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THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY
CURVED SPACES

FRANCOIS LEDRAPPIER AND LIN SHU

ABSTRACT. We show the linear drift of the Brownian motion on the universal cover of
a closed connected Riemannian manifold is C*~2 differentiable along any C* curve in
the manifold of C* metrics with negative sectional curvature. We also show that the
stochastic entropy of the Brownian motion is C* differentiable along any C* curve of C?
metrics with negative sectional curvature. We formulate the first derivatives of the linear
drift and entropy, respectively, and show they are critical at locally symmetric metrics.

CONTENTS
1. Introduction and statement of results 2
2. Preliminaries 6
2.1. Jacobi fields and the geodesic flow 6
2.2.  Anosov flow and invariant manifolds 7
2.3. Harmonic measure for the stable foliation 9
2.4. Busemann function and the linear drift 10
3. Regularity of the linear drift 12
3.1. Regularity of the leafwise divergence term Div"¥ X 12
3.2. Regularity of the harmonic measure 16
3.3. Differentials of the linear drift 23
4. Brownian motion and stochastic flows 26
4.1. Parallelism and the Brownian motion 26
4.2. A stochastic analogue of the geodesic flow 30
4.3. Growth of the stochastic tangent maps in time 36
4.4. Brownian bridge and conditional estimations 44
4.5. Regularity of the stochastic analogue of the geodesic flow 51
5. The first differential of the heat kernels in metrics 65
5.1. Strategy 65
5.2. A description of FZ 71
5.3.  The existence of Fy 81
5.4. Quasi-invariance property of F; 93
5.5. The extended map F?* 99
5.6. The differential of A\ — p™ (T, z, -) 115
6. Higher order regularity of the heat kernels in metrics 131
6.1. A sketch of the proof for Theorem 1.3 with i > 2 131
6.2. Proofs of the properties concerning ¢J>\ 140
7. Regularity of the entropy 146
References 151

2010 Mathematics Subject Classification. 37D40, 58J65.
Key words and phrases. entropy, heat kernel, linear drift, locally symmetric space.
The second author was partially supported by NSFC (No.11331007 and No.11422104) and Beijing Higher
Education Young Elite Teacher Project (YETP0003).
1



2 FRANCOIS LEDRAPPIER AND LIN SHU

1. INTRODUCTION AND STATEMENT OF RESULTS

Let M be an m-dimensional orientable closed connected Smooth manifold with funda-
mental group G. Its universal cover space M is such that M = M / G.

For k € N, let C*(S?T*) be the collection of C* sections of S?T*, the bundle of sym-
metric 2-forms on the tangent space T M. It is a Banach space with the topology of the
uniform convergence in k derivatives. The set of all smooth sections of S?T*, denoted
by C®(S?T*) 1= (_, C*(S?T*), is a Fréchet space whose topology is given by all the
C*-norms. Let M*(M) denote the set of C* Riemannian metrics on M. It is the collection
of elements in C*(S?T*) which induces a positive definite inner product on each tangent
space T M, x € M. The space of all smooth Riemannian metrics M® (M) = (), M¥(M)
consists of an open convex positive cone in C*(S?T*) and is a Fréchet manlfold

Let g € M?(M) and let § be its G-invariant extension to M. Consider the Brownian
motion on (]\7 g) with starting point ze M. TIts density function of the distribution at
time t € Ry, denoted by p(t,z,y),y € M is the fundamental solution to the heat equatlon
ou/0t = Au, where A := DivV is the Laplaman of metric § on C? functions on M. Denote
by Voly the Riemannian volume on (M ,G). The linear drift

1
(:= lim fdg(a:,y)p(t,x,y) dVolz(y),

t—+oo ¢

which was introduced by Guivarc’h ([Gu]), tells the average in time of the shift of the
Brownian motion from its starting point. The limit ¢ is independent of the choice of z and
is well-defined since we have a compact quotient.

Let ®*(M) (k = 3 or k = ) be the submanifold of M*(M) made of negatively curved
C* metrics on M. Tt is open in M¥(M). For any curve A € (—1,1) — g* € R¥(M), the
linear drift for each (M, g"), denoted by £, is positive ([K1, Theorem 10]). Our main
result in this paper is the following.

Theorem 1.1. Let M be a closed connected smooth manifold. For any C* (k = 3) curve
Ae (=1,1) = g* e RF(M), the function X — £y is CF=2 differentiable; for any C* curve
Ae (=1,1) > g* € R®(M), the function \ — £y is C differentiable.

Our strategy to prove Theorem 1.1 is to use the expression of the linear drift at the
infinity boundary of M and prove the C*~2 regularity of the ingredients in that formula.

Let §* be the G-invariant extensions of ¢* in M. The geometric boundary of (]\7 L),
denoted oM A is the collection of equivalent class of unit speed §*-geodesics that remain a
bounded distance apart. Each éM* can be identified with oM° (or simply oM ) since the
identity isomorphism from G to itself induces a natural homeomorphism between the two
boundaries. For z € M and e (9]\7, let XA(:x,ﬁ) be the initial speed vector of the unit
speed §*-geodesic starting from z belonging to the equivalent class of €. Let Div? be the
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divergence operator of (]\7 , ). Tt is true (see Section 2 for a more precise statement) that
(1.1) 0 = —f _Div*X* di?,
Mo x OM

where My is a connected fundamental domain and dm* = dz* x dm), where da* is

proportional dVolz and m) is the hitting probability at oM of the §*-Brownian motion
starting at z.

The term —Div*X* in (1.1) has its geometric feature as being the mean curvature of the
strong stable horosphere of the geodesic flow in the metric §* (see (2.4)); its regularity in A
can be deduced using the results from [Co, KKPW, LMM] on the Morse correspondence
map between the geodesic flows of two negatively curved spaces (Proposition 3.5).

To conclude Theorem 1.1, we show the following on the regularity in A of the harmonic

measure m* := m*|gys, where SM := My x oM (see Section 3 for precise definitions).

Theorem 1.2. Let M be a closed connected smooth manifold. For any g € ®F(M), k > 3,
there exist a meighborhood Vg, of g in RF(M) and a Banach subspace HY of continuous
functions on SM such that for any C* curve A € (—1,1) — ¢g* € V, with g° = g, the
mapping A — m> is C*=2 in the weak topology of the dual space (HQ)*.

For each ¢*, it is defined naturally a one-parameter of actions Qf‘ (t = 0) on continuous
functions f on SM:

(1.2) QNf) (€)= f Ty )@ (t, (. €), d(y, m)),

Mg xoM
where q* denotes the transition probability of g*-Brownian motion on the stable leaves of
SM and fdenotes the G-invariant extension of f to M x 0M. Since (M, g) is negatively
curved, it is known ([L2]) that each Q). (for T large) is a contraction on some Banach space
Hy of continuous functions on SM which are Holder continuous with respect to direction
changes and this makes m* a fixed point of the dual of QHHQ‘ The idea to prove Theorem

1.2 is to use the classical perturbation result on a linear contraction in a Banach space
([Kat]). Hence, it suffices to find a common Banach space H) and a T' > 0 such that

e all Q%, A€ (—1,1), are contractions on HY, uniformly in A, and
e A Q) is C*2 as maps from H into itself.

To achieve this, we not only need the regularity of the heat kernels q* in ¢*, but also need
the estimations on its differentials, which we present with full generality as follows.

For each g = (g;;(w)) € M¥(M), set |g|ca (a < k) for the C%norm of g which involves
the bounds of {g;j(z)} and of their differentials up to the a-th order. Each C* curve
e (—=1,1) — g* € MF(M) defines a one-parameter of tangent vectors X* = (XZ/]\(:U)) €
C*(S%T*). Let

(X/\)(O) = X/\a (X)\)(l) = ((X)\)(lil))g\ln l= 17 7k7
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be its derivatives in A up to the k-th order. All (X*)®) are elements in C*(S>T*). By
(XM ca (a < k), we mean the C%norm of (X*)®), which involves the bounds of the

(X’\)g-) (z) and of their differentials in z up to the a-th order.

Let C”“(M ) denote the collection of C* functions on M with Hélder exponent ¢. The set
of continuous functions on M is denoted by C'(M). For any one-parameter of real functions
on M or real numbers A — a*, let (a)‘)g\z) denote the i-th differential in A whenever it exists.
Theorem 1.3. For any g € M*(M), k > 3, there exist 1 € (0,1) and a neighborhood V, of
g in M¥(M) such that for any C* curve A € (—1,1) — ¢g* € V, with ¢° = g:

i) The mappings A\ — pNT,x,-), x € ]\7,T eRy, are C*2 in C’“(]\?).

i) LetTy > 0andq > 1. Foreachi, 1 <i<k—2,1,0<1<k—2—i, andT > Ty, there
exists c 1.5 (q) depending on (1,4), ¢, T, T, | g™ cuvive and {[(XN) D] gisimiir}j<io
such that

(1.3) VO (T2, )

L S e (1,i) (Q)s

where the LY-norm is taken with respect to the distribution at T of the §*-Brownian
motion probability.
iii) Let To > 0 and ¢ = 1. For each i, 1 <i <k —2, and T > Ty, there exists cy (;(q)

depending on i,q,T, Ty, |g*|cive and {|(XN) D] ci-s+1}j<io1 such that

(MV(T,x, )

(1.4) T2,

< ey i) (9)-
La

iv) Let ]?e C(M) be uniformly continuous and bounded. Then for any T > 0 and 1,
1 <i<k—2, the function Sﬂ(p)‘)f\z) (T, z,y)f(y) dVolzx (y) belongs to C(M).

