound was 4(∆ − 1). The main contribution of
this work is that it comprises a probabilistic analysis of a Moser-type algorithm
applied to events pertaining to dependent variables.

Keywords: Acyclic edge coloring, Algorithmic proof of the Lovász Local
Lemma
2010 MSC: 05D40, 05C15

1. Introduction and the basic algorithm

Let G = (V,E) be a (simple) graph with l vertices and m edges. The
chromatic index of G is the least number of colors needed to properly color its
edges, i.e., to color them so that no adjacent edges get the same color. If ∆ is
the maximum degree of G, it is known that its chromatic index is either ∆ or
∆+ 1 (Vizing [1]).

A cycle of G of length s is a sequence vi, i = 0, . . . , s−1 of distinct vertices so
that ∀i = 0, . . . s− 1, vi and vi+1 (mod s) are connected by an edge. The acyclic
chromatic index of G (ACI) is defined as the least number of colors needed to
properly color the edges of G so that no cycle is bichromatic, i.e., so that there
is no cycle whose edges are properly colored with only two colors. Notice that
in any properly colored graph, any cycle of odd length is necessarily at least
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trichromatic, i.e., its edges have three or more colors. It has been conjectured
(J. Fiamčik [2] and Alon et al. [3]) that the acyclic chromatic index of any
graph with maximum degree ∆ is at most ∆ + 2. A number of successively
tighter upper bounds to the acyclic chromatic index have been provided in
the literature. Most recently, Esperet and Parreau [4] proved that the acyclic
chromatic index is at most 4(∆ − 1). Their proof makes use of the technique
of Moser and Tardos [5] that constructively proves the Lóvasz Local Lemma (a
technique which became known as the “entropy compression method” [6]). An
approach using the entropy compression method was also used for the vertex
analogue of the edge chromatic number by Gonçalves et al. [7].

In this work, we modify the technique used by Esperet and Parreau [4] in that
for a Moser-type edge coloring algorithm, we use as tool of analysis the approach
we described in Section 2 of [8]. Namely, instead of an essentially counting
argument as used in the entropy compression method, we give a probabilistic
analysis that yields an upper bound of ⌈3.74(∆−1)⌉+1 for the acyclic chromatic
index, improving over 4(∆ − 1) in [4] (in contrast to the paper by Moser and
Tardos [5], a probabilistic analysis was used in the original paper of Moser [9];
see the elegant exposition by Spencer in [10]). The present paper can be read
independently of [8].

An interesting aspect of this application is that the edge colors to which
the “undesirable” events of LLL refer to are not probabilistically independent.
This dependence introduces certain conceptual difficulties, some of which are,
we believe, non-trivial (see the proof of Lemma 5 and the preceding remarks).
The randomized algorithm that we deal with allows the freedom, when coloring
an edge, to make a selection, uniformly at random, from a guaranteed minimum
number of available colors. However, the “guarantee” of a minimum number of
available colors is valid only if any conditioning refers only to colors previously
assigned. To handle the probabilistic analysis of such a randomized algorithm
without introducing posterior probabilities, which would render the analysis un-
manageable, we put all events referring to colors that edges have in chronological
order according to the instant these edges got their current color. We consider
this approach of handling dependent events in constructive proofs of LLL, rather
than just the improvement of the coefficient of the upper bound from 4 to 3.74,
as the essential aspect of the contribution of this work (nevertheless, see the
discussion in Section 3 for possible further numerical improvement).

We also get improved numerical results with respect to graphs with bounded
girth, some specific values of which are sampled in Figure 1.

Girth Number of colors Previously known [4]
- 3.731(∆− 1) + 1 4(∆− 1)
7 3.326(∆− 1) + 1 3.737(∆− 1)
53 2.494(∆− 1) + 1 3.135(∆− 1)
219 2.323(∆− 1) + 1 3.043(∆− 1)

Figure 1: Our results

Below, to facilitate notation, we call a proper edge-coloring s-acyclic if it
contains no bichromatic cycle of length s or less. We call the corresponding
graph parameter the s-acyclic chromatic index.

We start by mentioning the following fact, proved in Esperet and Parreau [4]:
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Lemma 1 (Esperet and Parreau [4]). At any step of any successive coloring of
the edges of a graph, there are at most 2(∆− 1) colors that should be avoided in
order to produce a 4-acyclic coloring.

Proof Sketch. Notice that for each edge e, one has to avoid the colors of all
edges adjacent to e, and moreover for each pair of homochromatic (of the same
color) edges e1, e2 adjacent to e at different endpoints (which contribute one to
the count of colors to be avoided), one has also to avoid the color of the at most
one edge e3 that together with e, e1, e2 define a cycle of length 4. So the total
count of colors to be avoided adds up to 2(∆− 1).

