THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES

François Ledrappier
  • Fonction : Auteur
  • PersonId : 1022301
Lin Shu
  • Fonction : Auteur
  • PersonId : 945697

Résumé

We show the linear drift of the Brownian motion on the universal cover of a closed connected Riemannian manifold is C k´2 differentiable along any C k curve in the manifold of C k metrics with negative sectional curvature. We also show that the stochastic entropy of the Brownian motion is C 1 differentiable along any C 3 curve of C 3 metrics with negative sectional curvature. We formulate the first derivatives of the linear drift and entropy, respectively, and show they are critical at locally symmetric metrics.
Fichier principal
Vignette du fichier
LS-3-07-11-17-S-2.pdf (1.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01630521 , version 1 (07-11-2017)
hal-01630521 , version 2 (11-05-2018)

Identifiants

  • HAL Id : hal-01630521 , version 1

Citer

François Ledrappier, Lin Shu. THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES. 2017. ⟨hal-01630521v1⟩
84 Consultations
167 Téléchargements

Partager

More