A priori, the derivative in A of p*(t, x,y), if it exists, satisfy the equation

1
(L5) { Galtey) = Ajalt.a.y) + (A)VP(E 2. y),
q(0,z,y) = 0.
Equation (1.5) always has a solution in the distribution sense. Our Theorem 1.3 is that this
distribution is given by a function (p*(¢,z,-))() € C**(M) and that its gradients satisfy
(1.3). This does not follow directly from (1.5) since (A;‘)E\l)pA (t,z,y) has singularities as t
goes to zero and y = x. To get an explicit expression of the solution, we use the stochastic
calculus representations of the heat kernel and the Brownian motion. Namely, we find a
C! vector field Z%’l(y) on M (see (5.15)) such that, for any smooth f on M with compact
support,
A A W
([ 1 @) avor'))

Lo JM (Vo f(y), NI, y)zy (), dVol* (y).
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So, using the classical integration by parts formula, we obtain

(J F)pNT, 2, y) dVol* (y )>(1)

A
—fﬂf(y) D1V>\ )‘1 ) + <Z V’\ lnp (T, x y)> ) )‘(T,:L‘,y) dVol)‘(y).

In the same way, we will find C* vector fields {Z%’j(y)}j@-qC 2 (see (6.6) and (6.12)), which

will enter the formulas of (In p)‘)g\i) and the gradients V) (In p* )(Z)

We remark that the argument of Theorem 1.3 also applies to the heat kernels on M.
But there might be a more direct proof using the compactness of the manifold (see [M]).

In showing Theorem 1.1, we also obtain the formula (3.12) for the first order differential
of the linear drift under one-parameter deformations of negative curved metrics, which
implies the following two theorems.

Theorem 1.4. (see Corollary 3.10) Let M be a closed connected smooth manifold. Let
g € R3(M) be a negatively curved locally symmetric metric. Then for any C3 curve \ €
(=1,1) — g* € R3(M) with ¢° = g and constant volume,

(€x)o = (dlx/dN)|x=0 = 0.

Theorem 1.5. (see Theorem 3.11) There is a linear functional £ on C*(S?T*) such that
for all C? curve M € (—1,1) — g* € R3(M) with ¢° = g and constant volume,

(L) = L(X).

A similar approach yields the first order differentiability in A of the entropy h* of the
Brownian motion on (M, g), where

1

A = tlim 5 flnpA(t,:):,y)p)‘(t,x,y) dVol* ().
—00

Theorem 1.6. Let M be a closed connected smooth manifold. For any C® curve \ €

(—=1,1) > g* € R3(M), the function X — h* is C* differentiable and is critical at A = 0

when ¢° is locally symmetric. Moreover, there is a linear functional KK on C*(S?T*) such

that

(WM := (dn*/dN) oo = K ().

In our approach, the higher order regularity of A — h* and the analysis on the differen-
tials would depend on understanding the regularity of the Martin kernel (see [Go] for the
random walk case). This will be treated in a subsequent paper ([LS2]).

Note that the Hausdorff dimension of the distribution of m}, denoted by dimgm),
is given by h*/(s0*) for a fixed number s associated with the dlstance function on the
boundary (see (3.1)) ([L1]). The following is a corollary of Theorem 1.1 and Theorem 1.6.
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Corollary 1.7. Let M be a closed connected smooth manifold. For any C? curve \ €
(=1,1) — g* e R3(M) and all x € M, the function X — dimgm) is C differentiable.

We arrange the paper as follows. In Section 2, we give some preliminaries. In Section
3, we assume Theorem 1.3 and prove consecutively Theorem 1.2, Theorem 1.1, Theorem
1.4 and Theorem 1.5. Section 4 is for the Eells-Elworthy-Malliavin construction of the
stochastic flow corresponding to the Brownian motion and its related dynamical properties.
The strategy for proving the first order differentiability in Theorem 1.3 and the i = 1 case
of (1.3) and (1.4) is explained in Section 5.1. Section 5 is devoted to the details of that
proof. The rest of the proof of Theorem 1.3 is by induction on the order of differentiability.
See Section 6.1 for the description of the necessary steps and Section 6.2 for their proofs.
Finally, in Section 7, we consider the first order regularity of the entropy.

2. PRELIMINARIES

In this section, we introduce the basic notions related to formula (1.1). In the rest of the
paper, if it is not specified, we only consider the elements of M*(M), R*(M) with k > 3.

2.1. Jacobi fields and the geodesic flow. For g € M*(M), let V, R be the Levi-Civita

connection and the curvature tensor on (M,g) and (M,q). Recall that a unit speed g-

geodesic ¢t — ~(t) € M is such that V4¥ = 0, where 4(t) = V 27(t). The Jacobi fields
ot

along ~ are vector fields ¢ +— J(t) € T, ;)M which describe the infinitesimal variations of

the geodesics around ~y. It is well known that J(t) satisfies the Jacobi equation

Vi Vi (t) + R(J(8),7(1)(t) = 0

and is uniquely determined by the values of J(0) and J'(0). Let N(v) be the normal bundle
of ~, i.e.,

N() = [ Ni(7), where Ny(y) = {Y € T,,) M : (Y, 4(t)) = 0}.
teR
A (1,1)-tensor along v is a family V' = {V(t), t € R}, where each V(¢) is an endomorphism
of Ni(7) such that for any family Y; of parallel vectors along =y, the covariant derivative
Vi) (V(t)Y:) exists. The curvature tensor R induces a symmetric (1, 1)-tensor along v by
R(t)Y = R(Y,%(t))7(t). A (1,1)-tensor V (¢) along ~ is called a Jacobi tensor if it satisfies

Vﬁ(t)vﬂ-,(t)V(t) + R(t)V(t) = 0.

If V(t) is a Jacobi tensor along ~, then V(¢)Y; is a Jacobi field for any parallel field Y;
along .

The Jacobi fields can also be visualized using the geodesic flow map on the unit tangent
bundle. For x € M and v € T, M, an element w € 1,7 M is vertical if its projection on
T, M vanishes. The vertical subspace V, is identified with 7, M. The connection defines
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a horizontal complement H,, also identified with Tzﬂ . This gives a horizontal /vertical
Whitney sum decomposition

TTM = TM @& TM.
Define the inner product on TTM by
<(Y17 Zl)? (Y27 Z2)>'§ = <Y17 Y2>§ + <Zla ZQ>'§

It induces a Riemannian metric on TM , the so-called Sasaki metric. The unit tangent
bundle SM of the universal cover (M,q) is a subspace of T'M with tangent space

Tw)ySM = {(Y,2): Y,Z€T,M,Z Lv}, for x € M,ve S, M.

Assume v = (z,v) € SM and let ~v be the g-geodesic starting at x with initial velocity
v. Horizontal vectors in TVSM correspond to pairs (J(0),0). In particular, the geodesic
spray Xy at v is the horizontal vector associated with (v,0). A vertical vector in T, SM
is a vector tangent to Sx]\7 , the set of unit tangent vectors at x. It corresponds to a pair
(0, J'(0)), with J'(0) orthogonal to v. The orthogonal space to Xy in Ty SM corresponds
to pairs (vy,v2),v; € No(7yy) for i = 1,2.

The vector field {Y"}vesﬂ
bundle, where ®; : SM — SM , Vo Yv(t). Any Jacobi field along a geodesic 7y is

generates the geodesic flow {®;};cr on the unit tangent

of the form D®;(w), where w € T,SM is an infinitesimal change of the initial point v.
More explicitly, if (J(0), J’(0)) is the horizontal /vertical decomposition of w € Ty, SM, then
(J(t),J'(t)) is the horizontal /vertical decomposition of D®(w) € T, (v)SM.

2.2. Anosov flow and invariant manifolds. Assume g € R*(M). The g-geodesic flow
®; on SM has some special properties due the negative curvature nature of the space.

Firstly, (]\7 ,§) has no conjugate points. Hence we can identify SM with M x oM since
each pair (z,¢) € M x oM corresponds to a unique unit speed geodesic v, ¢, which begins at
x and is asymptotic to &, and the mapping oM — Sﬂ\?f sending & to ;.¢(0) is a bijection.
In the (]\7 , oM )-coordinate, the geodesic flow map ®; has the expression

®4(2,€) = (1oe(t),€), V(z,6) € SM.

Furthermore, the geodesic flow on SM is Anosov: the tangent bundle TSM decomposes
into the Witney sum of three D®-invariant subbundles E¢ @ E** @ E®", where E€ is the
1-dimensional subbundle tangent to the flow and E*® and E®" are the strongly contracting
and expanding subbundles, respectively, so that there are constants C,c > 0 such that

i) |[D®w| < Ce “||w]| for we E* t > 0.
i) |[D®;'w| < Ce °|w| for we E*, t > 0.
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The sub-tangent bundles E*, E®", E€ are the so-called stable, unstable, and central bundles.