Assume now that we have K = ⌈(2 + γ)(∆ − 1)⌉ + 1 colors, where γ is a
nonnegative constant to be computed.

We assume below that the edges of the graph, and its cycles, are ordered
according to fixed a priori orderings.

Notice that for each cycle of the graph there are two consecutive traversals
of its edges. It does not matter which we use, but for concreteness when we
start the traversal from an edge e, the next edge to be traversed is the least one
from the two adjacent to e. We call this traversal “positive”.

Also in an even length cycle, the edges can be partitioned into two subsets
of equal cardinality, the elements of each of which have pairwise odd distance.
These sets are called equal parity sets. If we color such a cycle with two colors
so that no adjacent edges get the same color, then the equal parity sets are the
monochromatic sets, i.e. the sets whose respective elements get the same color.

Consider now the algorithm given in Figure 2.

Color

1: Color all edges following their ordering and choosing at each step a color
uniformly at random among those that retain 4-acyclicity.

2: while an edge belonging to a bichromatic cycle exists, let e be the least
such and let C be the least bichromatic cycle that contains e and do

3: Recolor(e, C)
4: end while

5: Output current coloring.

Recolor(e, C)

1: Recolor, in their ordering, all edges of C, choosing at each step a color
uniformly at random among those that retain 4-acyclicity.

2: while an edge of C belonging to a bichromatic cycle exists, let e′ be
the least such and let C′ be the least bichromatic cycle that contains e′

and do

3: Recolor(e′;C′)
4: end while

Figure 2: The coloring algorithm

A root call of Recolor is a call invoked in line 3 of Color. A phase is
the collection of steps involved in the execution of a call of Recolor (root or
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not) or the collection of steps executed in line 1 of Color. The latter phase is
called the initial phase (phases are nested). The time complexity of Color is
expressed in terms of the number of invocations (root or not) of Recolor, i.e.
the number of phases.

Notice that in this algorithm, each non-root invocation of Recolor chooses
a cycle sharing an edge with the cycle of the calling Recolor. So this algo-
rithm is in the spirit of the algorithm in the original paper by Moser [9]; in the
subsequent algorithm by Moser and Tardos [5], the event chosen at the end of
each phase does not necessarily share a variable with the event of the previous
phase.

The following follows easily from line 2 of Color.

Lemma 2. Color outputs an acyclic edge coloring if it ever stops.

The main result of this paper, Theorem 2, states that if there are at least
3.74(∆ − 1) + 1 available colors, then the probability that Color lasts for at
least n phases is < 1 for sufficiently large n (actually, Theorem 2 states that
this probability is subexponential), therefore there is an acyclic edge coloring.

Lemma 3. Consider an arbitrary call of Recolor(e, C). Let E be the set
of edges that do not belong to a bichromatic cycle at the beginning of this call
together with the set of edges of C. Then, if the call terminates, the edges in E
do not belong to any bichromatic cycle at the end of Recolor(e, C).

Proof. Consider an edge e′ ∈ E . Assume first that e′ does not belong to C.
Then, if e′ is in a bichromatic cycle C′ after the execution of Recolor(e, C),
that cycle must have become bichromatic during the execution. Therefore there
is a cycle C− and an edge of it e− such that the process Recolor(e−;C−)
was called as a recursive call of Recolor(e, C) and C′ and C− share an
edge and C′ became bichromatic during Recolor(e−;C−). But the call Re-

color(e−;C−) will not terminate until all edges in C− do not belong to a
bichromatic cycle. Assuming Recolor(e, C) terminates, Recolor(e−;C−)
must have also terminated. So C′ cannot be bichromatic at the end of Re-

color(e−;C−). The same argument can be reapplied every time e changes
color and becomes an element of a bichromatic cycle during Recolor(e, C).

If, on the other hand, e′ ∈ C, then by definition e′ does not belong to any
bichromatic cycle at the end of Recolor(e, C).

As an immediate corollary we get:

Corollary 1. The cycles of root calls of Recolor have pairwise distinct sets
of edges. Therefore the number of root phases is at most m, the number of edges
of the graph.