The subbundles E** and E" have their characterizations using Jacobi tensors. Assume
v =(z,v)€E SM. For each s > 0, let Sy s be the Jacobi tensor along 7, with the boundary
conditions Sy s(0) = Id and Sy s(s) = 0. Since (]\7, g) has no conjugate points, the limit
limg—, 400 Sy,s =: Sy exists ([Esc|) and is called the stable tensor along the geodesic .
Similarly, by reversing the time s, we obtain the unstable tensor Uy along the geodesic vy .
The stable subbundle E* at v is the graph of the mapping S, (0), considered as a map from
No(yv) to Vi sending Y to S, (0)Y, where No(yy) := {w,w € Hy,w L X,}. Similarly, the
unstable subbundle E®" at v is the graph of the mapping U, (0) considered as a map from
N 0 ('7v) to Vv

Due to the Anosov property of the geodesic flow, the distributions of E**, E*" (and hence
E° ® E*,E°¢ @ E*") are Holder continuous ([Ano], see also [Ba, Proposition 4.4]). Hence,
the (1, 1)-tensors Sy, S, Uy, U, are also Holder continuous with respect to v.

Associated with the bundle E® := E° @ E® are the (weak) stable manifolds of ®;:

(2.1) W (z,€) = {(y,n) e M x oM : nmsup%1ndist(q>t(y,n),q>t(x,§)) < o}.

t—+00

Each W*(z,£) coincides with the collection of the initial speed vectors of the geodesics

asymptotic to £ and can be identified with M. Associated with E are the strong stable
manifolds

(22)  W¥(z,¢) = {(y,n) e 0T x ONT : Timsup ~ In dist (®:(y,m), ®(x,8)) < o}.
t—+00

Each W*(x,£), locally, is a C*~1 graph from E
Ef ¢ ([SFL]). It is true that

to E‘(:x@ (&) E?;,E) and is tangent to

(.0)

®; (W™(x,8)) = W™ (@4(x,€))

and the union of these images is just the stable manifold, i.e.,

W (@, &) = | @ (W™(2,€)).

teR

The weak and strong unstable manifolds, denoted by W (z, £) and W*="(x, £), respectively,
can be defined similarly as in (2.1) and (2.2) by reversing the time. They have tangents
E" := E°® E®™ and E®", respectively.

The geodesic flow ®; on S M naturally descends to the geodesic flow ®; on g-unit tan-
gent bundle SM, carrying all the tangent splitting and the corresponding submanifolds
downstairs. Indeed, the action of G on the tangent bundle E (where E denotes any one
of E* ES" and E°) satisfies ¢¥(E(z,&)) = E(Dy(z,§)) for all ¥ € G so that it defines the
D®,-invariant subbundles £55, 5", E°¢ of T'SM, the so-called stable, unstable, and central
bundles. We see that E° is tangent to the flow direction and E*5, E5" are such that
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i) |[D®w| < Ce=|wl| for we E*, t > 0.
i) |D®;  w| < Ce=|w| for we B, t > 0.

Similarly, the action of G on the submanifolds W (where W denotes any one of W* W W
and W) satisfies (W (x,&)) = W (Dy(x,§)) for all p € G so that it defines the stable,
strong stable, unstable and strong unstable manifolds of the geodesic flow on SM, which
have tangents £ @ E°, E%, E5" @ E° and E®", respectively. In particular, the collection
of W5(x,&) defines a foliation W = {W5(v)}pesy on SM, the so-called stable foliation

of SM. Each W*(z,&) can be identified with M x {{}. Hence the quotients W5(v) are
naturally endowed with the Riemannian metric induced from §. They are C*~! immersed
submanifold of SM depending continuously on v in the C*~1 topology ([SFL]).

2.3. Harmonic measure for the stable foliation. We continue to assume g € R*(M).
Associated with the stable foliation W is the harmonic measure which is closely related to
the leafwise Brownian motion. Write A" for the leafwise Laplace operator of W, which
acts on functions that are of class C? along the leaves of W. A probability measure m on
SM is called harmonic if it satisfies, for any C? function f on SM,

AV f dm = 0.
SM

Since (M, g) is negatively curved, there is a unique harmonic measure m associated to the
stable foliation ([Gal). Let m be the G-invariant extension of m to SM. It is closely
related to the Brownian motion on the stable leaves. For (z,€&) € SM, let

p(t, (z,€),d(y,n)) := p(t,z,y) dVolz(y)de(n),

where 6¢(n) is the Dirac function at {. Then p is just the transition probability function
of the Brownian motion on W#(z,&) = M x {&} starting from (z,§). Let Q). be the space

of continuous paths w : [0, +0) — SM equipped with the smallest og-algebra for which the
projections R; : w — w(t) are measurable. Let {P(, ¢} be the corresponding Markovian

family of p on Q.. Then for every ¢ > 0 and every Borel set A < M x oM ,

Blogy (= 2 0) € 4D = | plt (2.6).dlw. 1),
Proposition 2.1. ([Ga]) The following hold true.

i) The measure m satisfies, for any f € CQ(M X 6]\7) with compact support,

| (] ot am)) dine.o) = [ fo©) dinge.)
MxoM MxoM M xoM

ii) The measure P = SIF(%&) dm(zx,&) on S~2+ s invariant under every t-time shift

mapping oy : Ly — Qy, 0p(W(s)) =w(s+t), fors>0 and &€ Q..
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iii) The measure m can be expressed locally at (z,§) € M x 0M as din = dz x di,,
where dx 1s proportional to the volume element and m, is the hitting probability at
OM of the Brownian motion starting at x.

The group G acts naturally and discretely on the space S~2+ with quotient the space 2
of continuous paths in SM, and this action commutes with the shift o;,¢ > 0. Therefore,
the measure P is the extension of a finite, shift invariant measure P on Q. We identify
SM with Mgy x oM , where My is a connected fundamental domain of (]\7 ,g). Hence we can
also identify 4 with the lift of its elements in SNL starting from My. We will continue to
denote elements in 2, by w and will clarify the notation whenever there is an ambiguity.
In this paper, we normalize the harmonic measure m to be a probability measure, so that
P is also a probability measure. We denote by Ep the corresponding expectation symbol.

A nice property for the laminated Brownian motion is that the semi-group oy, t > 0, of
transformations of €2 has strong ergodic properties with respect to the probability P.

Proposition 2.2. ([Ga], ¢f. [LS1, Proposition 2.3]) The shift semi-flow oy, t = 0, is
mizing on (Q4,P) in the sense for any bounded measurable functions fi, fa on Q4

Jm Be(fi(f2o00)) = Be(f1)Ep(f2).

2.4. Busemann function and the linear drift. In this subsection, we derive (1.1).

Let g € R¥(M). For v = (x,€) € My x 0M, the projection on M of the law of Py on
W (xz,€) = M x {¢} is the same as that of P, of the Brownian motion on M starting from

x. For w e ., we still denote by w its projection to M. By ergodicity of P with respect
to the shift map oy (Proposition 2.2), for P-almost all path w € Q, its leafwise linear drift
coincides with .

Since ¢ is negatively curved, for P-almost all path w, w(t) tends to a point in the
geometric boundary oM ([K1]). Write w(o0) := lim;, 4o w(t). Roughly speaking, w
follows 7,,(0)w(c0)- Hence the drift of w(t) from w(0) can be measured via its shadow on
Yu(0)w(w)- A candidate function for this measurement is the Busemann function. Let

xo € M be a reference point. For y, z € M , define

ba;o,z(y) = d(yvz) - d($07z)'

The assignment of y — by, , is continuous, one-to-one and takes value in a relatively
compact set of functions for the topology of uniform convergence on compact subsets of
M. The Busemann compactification of M is the closure of M for that topology (BGS])
and it coincides with the geometric compactification in the negative curvature case (see

[Ba]). So for each v = (z,€) € M x oM, the function

by(2) := ;i_)lrébzy(z), for z € M,
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is well-defined and is called the Busemann function at v. It is known ([EO]) that, if we
consider by as a function defined on W*(z,§), then

(2.3) Vby(2) = —X(2,€).

The difference between by (y) and by (y') is preserved when (y,¢) and (y/, &) are driven by
the geodesic flow ®;. Hence

W=(v) = {(y,€) : by(y) = by(z)}.
Note that W (v) locally is a C¥~! graph from E$ to ES @ ES® and is tangent to ES*. So,
by the Jacobi tensor characterization of ES® and (2.3), it is true ([Esc, HIH]) that
Vw(Vby)(z) = =5, (0)(w), Yw e T, M.
Thus,
(2.4) Azby = —DivX = —Trace of S, (0),
which is the mean curvature of the set of footpoints of W*5(z, £). Note that for each ¢ € G,
Diao ) (W) = Blag ) () + b1 £) (0).
Hence Azb(y, ¢) satisties Aypbiyg pe) = Azb(y,¢) and defines a function B on the unit tangent
bundle SM, which is called the Laplacian of the Busemann function. The function B is a

Holder continuous function on SM by the Holder continuity of the strong stable tangent
bundles ([Ano], see Section 2.2).

Now, we can derive the integral formula of the linear drift using the geodesic spray
and the harmonic measure ([K1]). For P-almost all path w € Q4, let v := w(0) and
7 :=w(o0) € M. When t goes to infinity, the process by (w(t)) — d(z,w(t)) converges P-a.e.
to the a.e. finite number —2(£|n),, where the Gromov product (:|), is such that

. 1
(2.5) (€= lm  (yl2)e and (y]2)s := 5 (d(@,y) + d(z,2) = d(y, 2)).

So for P-almost all w e Q,, we have
1
EToo Ebv(w(t)) = /.

Using the fact that the leafwise Brownian motion has generator A and is ergodic with
invariant measure m on SM, we obtain

t

¢ = lim - | —by(w(s)) ds

i Aby(w(s)) ds <: J Aby dm>
t—+00 1 0 Mg x oM

(2.6) = — f Div"V(X) dm,
Mgy xoM

I
g
I

where Div"V is the laminated divergence operator for the stable foliation V. Since on
each leaf we have Div"V(X) = Div(X), (2.6) reduces to (1.1). But that will not simplify
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the discussion of the regularity of the linear drift under metric changes since Div(X) is
essentially a leafwise object. In contrast, (2.6) is more suitable for this purpose because of
the natural connection between the geodesic spray X and the geodesic flow.

3. REGULARITY OF THE LINEAR DRIFT

In this section, we assume Theorem 1.3 holds true. We first prove Theorem 1.1 by
showing the regularities of Div’¥X and m under a one-parameter of C* deformation of
metrics in ®¥(M) and then prove Theorems 1.4 and 1.5.

3.1. Regularity of the leafwise divergence term Div’VX. Clearly, the geodesic sprays
of a metric g € R¥(M) form a C*~! vector field which varies C*~! with respect to C* metric
change. But this does not imply the regularity of Div’VX with respect to the metric changes
since we are considering the leafwise divergence.

Laminate SM = M x 0M into stable leaves {(Ws(z,¢) = M x {¢}}, where each leaf can
be identified with (]\7 ,3), but is only Hoélder continuous in the ¢-coordinate (see Section
2.2). Consequently, X (y,&) € TWS(x,¢) is CF¥~! in the y-coordinate, but is only Holder
continuous in the &-coordinate. Let g’ € R%(M) be another metric. Its geometric boundary
6]\79/ can be identified with 0. But the g'-geodesic spray Ygx (z,&) differs from X (x,€)
and the divergence operator on the g'-stable leaf W (z, ) differs from that on W*(z,¢).
Both difference contribute to the change of (Div"YX)(x, &) in metrics. This, by (2.4), can
be understood by a study of the regularity of X and E* in RF(M).

Assume g € R¥(M). The set of g-oriented geodesics in M can be identified with 02 :=
(OM x oM)M\{(&,€) : &€ € OM}. Indeed, for (z,&) € SM, let v : R — M be the unique
geodesic with 4(0) = (z,&) and write 07~ := limy_, oo ¥(t) and 0~ := limy_,_o, y(t). The
mapping v — (07,07 7) establishes a homeomorphism between the set of all oriented
geodesics in (]\7 ,g) and 02M. Consequently, for any ¢’ € R¥(M), the mapping Dy :
02 (]\7 ) — 82(]\751) induced from the identity isomorphism from G to itself can be viewed
as a homeomorphism between the set of oriented geodesics in (M, §) and (M, ). Further
realize points from Sl\751 by pairs (v,y), where v is an oriented geodesic and y € 7. For ¢/
close to g, we obtain a map ﬁ’gl : SM — S]\/Zy which sends (v,y) € SM to

Fy(:y) = (Dg (1)),
where 3’ is the unique intersection point of D () and the hypersurface {exp; Y : Y L v}
with v being the vector in SyM pointing at 0*~. The map ﬁgr is a homeomorphism between
SM and S]\f\fgf which preserves the geodesics, i.e., sending g-geodesics to §’-geodesics, and
is referred to as a (g,9')-Morse correspondence map. The restriction of ﬁgl to geodesics
asymptotic to & € M is a homeomorphism from W5 (z,£) to W5 (z,€). Let Ty SJ\7§/ —
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SM be the map sending v to v/ |v[z which records the direction information points of
SMg in SM. Then 7y o ﬁ'g/ is a homeomorphism between SM and itself.

The map F’gl induces a homeomorphism Fj between SM and SMy which sends g-
geodesics to g’-geodesics and is called a (g, ¢’)-Morse correspondence map. For any suffi-
ciently small €, if ¢ is sufficiently close to g, then Fj is such that the footpoint of Fy (v)
belongs to the hypersurface of points {exp, Y : Y L v, |V, < €}, where v is the projection
of viin SM. Let my : SMy — SM be the natural projection map sending v to v/||vlg.
Then 7y o Fy is a homeomorphism between SM and itself.

For ¢’ in a small neighborhood of g in R*(M), let E, (resp. Ey) denote any one of
E7, B and Ef, (rfp. any one of EZ}, EZ' and E7,). We also regard Ey (resp. Egy) as
a mapping from SMjy (resp. SMy) to its tangent bundle. Of our special interest, is the
regularity of the mappings ¢’ — Ty o Fy, ¢’ — D7ty o Ey. Equivalently, we can consider
the regularity of the downstairs mappings ¢’ — my o Fyy and ¢’ — Dy o Ey, for which,

we can take advantage of the compactness of M to construct certain manifolds of maps so
that the implicit function theory applies ((LMM, KKPW]).

Let H*~1(SM) be the Banach space of C*~! vector fields on SM endowed with the
topology of uniform C*~! convergence on compact subsets. Let X 4 be the vector field
generating the g-geodesic flow. Then X, the projection (via Dmy) of the generating
vector field of the g’-geodesic flow on SMy, belongs to HF=1(SM) and is C*~! close to
X, whenever ¢’ is C* close to g. For a € [0,1), let C*(SM, N) denote the Banach space
of a-Hélder (or continuous for o = 0) maps from SM to a Banach space N endowed with
the topology given by the a-Hoélder norm on SM. Consider

d
C$(SM,SM) := {F e CY(SM,SM) : DgF(v) := %F(Cbt(v))’tzo exists and is a—Hélder},
with the topology of the norm ||F| + |DgF s, where | - ||, denotes the a-Holder norm,

together with the mapping
U HEL(SM) x CE(SM, SM) x C*(SM,R) — C(SM, TSM)
U(Y,F,f)=Y oF — f- DgF.

By hyperbolicity of the g-geodesic flow ®;, the implicit function theory applies to ¥
if we further require F' € Cg(SM,SM) to be such that the footpoint of F(v) lies in
{exp,(w) : w L v} for any v € SM. The following structural stability theorem is due to de
la Llave-Marco-Moriyén ([LMM]) for continuous case and Katok-Knieper-Pollicott-Weiss
((KKPW]) for Holder continuous case.

Proposition 3.1. ([KKPW, Proposition 2.2]) For g € R¥(M), there exist a € (0,1) and
a neighborhood U < HFL(SM) of X, and C*2 maps U — CEL(SM,SM) : Y — Fy
and U — C* (SM, [%, +oo)) : Y — fy such that Y o Fy = fy DgF. Moreover, the maps
U— CHSM,SM): Y — Fy andU — C° (SM,[$,+x)) : Y = fy are C*L.
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Define C"‘(SM,N),C%(SM,N) analogously as C*(SM,N), C§(SM,N). A conse-
quence of Proposition 3.1 is

Corollary 3.2. Assume g € R¥(M). There exist a € (0,1) and a neighborhood V of g in
RE(M) such that the map g’ € V +— my o Fy is C*=2 into CE(SM,SM) and is C*~1 into
CY(SM,SM); the map g’ € V Tg © ﬁg/ is CF=2 into Cg(SM, 51\7) and is C*=1 into
CY(SM,SM).

The regularity of ¢ — Dny o Ey and ¢’ — D7y o Ey can be analyzed analogously
([Co]). Let G be the Grassmann bundle of u-planes on T'SM, where u = dimE". Let

Cg(SM,G) be the space of a-Hélder maps F:SM — G,F(v) = (F(v), E(v)), where
F e Cg(SM,SM), with the topology of the a-Holder norm on F,DgF and E. Then
instead of ¥, one can consider the maps

U, HY(SM) x C3(SM,G) x C*(SM,R) — C*(SM,TSM & G)

Vi (Y.F,f) = (Yo F = f - DaF, Dibry ) 0 F(P11(0) E(®41(v)))
where 1), is the time ¢ map of the flow generated by Y and 7y is the time change such that
KZJTY(U) o Fy(‘bil(v)) = Fy(v), Yv e SM.

Again, by hyperbolicity of the flow generated by ¥ which is close to X ; and the invariance
of the corresponding strong stable and unstable bundles, denoted by E§?, E5*, the implicit
function theory applies for ¥, , W_ and gives the following.
Proposition 3.3. ([Co, Proposition 2.1]) For g € R¥(M), there exist a neighborhood U
of X, in HFL(SM) and o € (0,1) such that the map U — CL(SM,G) : Y +— (v —

By o Fy(v)) is C*=3 and the map U — CQ(SM,G) : Y — Ey o Fy is C*~2, where
Ey = E? or E*.

Let G be the Grassmann bundle of u-planes on T'SM (where u = dimEZ") and define

C’g(SM, 5) in analogy with C§(SM,G). The following is an application of Proposition 3.3
to the geodesic flows.
Corollary 3.4. There exist o € (0,1) and a neighborhood V of g in R¥(M) such that the
map g € V> DrgoEyoF, is C*=3 into C$(SM,G) and is C*=2 into CQ(SM,G), where
Eg is any one of E, EG' and Ey,. Similarly, the map g€V DrygoEyoFy is Cck=3
into Cg(SM, QN) and is C*=2 into C’g,(SM, 5), where Eg is any one of EZ EY and Ef,.

For A € (—1,1) — ¢* € RE(M), we write X for the §*-geodesic spray, (E%)* for
the §*-stable bundle and Div* for the divergence operator associated with the §*-stable
foliation.