We define labeled forests to be rooted forests whose nodes are labeled with
pairs (e, C), where e is an edge, called the edge-label, and C is an even cycle of
half-length ≥ 3 that contains e, called the cycle-label. We consider such labeled
forests as ordered by ordering the set of roots and each set of siblings (children
of the same parent) according to the order of their respective edge-label. We
also define:

Definition 1. A labeled forest is called feasible if
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i. Pairwise, the cycle-labels of the roots of the trees do not share an edge,

ii. pairwise the cycle-labels of the children of every node do not share an edge,

iii. if C is the cycle-label of a node u, the edge-label of any child of u belongs
to C.

Feasible forests are intended to represent the structure of recursive calls to
Recolor. For technical reasons, we add to a feasible forest some new leaves
to which we assign just an edge-label (their cycle-label can be taken to be an
empty cycle): First we add new trees comprised of a root only, so that the set
of edge-labels of all the roots of the trees of forest becomes equal to the set of
edges of the graph; second, we hang from each original leaf v of F as many new
leaves as the edges of the cycle-label of v, and we label them so that the set of
their edge-labels coincides with the set of edges of the cycle-label of v. So we
assume in the sequel that there are exactly m roots whose edge-labels comprise
the set of all edges, and that any internal node with a cycle-label C of half-
length k has exactly 2k children whose edge-labels comprise the set of all edges
in C. Traversing the internal nodes of each tree of a feasible forest in pre-order
(depth-first), and visiting the trees in the order of their roots’ edge-labels, we
obtain the forest’s label-sequence

L = (e1, C1), . . . , (en, Cn)

(labels of leaves are not included in the label-sequence).

Definition 2. The n-witness forest (or just the witness forest, when n is clear
from the context) of an execution of Color with at least n phases is the feasible
forest that results by creating one node per each of the n invocations of Re-

color, labeling it by its argument, and structuring the trees of the forest as
the calls of Recolor appear in the recursion stack of each root phase, i.e. a
node labeled with (e2, C2) is a progeny of a node labeled with (e1, C1) if Re-

color(e2, C2) is called while Recolor(e1, C1) is executed (additional leaves as
described in the previous paragraph are also added).

2. A Bound for the Acyclic Chromatic Index

Towards finding an upper bound that Color lasts for at least n phases, we
consider the algorithm ColorVal in Figure 3 that takes as input an arbitrary
sequence

S = (e11, e
2
1, k1), . . . , (e

1
n, e

2
n, kn),

such that for all s = 1, . . . , n, e1s and e2s are adjacent edges contained in some
cycle of half-length ks ≥ 3, and appear in this order in the cycle’s positive
traversal, when we start from e1s. We call such sequences admissible sequences.

Observe that ColorVal on input an arbitrary admissible sequence S, with
|S| = n, always produces as output a uniquely defined sequence of cycles
C = C1, . . . , Cn (but, alas, may end up with success = false). The notion
of “phases” for ColorVal is defined in analogy to Color, i.e. phases are
comprised of the number of steps that are involved with the execution of line 1
(initial phase) or with the execution of a loop of line 3 of ColorVal (phase s).
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ColorVal (S admissible sequence (e1s, e
2
s, ks), s = 1, . . . , n)

1: Color all edges of the graph, following their ordering, choosing at each
step uniformly at random a color that retains 4-acyclicity.

2: success := true

3: for s = 1, . . . , n do

4: if there is a cycle Cs that:

(a) has length 2ks and contains e1s, e
2
s in this order in its positive

traversal,

(b) is bichromatic under the current coloring

5: then let Cs be the unique such cycle /*the uniqueness is due to the
fact that no distinct homochromatic edges can be coincident to
the same vertex*/

6: else success := false; let Cs be an arbitrary (e.g. the first) cycle
that contains e1s, e

2
s in this order in its positive traversal, starting

from e1s
7: end if

8: Recolor all edges of Cs, in their ordering, choosing at each step a
color uniformly at random among those that retain 4-acyclicity

9: end for

Figure 3: The coloring validation algorithm

Given a feasible forest F whose label-sequence is (es, Cs), s = 1, . . . , n the
corresponding admissible sequence SF is obtained by letting e1s be es, e

2
s be the

edge of Cs following es in Cs’s positive traversal and ks be the half-length of Cs,
s = 1, . . . , n. Given an admissible sequence S let FS be the class of all feasible
forests F such that SF = S.

Proposition 1. Given an admissible sequence S

∑

F∈FS

Pr[ Color executes with witness forest F ] ≤

Pr[ColorVal is successful on input S]. (1)

Proof. We prove first that the probability P for at least one F ∈ FS being a
witness forest of Color is bounded from above by the probability that Color-

Val is successful on input S. For this it is sufficient to notice that if the random
choices made by an execution of Color that produces an arbitrary F ∈ FS are
made by ColorVal on input SF = S, then ColorVal is successful. The result
now follows by observing the the events that F is a witness forest of Color for
various F ∈ FS are mutually exclusive, therefore P can be written as the sum
in the lhs of (1).