Proposition 3.5. Let g € R¥(M). There exist o € (0,1) and a neighborhood YV, of g in
RF(M) such that for any C* curve Ae (—=1,1) — gt e V, with ¢° = g,
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i) A\ — X is CF3 into Ca(]\7 x OM, TTM) and is C*=2 into CO(M x OM, TTM),
i) A — (E)* is C*¥=3 into C*(M x dM,G) and is C*=2 into CO(M x 0M,G), and
iii) A — Div’X" is CF=3 into C(M x 0M,R") and is C*=2 into CO(M x oM, R").

Proof. Express the (§,§")-Morse correspondence map F o> from M x M to itself as
FXNa,€) = (f2(@),€), ¥(x,€) e M x oM,

whnere records € change o € 100tpo1n or € unit vector pommting a mn (]
h 2 ds the change of the footpoint for the umit vect inting at & in th

boundary. For (z,€) € M x 0M, we transform Xj(x, ) to Xz (x, &) in three steps: the first
is to follow the footpoint of the inverse of the (¢g*, g)-Morse correspondence from X(z,£) to
X5(( fg‘)*l(w), €) with the constraint that the vector remains within TW?*(z, £); the second

is to use the (g*, g)-Morse correspondence from Yg((fg‘)_l(a:), &) to Xgn(z,6) /| X (2,6) |3
the third is to adjust the length of Xz (2, €)/| X (2, €)[5 to be one in the metric §*. Hence,

Yﬁ)‘ (.f, 5) - Yg(:(}, 5)

— Y~A($,€) Yw(.fv,f) — _
= | Xp (@) — =" | + | =" — X)) (@), )
1 X7 (z,6) 3 [ X 57 (2, 6)l3
+ (X7 (@),6) = Xy(w.6))
=: (a)x + (b)x + ()
Note that (a)o, (b)o, (¢)o are all zero. So the regularity of A — X will follow from that of
(a)x, (D)a, (¢)x by Taylor’s formula. This is true since (a), corresponds to length change
and is C¥ in A, (b)y is C*~2 (or C*73) in A depending on a = 0 (or not) by Corollary 3.2,
while (), has the same regularity as (b)y since X (x,&) is C*~1 in the 2-coordinate.

Similarly, we write v = x* (z,€) and
(E¥)(vY) — (E®)°(v?) = ((ESS)A(VA) - (ESS)O((fé)fl(fE),ﬁ))
+ (B (@),6) - (B)°())
=: (d))\ + (e))\.

This means we can transport (E*)°(vY) to (E*)*(v}) in two steps: first is to transport
(E*)°(vY) to (E®)°((f8)"'(x),€) along the tangent bundle of W3(x,&) and follow the
footpoint of the inverse of the (§*,§)-Morse correspondence; the second is to use the Morse
correspondence for the stable bundle from (ESS)O((fé\)*l(a:),ﬁ) to (E*)*(v"). Note that
(d)o, (€)o are zero. The regularity of A\ — (E*)* will follow from that of (d)y, (e)x by
Taylor’s formula, which will follow by Corollary 3.4 if we can show the C*~1 dependence
of E*®(x, ) on the z-coordinate. This is true because each E®(y, ) is the tangent plane
of the strong stable manifold W (y, &). Locally, W*(z,¢) is a C*~! graph from E?;@ to
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Ef, o) ®E{; - This means, locally, y — E*(y, &) is C*~1 along the leaf W™ (z,£). On the
other hand, by invariance of the strong stable bundle with respect to the geodesic flow,
y — E%(y, &) is smooth as y varies on the geodesic passing through x asymptotic to . By
invariance of the strong stable leaf by geodesic flow, W*(z, ) and the time direction (i.e.
the direction of the geodesic spray) consist of a coordinate chart for W#(x, ). This shows,

locally at z, y — ES(y, &) is CF~1 along W5(xz,&) = M x {¢}.
Finally iii) is just an application of ii) noting that for any g € R¥(M), we have
(DivX)(z,&) = Trace of S, (0), Vv = (z,€) € M x oM,

and the stable bundle E® at v is the graph of the mapping S, (0), considered as a map

from Ny(vy) to Vi sending Y to S, (0)Y, where No(v) := {w,w e Hy,w L X} O

3.2. Regularity of the harmonic measure. In this subsection, we prove Theorem 1.2
following the sketch that we gave in the Section 1.

For ¢g* € ®*(M), we introduce a metric on OM as follows. Let 3 > 0. For z € M, define
(3.1) NG i= e M2 y¢ e 1,

where (:|-)} is the Gromov product defined in (2.5) for dz. If 5 is small, each a2

x
defines a distance on oM, the so-called s--Busemann distance ([K2]), which is related to
the §*-Busemann functions b* since

(32) ) = Jim ((Cln) ~ (Cn)2) . for any v = (2.€) € SM, ye M.

)

Let b > 0. For continuous functions f on SM = My x oM , define

~ ~ ~

1R = sup T €)1+ swp (e, &0) = €€ 0%

I‘,§1 752
Let H{ be the Banach space of continuous functions f on SM with ||f[ < +co. Elements
of H{ are continuous on SM and Hélder continuous with respect to the direction changes.

Recall that the transition probability of the §*-Brownian motion on the stable leaf
W2 (x,€) = M x {&} starting from (z,€) is given by

p’(t, (z,€),d(y,n)) = p (¢, z,y) dVol*(y)de(n),

where {p*(t, z, Vet R, is the transition probabilities of the §*-Brownian motion on M ,
d¢(n) is the Dirac function at £ and Vol is the §* volume element. Then p* descends to be

the transition probability of g*-Brownian motion the stable leaves of SM: for (x, &), (y,n) €
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SM = My x oM , the transition probability is
Q’ (¢, (2,€),d(y,m) = >, Pt (x,6), d(By, Bn))

BeG

= > Mt x, By)dVol* (y)de(Bn).
peG

Let Q) (t = 0) be given in (1.2). It defines the action of [0, +00) on continuous functions f
on SM which describes the A;‘;—diffusion. It was shown in [L2] that for sufficiently small
b > 0, there exists T > 0 such that Q% is a contraction on H; and hence, as t — o0, Q)
converges to the mapping f +— { f dm? exponentially in ¢ for f € Hj. Thus, each harmonic

measure m” is a fixed point of the dual operation (Q3)* in the dual space (H7)* with the
weak topology, where

QD) *()(f) == w(Qp(f)), for all pe (Hy)*, feHa.

The following proposition shows that H; can be chosen to be independent of g*.

Proposition 3.6. Let V, be as in Theorem 1.5. For every b > 0 small enough, there ewist
C >0 and k < 1 such that, for all \e (—1,1),t >0 and f € HY,

Qf - ff d| < CK!| f .

b

The proof of Proposition 3.6 follows [L2, Theorem 3] for an individual metric. The only
modification is to find a common Holder continuous function space independent of the
metrics where the contractions (of Holder norm) happen. Denote d and ({|n), for the §°
distance and its Gromov product. The key lemma is the following.

Lemma 3.7. Let V), be as in Theorem 1.5. There is a number b’ > 0 such that for any b,
0 <b <V, there exists ky < 1 such that for t large enough, x € My and all £,7, € £ 1, we

have for all X € (—1,1),
]E;:\7£ (e_b((§|77)|_Xt'|)\_(£|n)x>> < kt1’

where |x;]* denotes the §*-Brownian motion on W*(z,€) starting from (x,€) and Ei‘g
denotes its corresponding expectation.

As a preparation for the proof of Lemma 3.7, define on My x OM x OM the transition
probabilities

q27>\(ta (l'aé.laéé)v d(yﬂllﬂh)) = Z pk(t,ZE, By) dVOl)\(y)(S& (ﬁnl)éﬁz (BT,Q)
BeG

and the corresponding operator Qf’)‘ on continuous functions on My x oM x OM:

?VAf(x7§17§2) = ff(yﬂ?la 772)(12’)\ (($7£17€2)7 d(y77717 772)) .
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By analogy with the case of Q}, there is a unique Qf Ainvariant probability measure on
Moy x dM x 0M which is related to the harmonic measure m?» as follows.