Given an admissible sequence S = (e11, e
2
1, k1), . . . , (e

1
n, e

2
n, kn), an arbitrary

sequence C = C1, . . . , Cn of cycles such that Cs, s = 1, . . . , n, has length 2ks and
contains e1s, e

2
s, in this order in its positive traversal, starting from e1s, is called a

6



cycle-sequence associated with the admissible S (a cycle-sequence C associated
with S need not necessarily be the cycle-sequence produced by ColorVal).

Given a cycle-sequence C = (Cs)s associated with an admissible sequence
S = (e1s, e

2
s, ks)s, let the other edges of Cs in its positive traversal be e3s, . . . e

2ks
s

and let vis, i = 1, . . . , 2ks, be the vertices of Cs with vis, v
i+1 mod 2ks
s being the

endpoints of eis. Finally let 2k̂ =
∑n

s=1(2ks − 2).
For linguistic convenience, we call the edges e1s, e

2
s the first and second pivotal

edges of Cs, respectively (these are common to all C). Let e
l1s
s (respectively, e

l2s
s )

be the edge of Cs that gets the color it has at phase s of ColorVal earliest
among the edges of Cs that have equal parity with e1s (e2s, respectively). We

call e
l1s
s , e

l2s
s the early edges of Cs.

We call instants of an execution of ColorVal the discrete successive values
t = 1, 2, . . . of a time parameter at which ColorVal assigns a color to an edge.
Reassigning the same color is assumed to take place at a new instant.

Call the color an edge has immediately before the s’th repetition of loop 3
the edges’s color at phase s. Also call an edge’s color at phase 1 the edge’s
initial color. Given an edge e and a phase number s, let time(s; e) be the latest
instant before phase s starts that e was assigned the color it has at phase s, and
let χ(s; e) be this color.

Remark 1. Notice that in general it is possible to have two distinct phases
s′, s and an edge e so that time(s′; e) = time(s; e), because an edge may not be
assigned a color for the duration of several phases; however if Cs′ is the cycle
produced by an execution of ColorVal at phase s′, s′ < s, and e belongs to
Cs′ then time(s′; e) < time(s; e), because the cycles of the output cycle-sequence
are recolored at each repetition of loop 3.

Let c1s, c
2
s be the colors that the early edges e

l1s
s , e

l2s
s , respectively, of a cycle

Cs have at phase s i.e. cjs = χ(s; e
ljs
s ), j = 1, 2.

Remark 2. To avoid a possible misinterpretation, let us stress here that we do
not assume that c1s, c

2
s are a priori fixed and that the executions considered are

conditioned on the early edges of Cs taking the colors c
1
s, c

2
s, respectively. Rather,

given an arbitrary execution, c1s, c
2
s denote the colors the early edges will have

at phase s. Much like the Monty Hall problem [11], where the assumption that
Monty Hall opens box A does not mean that the choice of the contestant is
conditioned on Monty Hall always opening box A. “Box A” is just a “name” for
whatever box Monty Hall will open. Its actual value depends on the box selected
by the contestant.

Given a phase number s a color c and an edge e (belonging to Cs or not),
the event of assignment of color c for phase s (CA-event, in short), notationally
CA(s, c; e), is the event that occurs if the color assigned to e by ColorVal

at instant t = time(s; e) is c. If e belongs to the cycle Cs, i.e. if e = eis for

some i, then the CA-event CA(s, c; e) for c = c
((i+1) mod 2)+1
s is called the the

correct color assignment event (CCA-event, in short), notationally CCA(Cs; e).
In other words, a CCA-event occurs when the edge of its argument takes the
color of the corresponding early edge of the cycle of its argument. We refer to

the color c
((i+1) mod 2)+1
s for the edge eis as eis’s “correct” color for phase s.

The chronological order of the edges eis of a cycle sequence C is the order
induced by the ordering of time(s; eis) (recall Remark 1).

7



Definition 3. An anterior conditional for an event CA(s, c; e) is any con-
junction of events CA(s′, c′; e′), or negations of them, such that time(s′; e′) <
time(s; e).

Lemma 4. The probability of any CA-event, not referring to a cycle’s early
edge and its correct color, given any anterior conditional, is at most

1

γ(∆− 1) + 1
.

Proof. It follows immediately from the fact that ColorVal assigns a color
chosen uniformly at random from the set of colors that do not presently destroy
4-acyclicity and that this set, by Lemma 1, has cardinality at least γ(∆−1)+1,
independently of past assignments (recall that the total number of available
colors is K = ⌈(2 + γ)(∆− 1)⌉+ 1).

Remark 3. [Identifying the pivotal edges with their corresponding early edges]
Observe that by definition, the CCA-events corresponding to the early edges of
cycles occur with probability 1. To keep the notation simple, we will consider
CCA-events CCA(Cs; e

i
s) for all i ≥ 3 but with the notational convention that

for j = 1, 2, CCA(Cs; e
ljs
s ) stands for CCA(Cs; e

j
s), i.e. the CCA-event of an

early edge is, by convention, just the CCA-event of the corresponding pivotal
edge.

Lemma 5. Given an admissible sequence S = (e1s, e
2
s, ks), s = 1, . . . , n, then for

the probability of success of ColorVal on input S we have that:

Pr [ColorVal is successful on S] ≤

(

1

γ(∆− 1) + 1

)n n
∏

s=1

(

1−

(

1−
1

γ(∆− 1) + 1

)∆−1
)2ks−3

. (2)

Proof. Given a cycle-sequence C associated with S, the edges incident on vis
other than ei−1

s are called these edges stemming out vis. Let these edges in

chronological order be o1, . . . , oδ
i
s , where δis denotes their cardinality (the ol’s

themselves depend on s and i, however for brevity we omit the corresponding
indices). Obviously δis ≤ ∆ − 1, where ∆ is the max degree of the underlying
graph G. When ei−1

s is the previous to last edge of Cs in its positive traversal,
we set δis = 1. Also, let the parity of a non-pivotal edge eis of Cs be 1 or 2
depending on whether eis is at odd distance from e1s or e2s.

Let E1
C , . . . , E

2k̂
C denote the CCA-events CCA(Cs; e

i
s), 1 ≤ s ≤ n, i = 3, . . . , 2ks

of C in chronological order (by Remark 1, we may assume that these events
correspond to distinct time instants). Let At denote the conditional that the
chronologically first t− 1 CCA-events of C hold (At depends on the execution).

The geometric order of the edges of C is the one where the edges in each cycle
are ordered as they are traversed in its positive traversal, whereas the cycles are
ordered by their index (corresponding phase number). Assume that the CCA-

event for the k’th such edge (k = 1, . . . , 2k̂) in the geometric order is Etk
C . In

other words, Etk
C , t = 1, . . . , 2k̂ is a reordering, in the sense of the geometric

order, of the chronological order Et
C , t = 1, . . . , 2k̂ (the reordering depends on

the execution).
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We now define a random variable, denoted by C, over the random color-
choices of ColorVal. C is the unique cycle-sequence such that for every cycle
Cs of C, every non-pivotal edge eis is either the (unique) edge stemming out of
vis that, at the beginning of phase s, has the same color as the pivotal edge of Cs

of the same parity, if there is such one, or is the first edge stemming out of vis in
some predetermined order of all edges of the underlying graph, otherwise. This
is a well defined function over the space of random color-choices of ColorVal

because we cannot have two homochromatic edges incident onto the same vertex.
It is admittedly somewhat confusing that until now the notation C referred to
an arbitrary but fixed cycle-sequence, whereas in the sequel it denotes a random
variable depending on the random choices of ColorVal, yet we believe that we
thus avoid overloading the notation. Once C is seen as an well-defined random
variable, all the parameters defined up to now in terms of a fixed arbitrary
C, like eis (the i-th edge in the positive traversal of the s-th cycle of C), δis
(the number of edges stemming out of the vis), o

l (the chronologically l-th edge
stemming out of vis) etc. become well-defined random variables, depending only
on the random choices of ColorVal and its input S. Also the events previously
described remain meaningful with C being the random variable defined above
instead of arbitrary and fixed.

Now, observe that:

Pr [ColorVal is successful on S] = Pr [C is bichromatic]

=

2k̂
∏

t=1

Pr
[

Et
C | At

]

=

2k̂
∏

k=1

Pr
[

Etk
C | Atk

]

. (3)

Indeed, we obviously have that the event “ColorVal is successful on S” is im-
plied by the event “C is bichromatic” (C is said to be bichromatic if for all s,
Cs is bichromatic at the beginning of phase s). Also because no two homochro-
matic edges can be incident to the same vertex, we have that the latter event
is implied by the former, so we get the first equality of Equation 3. The second
equality follows by Remark 3 and the third one is trivial.