Lemma 3.8. ([L2, Proposition 1]) For each g* € RF(M ), with the above notations, there
is a unique probability measure m>* on My X oM x oM satisfying

JQ?,)\f de,)\ _ ff de’)‘
for all f e C(My x oM x 6]\7, R) and all positive t. The measure m*>* is characterized by

f f dm® = fM @69 dm (. 6),

For ¢’ € %k( ), let § be its G-invariant extension to M, xt ( ) its Brownian motion on
M and m¥ its harmonic measure. The following limit exists almost surely:

1 7 () = 7 v _.p,
tgglmb(x o (x7' () JMOX(?MA beg) dm? =: €],

As ¢’ > g, m? — m and hence both ﬁ’,, Ly converges to £. So we can choose a neighbor—

hood V, of g such that £ := mln {Eg ,f .} > 0. Consequently, for any curve A — g* € V,,
g 2%

mln {€ A,f A =L2>0.
Ae(—1

Lemma 3.9. Let V, be as in Theorem 1.3. For T > 0 large enough, for all X € (—1,1),
x € My andgvneaM; €:+:n;
1 E)

—_

( &)y (6\%) >t

Proof. We may assume g” is defined for A\ € [~1,1]. Assume the conclusion is not true.
Then there exist A, € [-1,1], T), € Ry, T,, — 00, and points =y, &n, My En F M, such that

1 1
(3'3) ﬁEgz,gn <(§n|7]n)xé\£ - (£n|77n)xn> < ZE

By definition of the Gromov product (-|-), for all £ 7 € 6M, Y,z € My and X € [—1,1],
|(&lm)y — (€ln)=| < 2d(y, z) < Const. - d\(y, ),

where the constant is independent of A, £, 7,y and z. Hence by uniform continuity of
A pMt,x,-) in 2, we can find ¢y small enough such that

1
3.4 E <3t
) o, e (K — 6 < ¢
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By using (3.3), (3.4) and suitably relabelling Ay, p,&n, nn, We can find a sequence \; €
[—1,1] and a sequence of integers N; — oo and points zj,&;,7; such that, for all j,

1 1
(3.5) Nty E) . (f\n (f\n)x]) <3t

By passing to suitable subsequences, we may also assume that A, converges to some Ay €
[—1,1], as n goes to infinity. For A € [—1, 1], write ¢* for the function on My x OM x oM
defined for x € My and £, n e M, £ + n, by

1
&) = —Ede (€l — (Ele)-
0 0
Then, by (3.2), ¢* has a continuous extension to the diagonal, still denoted ¢*, given by
1
¢)\($7‘£a£) = %Ei,g (b(x,g) (Xi\o)> :
Write |x]* = 8x}, where 3 € G and x} € My. Using ¢*, (3.5) shows that there exist

sequences A\; — Ao, N; — 400, as j — o0, and points z;,;,7;, such that for all 7,

N; Z 5’%5]( tho (ﬁkto) 15]7(5]“0) 77j)> < %ﬁ

This means for Aj, Nj, xj, §j and 77j as above,

1
(3.6) — Z Quy’ @ (25, 5,m7) < 5L

Jko

Define a sequence of probability measures p; on My x oM x oM by

Z%o (8(j, &5,m)) -, )5

where ( it)‘ )* is the dual action of Qi;:;j and §(x;,&;, ;) is the Dirac measure at (z;,&;, ;).

Then,

A 2
Q2 1y — iy < -

Moreover, (Qf (;/\j )* converges to (Qf (;’\0)* in norm as j goes to infinity by Theorem 1.3 since

Qi — Q| < sup U P (t,2,y) dVol™ (y) — p*°(t,z,y) dVol* (y)’
a:eM
_ Y ] dVol* () dA
sup _|(Inp™)y " (to, z,y) + (np )| p*(to, z, y)dVol*(y)
a:e]\7f Ao M

<Const.|X\j — Aol ,
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where p* = dVOl)‘/dVOIO. Consequently, if p is a weak limit of p;, we have

Q) 1 = p.

Let ¢/ = (1/to ) 0(Q3*)*1 ds. The measure 4/ is Qf”\o-invariant (t > 0) and hence
coincides with m2 Ao by Lemma 3.8. Note that ¢ converges to ¢ as j goes to infinity.
We conclude from (3.6) that §¢*0 du < £/2. Using (3.4) again, we find that

on dm?* < 3¢

Ny

But, by Lemma 3.8, we also have

f $ dm>H = tlegog (bx,g(XQOO)) dm® = lim ~ EX (bx,g(xt%)) dm™ > ¢,
0 b

~>Oot

which is a contradiction. OJ

Proof of Lemma 3.7. For A& (=1,1), z € My, &,n € OM and t € Ry, write
W6 m,) = g <e—b(<fn>lxm—<an>w)> |

For each X and b, it is true by the Markov property of the §*-Brownian motion that

sup ¥p (z,&, 1, t1 + t2) < sup ¥ (z,&,m,t1) - sup ¥y (x, &,1, ta).
z,6m z,§m z,6,m

Hence for Lemma 3.7, it suffices to find, for a fixed T and b’ sufficiently small, positive
numbers C’ and k’ such that for all A€ (—1,1) and b < b/,

(3.7) sup sup ¢ (z,&,n,t) < ',
z,§n 0<t<T
(3.8) sup g (2,€,m,T) < K < 1.
.8,

Let T be as in Lemma 3.9. Note that there is some constant C such that
€M — Ela| < 2d(|x: 1, 2) < CdM([x], ).
Using Taylor’s expansion of the exponential function, we obtain

6—b((§|n)th]A—(§|7})x) <1-— b((gm)[)(t])\ - (‘5|77)m> + (deA([Xt]A,x))2ecbd*([xt]>\,x)‘

Since the metrics §* have negative sectional curvatures bounded uniformly away from 0
for all A\, we have the exponential decay of the kernel functions, which implies that there
exists some constant C7 such that for all ¢, 0 <t < T, and all A,

E;Q\,g ((Cd)‘([Xt]/\,:E))zeCdA([Xf]A’“f)) < (4.
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So, using Lemma 3.9, we obtain for b < 1,

sup Yy (x,&,1,t) < 1+bCy + b2CY,
o<st<T

1
¢é(£v€an?T) <1-— Zb£+ bQCl.

Put b’ = min{1, £/(8C1)}. We see that (3.7) and (3.8) are satisfied for all A € (—1,1) and
b < b with C' =1+ £/8 + £2/(64C1), k' = 1 — £2/(64C1). O

Proof of Theorem 1.2. Let T > 0 be fixed. Assume g € R*(M). By Proposition 3.6, there
exist some neighborhood V, of g in RF(M) such that for any continuous curve A — ¢* in
V,, there is some positive b and kg < 1 such that for all f € HY neN,

< kgl fle-
b

(3.9) ’(Q%)”f - | 7w

(For later consideration, we choose b to be small such that 2b also fulfills the requirement
of Proposition 3.6 and 2b < b’, where b’ is from Lemma 3.7.) The inequality (3.9) means
each operator Q:/\F is a bounded operator on HY, 1 is its isolated eigenvalue and m* is
the eigenfunction of eigenvalue 1 of the dual operator (Q7.)*. By the classical spectrum
theory on operators in Banach space (cf. [Kat, Theorem 6.17]), we can decompose Hy
into the direct sum of one-dimensional £, associated to the eigenvalue 1, and an infinite-
dimensional space F-q1 on which (Q%)” tends exponentially fast to 0. Let C be any circle

around 1 with a small radius. Then the projection of f € HY to Ej is given by
1 -1
| (A=) s
um C (2 QT f &

Using this and (3.9), we conclude that the following two functional on HY coincide:

f. dm* = Q;TL(ZId_Q;>_1. dz

A

For the regularity of A — m?", we mean the regularity of A\ — {- m”, which is the

composition of two mappings

1 ~1
A Q) and QE\FHMJ (zId—Q%) - dz

C

Note that by spectral continuity results for isolated simple eigenvalues (cf. [Kat, Theorem
3.11]), for L € (H2)* in a small neighborhood of Q%, the mapping

1
L»—>,f (zId— L)' dz
C

(i

is analytic. We may assume V), is such that all Q% belong to this neighborhood. Then for
the regularity of A — - m*, it remains to show the regularity of the mapping A — Qg\p.
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For f e HY, let f be its G-invariant extension to M x dM. Then
Qf@.8) = [ P (T.) Vol ().

Put p* := dVol*/dVol’. Then X\ — p* is C*¥ in X in Ck(M) By Theorem 1.3 i) and iii),
for every i, 1 <i<k—2, and every (z,§) € M x dM, the following differential exists:

(@ (,6)¢ ( )ff 5 NP (T, 2,9 () () dVol(y).

To conclude this defines the i-th differential of QT in A in (HQ)*, we only need to show it
defines a bounded operator from H{ into itself. For V, small, the norms of the differentials

(Inp )( D= 1,--- ,k —2, are all bounded. Hence it suffices to consider S}, where

(S35) @8 = | _ F. @) (T, 2,y) dVol* (y),

yEM

and show it is a bounded functional of HY. For each ¢ € M , f (,€) is uniformly continuous
in # and bounded. Hence Theorem 1.3 iv) applies and shows that (Sﬁ\ f) (x,&) is continuous
in . Using Theorem 1.3 iii), we continue to compute that

| N (o
|[(S3) (@, 8)] < [fleo - JW

where ¢ ;)(2) is as in (1.4). For the Holder continuity of § — (S4f)(z,€) and the corre-
sponding Holder norm estimation, it suffices to show the latter is bounded. By Hélder’s
inequality, Theorem 1.3 iii) and Lemma 3.7, we obtain

(S (@, 1) — (SLF)(, &)|P e
= UM Fw.6) = Fw. @) [N (T, 2,9) dVol’\(y)> RCIY

<l [ ee(lenmtale) | 00 (Do)
M pMT,z,y)

= flo - ( 2 <e‘2b((51'52>txw—(msz)x)) )é

< Oy () (2) (k1) 2| flo-

Altogether, we have that each Sf\ maps ’Hg into itself and is a bounded operator since

1S5/ 1o = Sup’(s)\f) x,§) ‘4— sup ](S)\f x,&1) — (ng)(x’é'z)’eb(£1’§2)w

T,51,82

PNTa,y) AV (y) < ex ) (2)] £ s

pNT, z,y) dVol*(y)

M, 2, y)
pMNT,x,y)

L2

< C, (i )(2)(1 + (kT) )Hf”b
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3.3. Differentials of the linear drift. We are in a situation to prove Theorem 1.1.

Proof of Theorem 1.1. It suffices to show the first statement.