In order to find an upper bound for Pr
[

Etk
C | Atk

]

, first assume that for some

s = 1, . . . , n, i = 3, . . . , 2ks, the event Etk
C is the event CCA(Cs; e

i
s). For brevity

let δk denote δis and ck the correct color for eis.
Let now El be the event “(eis = ol)∧CA(s; ck, o

l)”, l = 1, . . . , δk. Intuitively,
El means that eis is the chronologically l’th edge stemming out of vis and it
gets the correct color. In case eis is a non-pivotal early edge of a cycle Cs

(i.e. the earliest edge among the same parity edges of Cs), then El stands for
“(eis = ol)∧CA(s; ck, e)”, where e is the pivotal edge e

1
s or e2s of the same parity

as eis and ck is eis’s color (recall Remark 3).
We have:

Pr
[

Etk
C | Atk

]

= Pr
[

CA(s, ck; e
i
s) | Atk

]

= Pr

[

δk
∨

l=1

El | Atk

]

, (4)

because always (deterministically) eis is one of the edges that stem out of vis.

Intuitively, Pr
[

∨δk
l=1 E

l | Atk

]

denotes the probability that one of the edges

stemming out of eis gets the correct color.

9



Observe that:

Pr

[

δk
∨

l=1

El | Atk

]

= 1− Pr

[

δk
∧

l=1

(¬El) | Atk

]

= 1−

δk
∏

l=1

Pr

[

¬El |

(

l−1
∧

m=1

¬Em

)

∧Atk

]

. (5)

Intuitively, the expression Pr
[

∧δk
l=1(¬E

l) | Atk

]

denotes the probability that

none of the possible instantiations of eis (i.e. the edges that stem out of the vis)
gets the correct color.

Now observe that:

(i) for an l’s for which eis 6= ol, it holds that Pr
[

¬El |
(

∧l
m=1 ¬E

m
)

∧ Atk

]

=

1, whereas

(ii) for an l for which eis = ol, it holds that

Pr

[

¬El |

(

l−1
∧

m=1

¬Em

)

∧ Atk

]

≥ 1−
1

γ(∆− 1) + 1
,

because when eis = ol, the event El is equivalent to CA(s, ck; o
l) and the

conditional
(

l−1
∧

m=1

¬Em

)

∧ Atk

is equivalent to Atk , which is anterior to CA(s, ck; o
l), because eis = ol.

Therefore for all l, we have that

Pr

[

¬El |

(

l−1
∧

m=1

¬Em

)

∧ Atk

]

≥ 1−
1

γ(∆− 1) + 1
,

Therefore:

Pr

[

δk
∧

l=1

(¬El) | Atk

]

≥

(

1−
1

γ(∆− 1) + 1

)dk

,

where dk = 1 if k corresponds to the last (in the geometric order) edge eis of Cs,
and dk = ∆− 1 otherwise (dk is not random).

Therefore, from (4) and (5) we get that:

Pr
[

Etk
C | Atk

]

≤ 1−

(

1−
1

γ(∆− 1) + 1

)dk

.

Observe that among the k = 1, . . . , 2k̂ there are n values of k for which dk = 1
(the k’s for which eis is the closing edge of Cs), whereas for the remaining
∑n

s=1(2ks − 3) values of k, we have dk = ∆ − 1. So we can conclude from (3)
that that Pr [ColorVal is successful on S] is bounded from above by:

(

1

γ(∆− 1) + 1

)n n
∏

s=1

(

1−

(

1−
1

γ(∆− 1) + 1

)∆−1
)2ks−3

.

10



Remark 4. The fact that no two homochromatic edges can be incident onto the
same vertex is essential for the correctness of the above proof. For example in
the case of vertex coloring, where we can have more than one homochromatic
vertices neighboring with the same vertex, the proof does not go through. Indeed,
even if we define the random variable C to be the unique cycle-sequence such
that for every cycle Cs of C, every non-pivotal edge eis is either the first edge
stemming out vis that has the same color as the pivotal edge of Cs of the same
parity, if there is one, or is the first edge stemming out of vis, if there is none,
still Equation 3 can only take the form:

Pr [ColorVal is successful on S] ≥ Pr [C becomes bichromatic]

=

2k̂
∏

t=1

Pr
[

Et
C | At

]

=

2k̂
∏

k=1

Pr
[

Etk
C | Atk

]

. (6)

Corollary 2. If S is as in Lemma 5 then

Pr [ColorVal is successful on S] ≤
(

1

∆− 1

)n n
∏

i=1

(

1

γ

(

1− e−
1

γ

)2ki−3
)

. (7)

Proof. Use the inequality

1− x > e−
x

1−x , ∀x < 1, x 6= 0

(see e.g. [12, inequality (4.5.7)]) for x = 1
γ(∆−1)+1 , which implies, after elemen-

tary operations, that
(

1− 1
γ(∆−1)+1

)∆−1

is at least e−
1

γ .

We now turn to the estimation of the probability, call it P̂n, that Color

lasts for at least n phases.

Theorem 1. The expression Pn defined as

Pn =
∑

n1+···+nm=n
n1,...,nm≥0

Qn1
· · ·Qnm

, (8)

where Qn is defined by the recursion:

Qn =
∑

k≥3

(

(

1

γ

(

1− e−
1

γ

)2k−3
)

·
∑

n1+···+n2k=n−1
n1,...,n2k≥0

Qn1
· · ·Qn2k

)

, (9)

with Q0 = 1, is an upper bound of P̂n.

Proof. Let f be an unlabeled ordered forest with m trees (recall, m is the number
of edges of G) and with n internal nodes, each, considered in their pre-order,
having an even degree 2ks, s = 1, . . . , n (ks ≥ 3). Let pf be the probability that
the witness forest of an execution of Color on G has underlying unlabeled
forest f . Obviously

P̂n =
∑

f

pf , (10)

11



where the sum above ranges over unlabeled forests as described.
With each internal node of f with half-degree ks, we associate weight

1

γ

(

1− e−
1

γ

)2ks−3

,

and we associate weight 1 with the leaves of f . We define:

‖f‖ =
n
∏

i=1

(

1

γ

(

1− e−
1

γ

)2ki−3
)

. (11)

We now prove:

Claim. pf ≤ ‖f‖.

Proof of Claim. Let L = (e11, C1), . . . , (e
1
n, Cn) be a sequence which if considered

as label-sequence of f leads to an n-witness forest for Color. We will examine
what the possibilities for L are and thus bound the probability that at least one
such label-sequence, together with f , comprises a witness of Color.

First observe that the lengths of the cycles Cs should coincide with the
positive degrees 2ks of f , therefore the lengths of the Cs of L are uniquely
determined. Then observe that the edge-label e11 of L, which is to be assigned
to the first r root of f that is not a leaf, is uniquely determined to be the k’th
edge of G, where k − 1 is the number of leaf-roots that precede r (recall the
definition of a witness forest, the way it is defined by Color and the fact that
we introduced isolated roots for feasible forests in order to cover all edges of G).
There are at most (∆ − 1) choices for e21, the second pivotal edge of C1. This
introduces a factor of (∆−1) for the sought after upper bound of pf . Once e11, e

2
1

of L are determined, the event that f , together with such an L, gives a witness
for Color necessitates that some C1 with pivotal edges e11, e

2
1 and length 2k1

is bichromatic. For each such possibility for C1, the second edge-label e12 of L
is determined to be the first edge of C1 that does not correspond to a leaf of f
(recall again the definition of a witness forest, the way it is defined by Color

and the fact that we introduced isolated leaves for feasible forests in order to
cover all edges of each cycle-label of each internal node). Again there are at
most (∆ − 1) possibilities for e22, thus introducing a factor of (∆ − 1) to the
sought after upper bound. And again, it becomes necessary that some C2 with
with pivotal edges e12, e

2
2 and length 2k2 is bichromatic. We continue in this

fashion, following the structure of f : when a leaf is reached, we go back to the
last internal node (in a depth-first fashion), then the next edge of this internal
node’s cycle-label should be the next edge-label in L; when a tree of the forest
f is exhausted, we go to the next root, then the next edge of G should be the
next edge-label L. Now from Proposition 1, which bounds the probability that
at least one forest with labels (e1s, Cs)s is a witness for Color, and Corollary 2,
which bounds the probability that ColorVal is successful on input (e1s, e

2
s, ks)s,

and taking into account the n factors (∆− 1), which correspond to the possible
choices of e2s, we conclude that pf is bounded from above by the product of the
weights:

‖f‖ =

n
∏

i=1

(

1

γ

(

1− e−
1

γ

)2ki−3
)

.
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This concludes the proof of the Claim and we now return to the proof of Theo-
rem 1.