Let V, be such that Proposition 3.5 and Theorem 1.2 hold true. We may also assume
the Holder exponents « of Proposition 3.5 and b of Theorem 1.2 coincide. As before, for
any C* curve A € (—1,1) — ¢g* € V, with ¢ = g, we write X for the §*-geodesic spray,
Div* for the divergence operator associated with the §*-stable foliation and m* for the
g*-harmonic measure on SM. Let £y be the linear drift of g*. By (2.6),

(3.10) f=— f (DX (2, €) dm* = —L, (DI X).
Mg xoM

By Proposition 3.5 iii), A — Div’ X" is CF=3 into Cb(]\7 X 6]\7, R*) and is C*~2 into
CO(M x OM,R*). Write (Div’\y)‘)f\o) — Div*X" and (DiVAYA)(;), i=1,---,k—2, for
its i-th derivative in A\. Then (Div)‘y)\)g\i) belongs to CO(M x 0M,R™) for i < k — 2, and
belongs to C’b(]\’\f X 6]\7, R*) for i < k — 3. Regard each m* as a measure on My x oM.

The operator Ly := SMQX a3 dm? is an bounded operator on continuous functions on

My x oM. Moreover, by Theorem 1.2, A — Ly is C*~2 differentiable as elements of
(HD)*. Using these regularities and (3.10), we conclude that the function \ — £y is C*~2

differentiable. Denote by L(;)7 i=1,---,k—2, the i-th differential functional of Ly. Then,
for every i, 1 < ¢ < k — 2, the i-th differential of £, in A, i.e., KE\%), is given by

i L (i j AT (-7
(3.11) ==y (;) L (i XH ).
jf

Specifying (3.11) for i = 1, we write:
Corollary 3.10. Let g € R3(M). For any C? curve A € (—1,1) = ¢g* € R3(M) with ¢° = g
and constant volume, we have

(3.12) () = —fDiVOYOd(m)‘)g — J (DiV/\Y)\):) dm”.

In particular, if g = ¢° is a locally symmetric metric and the volume Vol)‘(M) 18 constant
in A, then we have (£)); = 0.

Proof. We apply (3.11) for i = 1 and A = 0. The operator Ly extends to the harmonic

measure m” and L((]l) is a linear functional on the space HY that we denote (m*)j. Formula
(3.12) follows.
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Let v be the volume entropy of (]\7, ),

1
v := lim Eanol’\B(x,R),

R—0

where B(z,R) is the ball of radius R about z in M. We know by [K1] that for all X,
¢* < v* and by [BCG] that the volume entropy of a negatively curved locally symmetric
space achieves its minimum over all metrics of the same volume on that space. Since A — £
and \ ~— v* are differentiable at 0 (by Theorem 1.1 and by [KKPW]), the derivative has
to be 0. g

We develop formula (3.12). The vector (X ") is a vertical vector given by [LS1, Propo-
_ o
sition 4.5]. For v = (z,&), it is the sum of <HX)‘H50>D (V)XO(V) and of a vector Y(v)
orthogonal to v, where Y is a C! vector field along the stable manifolds. Let ug be the
function such that

Aug = —DivX — 4, (see [LS1, (5.12)]).

Theorem 3.11. Let M be a closed connected smooth manifold and let g € R3(M). For
any C3 curve A € (—1,1) — g* € R3(M) with ¢° = g and constant volume,

() = f (—;<VtraceX,X> + %X(Y, X)Div(X) + %<V(X(Y, X)), %) — DivY> dm
(3.13) + J (—;<Vtrace/¥, Vug) + Div(X(Vuo))) dm,

where we omit the index 0 for VO,YO,(, 50, Div? and m® at ¢°, and where X(-) is con-
sidered as the (1,1)-form in M such that (X(Z),Z") = X(Z,Z'). In particular, there is a
linear functional £ on C*(S?T*) such that (£))y = L(X).

Proof. To obtain (3.13), we use the decomposition of (¢,)( given by (3.12) as above:
L)y = — J(DivAX)g dm — J(DivX)‘)g dm — fDivX d(m™),
and study the three terms successively.
Firstly, we have (Div?X){, = 3(V(TraceX), X).
_ AN
Then, for v = (z,€), (X, is the sum of (HXAH>O (v)X(v) and Y (v). Hence,
A . . <\ o
(DivX"), = DivY + Div (HX \\)0 VX)) .
Since HY/\HEA =1, we have

(), (v) = 5 ¥(X(v), X (v)).
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Thus,

Div ((rXA)’O <v>X<v>> = XX (), X)X ()~ JVE(X(¥), X(9), K(v).

Lastly, we discuss the term {DivX d(m"){. Recall that, by Theorem 1.2, A — m?" is
differentiable at 0, with derivative (m*)j € (H{)* (denoted as an integral). It follows that,
for f smooth on SM,

(3.14) J(A%f dm + JAf d(m?) = 0.

The equation (3.14) extends to functions f that are of class C? along the stable leaves with
globally continuous second order derivatives. In particular, (3.14) applies to the function
uo and therefore,

jDivX d(m?)) = J (AMjup dm = f <;<Vuo,VtraceX>—Div(X(Vuo))> dm.

To show () is linear in X, it remains to consider {DivY dm. If we denote k(z,y,§)
the continuous version of the density (dm,/dm;)(£) (see e.g. [LS1, Proposition 2.2]), the
integration by parts formula yields

(3.15) JDivY dm = —J<Y, Vylnk(z,y,&)|y=z) dm.

We recall from [LS1, Proposition 4.5] the construction of the vector field Y. Let v e TM.
We define the vector Y(v) € TTM as the vertical vector with vertical component given by

T(v) = (Vi) — {(V3(V))g, V).

Clearly, for all v.e SM, Y(v) depends linearly of X, and sup, |Y(v)| is bounded by
C|X| 1. In order to obtain Y (v), we consider the orbit ®4(v), s = 0, under the geodesic
flow. For each s = 0, we decompose T (®4(v)) into a sum of its unstable part T(®4(v))"
and its stable part. The vector Y (v) is the vertical part of

0
f (D®,) 1T (®y(v)) " ds.
0

Since the geodesic flow is Anosov, there are C,7 > 0 such that (D®;) ! restricted to the

unstable manifold has norm smaller than Ce™"*. It follows that the expression {DivY dm
is linear in & and bounded by C|X||c1. O

Remark 3.12. We can also verify that the formula (3.13) gives indeed 0 in the case when
g = ¢ is locally symmetric.

Assume that ¢ is a locally symmetric metric, then DivX is the constant —¢ and the
measure m is the normalized Liouville measure. Since the measures m» are normalized
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(and the constant functions belong to the space HJ), { DivXd(m?*)}, = 0 and formula (3.13)
reduces to

() = f <;<VtraceX,X>+;X(X,X)Div(X)+;<V(X(X,X)),X>DivY) dm

_. f (1) + (IT) + (ITT) + (IV)) dm.

Since traceX’, X (X, X) are functions on SM and we integrate with respect to the invariant
Liouville measure, the integrals of (I), (III) vanish. Since § is a symmetric space, the
k(x,y,&) in formula (3.15) is given by —{ob(, ¢)(y), where b, ¢ is the Busemann function
(see Section 2.4). It follows that V, Ink(z,y,&)|y=s = £X(v). Since Y (v) is orthogonal to
X (v), the integral {(IV) dm vanishes as well. Remains to consider

10 dVol; ¢ (Volg (Mo));,

1 -
II =——4| XX, X = - X ——9 N9V ro
f( ) dm QEJ (X, X) dm 2m b trace Vol (My) Vol (M)

where Volj is the Riemannian volume. So, { (IT) dm vanishes since the volume is constant.

4. BROWNIAN MOTION AND STOCHASTIC FLOWS

In this section, we recall the Eells-Elworthy-Malliavin construction of the Brownian mo-
tion on a manifold through a stochastic differential equation (SDE) on the orthogonal frame
bundle and of the associated stochastic flow (see Proposition 4.28). We give estimations
on the growth in time of the derivatives of this stochastic flow. We will need in Sections 5
and 6 both uniform estimations and estimations in average with respect to the Brownian
motion and Brownian bridge distributions in the non-compact case.

4.1. Parallelism and the Brownian motion. Let N be a C® n-dimensional Riemannian
manifold. A differential form 9 on N with values in R is called a parallelism differential
form ([Mal), if it realizes for every u € N an isomorphism of T,,N on R™. A parallelism
differential form 4 is called C* if it is a C* section of the frame bundle space F(N) of N.

Let f : [0,+00) — R™ be a C? curve. It defines a one-parameter of continuous vectors
{(df /dt)|i=r}refo,+o0)- Let ¥ be a C' parallelism differential form. It, together with f,
defines a C* vector field on N x R™:

zf, = 19;1(%), VueN,teR*.

By the classical theory of ordinary differential equation, there exists a flow Fy; generated
by Zt]j »» Which solves Cauchy’s problem

d
57 (Fra(un)) = Z{ > where u(t) = Fy(uo) and Fyo(ug) = ug € N.

The orbit of each uy € N under Fy; is an analogue of the curve f since the velocity at
time 7 is just the preimage of (df/dt)|;—r by 9. Moreover, the time ¢ map Fy; depends C*
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on the initial point ug. The variation of Fy(ug) with respect to ug reflects the geometric
difference between N and R" and the pull back of the tangent map of Fl; in R" via 9 can
be formulated using the equation of di ([Ma, Proposition 3.2]). In general, if f is a C**!
curve in R™ and ¥ is C*, then the flow generated by th7 ., depends C* on the initial point.