Consider unlabeled ordered forests withm ordered trees with n internal nodes
in total, whose out-degrees are even and ≥ 6; assign weight w2k to all internal
nodes of out-degree 2k; also assign weight 1 to all leaves and let the weight of
such a tree be the product of the weight assigned to all its nodes. Then by
distributivity of multiplication over addition it follows that the sum fn of the
weights of all such weighted unlabeled ordered forests is given by:

fn =
∑

n1+···+nm=n
n1,...,nm≥0

tn1
· · · tnm

, (12)

where tn, the sum of the weights of weighted unlabeled ordered rooted trees
with n internal nodes, is given by the recurrence:

tn =
∑

k≥3

w2k

(

∑

n1+···+n2k=n−1
n1,...,n2k≥0

tn1
· · · tn2k

)

, (13)

with t0 = 1. By the Claim above we get that:

∑

f

pf ≤
∑

f

‖f‖ =
∑

f

[

n
∏

i=1

(

1

γ

(

1− e−
1

γ

)2ki−3
)

]

. (14)

The required follows from (10) and (14) making use of the recurrence given by
(12) and (13).

2.1. Asymptotic analysis of the recurrence

We will asymptotically analyze the coefficients of the OGF Q(z) of Qn.
Towards this end, multiply both sides of equality (9) by zn and sum for n =
1, . . . ,∞ to get

Q(z)− 1 =
∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3

zQ(z)2k
]

, (15)

with Q(0) = 1. Setting W (z) = Q(z)− 1 we get

W (z) =
∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3

z(W (z) + 1)2k
]

, (16)

with W (0) = 0. For notational convenience, set W = W (z). Then from (16) we
get:

W = z
1

γ
·

(

1− e−
1

γ

)3

(W + 1)6

1−
(

1− e−
1

γ

)2

(W + 1)2
. (17)

Set now

φ(x) =
1

γ
·

(

1− e−
1

γ

)3

(x+ 1)6

1−
(

1− e−
1

γ

)2

(x+ 1)2
, (18)
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to get from (17):
W = zφ(W ). (19)

Let now R = 1
(

1−e
−

1

γ

)−1 be the radius of convergence of the series representing

φ at 0. Let also τ be the (necessarily unique) solution in the interval (0, R) of
the characteristic equation (in τ):

φ(τ) − τφ′(τ) = 0. (20)

Finally, let

ρ =
τ

φ(τ)
. (21)

By [13, Proposition IV.5] (it is trivial to check that the hypotheses in that Theo-
rem are satisfied for γ > 0), we get [zn]Q ⊲⊳ (1/ρ)

n
, i.e. lim sup ([zn]Q)1/n = 1/ρ

(see [13, IV.3.2]).
Now by a simple search (through Maple, for the code see [14]) we found

that for γ = 1.73095, the unique positive solution of (20) in the radius of
convergence is τ = 0.1747094762, and this value of τ gives 1/ρ = 0.9999789027<
1. Therefore by making use of (8), we get:

Theorem 2. Assuming ∆, the maximum degree of the graph G, is constant,
and given the availability of at least 3.74(∆−1)+1 colors, there exists an integer
N , which depends linearly on m, the number of edges of G, and a constant ρ > 1
such that if n/ logn ≥ N then the probability that Color executes at least n
calls of Recolor is < (1/ρ)n; therefore the graph has an acyclic edge coloring.

Now if the graph has girth 2r − 1 for r ≥ 4, the previous arguments carry
over with minimal changes. Namely, equation (9) becomes:

Qn =
∑

k≥r

[

1

γ

(

1− e−
1

γ

)2k−3

·
∑

n1+···+n2k=n−1
n1,...,n2k≥0

Qn1
· · ·Qn2k

]

, Q0 = 1. (22)

Also in (15) and (16), the starting point of the summation is changed from 3 to
r. Moreover, equation (17) becomes:

W = z
1

γ
·

(

1− e−
1

γ

)2r−3

(W + 1)2r

1−
(

1− e−
1

γ

)2

(W + 1)2
, (23)

and equation (18) becomes:

φ(x) =
1

γ
·

(

1− e−
1

γ

)2r−3

(x+ 1)2r

1−
(

1− e−
1

γ

)2

(x+ 1)2
. (24)

Working as before, we get numerical results depicted in Figure 4 with sample
specific values explicitly given in Figure 1.
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Figure 4: γ as a function of girth

3. Discussion

There are several conceivable possibilities for improvement of the ⌈3.74(∆−
1)⌉ + 1 bound. For example, in Color we can recolor not all edges of Cs

but all but two consecutive of them (because it is only those that determine
bichromaticity). Also in Theorem 1, we can conceivably improve the bound
provided by claiming that for each execution, there is only one ks so that the
cycle Cs of half-length ks is bichromatic. Nevertheless we opted not to consider
these possible improvements, as our aim was only to present a probabilistic
analysis of a Moser-type algorithm with dependent variables.
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