In case N is the frame bundle space of ]\7 there are plenty of parallelism differential
forms 15 using the dual form and the connection forms Recall that a frame u for Ty ]\7
T € M is an ordered basis u = (uq, - - - um) for T, M which defines a linear isomorphism
form R™ to T, M by letting u(y) == D" ylu;, for y = (y') € R™. The set of all frames u
for all tangent spaces T, M , denoted by F (]\7 ), is a C*° manifold. The dual form (or the
canonical form) on F (]\7 ) is an R™-valued 1-form defined by

0,(Y) :=u"Y(mY), VY € T,F(M).
Its kernel is the vertical vector bundle of T.7-"(]\7):
VTF(M *{YET]:(M Y =0}

For A € gl(m,R), let A* be the vector field on F(M) with A*(u) = #,(0), where ~,(t) =
Rexp(tA)u and R, denotes the right action by a. A C*¥ (Ehresmann) affine connection w

for (]—"(M), 7,-) is a CF gl(m,R)-valued 1-form on F(M ) satisfying
w(A*(u)) = A, YA€ gi(m, R),
@((Ra)+Y) = Ad(a V@ (Y), Ya e GL(m,R), Y € TF(M).

Each C* affine connection form w of F (]\7 ) assigns a unique C*-distributed complementary

horizontal vector bundle HT'F (]\7 ), the kernel of w, which is invariant under the right
action of GL(m,R). Each w induces the notion of covariant derivative V, D on vector

fields and forms on F (]\7 ), respectively. Let T, R be the corresponding torsion tensor and
curvature tensor and © := D6, €2 := Dw be the torsion form and curvature form. Then

T(X,Y) = w(®(X,Y)),
R(X,Y)Z = u(QX,Y) - (u"'2)),

where X Z e T F (M ) are any vectors which project to X,Y,Z € Txﬂ , respectively,
and u € .7-" (M ) can be chosen arbitrarily. Any pair (0, w) is a parallelism differential form

for F (]\7 ). It satisfies the following structure equations (cf. [Sp, p. 327)):

(4.1) 46(Y1,Ya) = — {m (Y1) - 6(Y) — =(¥2) - 0(¥1)} + ©(¥1, Va),

(4.2) dw(Y1,Ys) = — [w(V1), w(Y2)] + (Y1, Y2),

where Y7,Y5 € TUJ:(M) and w(Y1) - 0(Y2) is the action of the matrix w(Y7) on #(Y2) € R™.

For g € MF(M), let OF(M) < F(M) be the collection of ﬁorthogonal frames, the
so-called orthogonal frame bundle space of (M,g). Each u € (99( ) defines an isometry
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from R™ with the classical Euclidean metric to (Txﬂ ,g). Let @ be the unique torsion

free connection form on F (]\7 ) which induces the g-connection V and curvature tensor R.
Then w = (w)), 2 = (€2)) satisfy

J
. . ) 1 .
wh = ) T},;0%, Q) = §2R;.,dek N
k k,l

where I and R are V and R read in the frame u. The structural equations (4.1) and (4.2)
of (6, w) are reduced to

(4.3) o' (Y1,Ya) = — (@} (V1)6/ (Ya) — @} (Y2)6) (V1)) ,

(44)  dwm)(11,%2) = - (wh(V)@!(V2) - @) ()= (V1)) + Rigg6* (11)6'(V2),
where Y1,Ys € Tu}'(]\’Z) and u € .7-"(]\7) The restriction of (0, @) to (957(]\7) also defines
a parallelism differential form. For instance, we can use this parallelism to recover the
geodesic flow on SM. Let f : [0,+00) — O(R™) be a half line with df /dt = (€,0) for some
unit vector e € R™. Tt defines a C*~! vector field on ©O9(M) x R* by letting

df

zf, = (6,@)," (), Yue O(2),

where each Zt{u is just the lift of ue to HT]-"(]\N[). Let F, ; denote the flow generated by th,u

with df /dt = (e,0). It projects to the g-geodesic flow on SM and the orbit of u € (’)5(]\7)
under it is the parallel transportation of u along the unit speed geodesic vye.

The key point of the Eells-Elworthy-Malliavin construction of the Brownian motion on a
Riemannian manifold is to realize it as a transportation of the R™-Brownian motion using
the parallelism differential form of the orthogonal frame bundle.

Let ©4 be the space of continuous paths w : [0, +00) — R™, equipped with the smallest
o-algebra F for which the projections R; : w — w(t) are measurable. The sub o-algebras
{Fi}ier+ of F is an increasing sequence such that {Rs}s<; are measurable in F;. An R™-
Brownian motion is a continuous time random process {B; : Biy(w) = w(t)}cp+ on O
with distribution Q so that the induced actions Q; : (Qip)(x) = E,(¢(Bi(w))) on smooth
functions ¢ form a semigroup with Euclidean Laplacian Ap, as being the infinitesimal
generator (lim;_o(Q;p— )/t = Agup whenever ¢ € C2(R™), the collection of C? functions
on R™ with compact support). In other words,

(45) Bt:(Btla""B;n)?

where all B} are independent 1-dimensional Brownian motions on R with time ¢ transition

(zi—

2
probability (47rt)_%e_4731) between points z; and y; in R. In the language of Stratonovich
stochastic differential equation (SDE), (4.5) is
m
dB; = ) ei(By) 0 dBj,
i=1
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where {e; = 0/0x;} is an orthogonal chart of R™, which means for all ¢ € CF(R™), the
collection of C® functions on R™ with compact support, and for all ¢t € R*,

o(By) = ¢(Bo) + L D eip(By) o dBL.
=1

Fix a C* function ¢, with support contained in the unit interval [0, 1] with integral 1. For
each € > 0, let c.(7) := e 'c(e~'7) be an approximate unit function. For any sample path
t— w(t) = (wh(t), --,w™(t)) of B, we can smooth it using c. by letting

we(t) = fo wi(t + s)ce(s) ds, i=1,---,m.

Let we(t) = (wl(t), -+ ,w™(t)). We see that t — w,(t) is smooth and satisfies
lim sup |we(t) — w(t)| = 0.
€20 ter+

As w varies, Bf : w — w,(t) defines an F;,.-measurable process on O,. Each By solves
d ~ m ~ d .
—(By) = i(By) - —(wi(t
B0 = BBy Giwlo)

and, almost surely, the limit of Bf (as ¢ — 0) gives the Brownian motion B; ([Mal]).

Given a sample path w of B; starting from the origin, the smoothed curve w, has its
lift in O(R™) with tangent vectors (dw./dt,0). Let g € M¥(M) and let 6, @, H be the
associated dual form, §-connection form and horizontal lift map. Consider the C*~1 vector
field on O9(M) x R*:
dw,

0, vue O9(M).

Z5e = (0, @)

We see that

u dw!
Zt{i = 2 H(U,6i> : dte
i=1
where H (u, ;) is horizontal lift of ue; to HT]-"(]\7). Let ®% ; be the flow generated by Zt{i
For uw e OJ(M), its orbit u¢(t) under @5, solves the differential equation

dut(t) <& dw!
=N H(u¢ )t
RO

The projection of the orbit ¢ — uc(t) to M has tangent uc(t)(dwc/dt) at time ¢ and is
an analog of the curve w.. As w varies, the distribution of the projection of uf(t) on M

simulates the distribution of the R” Brownian motion. As € tends to 0, almost surely, the
differential system (4.6) tends to

(4.6)

(4.7) duy = ) H(ug, ) o dBj(w),
=1
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which means for all smooth function ¢ on ©9 (]\7 )

Since the vector fields H(-,e;) are C*~1, for any initial ug, there exists a unique solution
u = (ug)er, to (4.7), which is continuous in (¢,ug) for all ¢t € R, (see Proposition 4.1).

Recall that the generator A of u; is such that

() — plug) L Ap(uy) ds

is a local martingale for all smooth . By [to’s formula, we see that
m
A= Z H('v 61')2,
i=1

which is the Bochner horizontal Laplacian Aoﬁ(ﬂ)‘ It is a lift of the Laplacian A in the
sense that for any smooth function ¢ on M and its lift ¢ to OF (]\7 )s

(4.8) Aog(ﬁ)go(u) = Ap(mu).

Let x = (x¢)er, be the projection on M of the solution u = (u¢)ter, of (4.7) with initial
value ug € Ozo (]\7 ). It defines a measurable map from orbits in © starting from the origin
to Cx, (RT, M ), the space of continuous paths on M starting from xg. As xq varies, Q(x1)
gives a distribution in the space of continuous paths on M. For 7 ¢ R4, let Cx, ([0, 7], M )
be the collection of continuous paths p : [0,7] — M with p(0) = x¢. Then x also induces

~

a measurable map xjg ;] : ©4 — Cx, ([0, 7], M) sending w to (x¢(w))sef0,7]- S0,
. —1
P, = Q(X[Oﬂ_])

gives the distribution probability of paths x(w) on M up to time 7 and this distribution
is independent of the choice of the initial orthogonal frame ug that projects to xg. Since
x has generator A by (4.8), it visualizes the Brownian motion on M. This is the Eells-
Elworthy-Malliavin’s approach to obtain the Brownian motion on a manifold (cf. [Elw]).

4.2. A stochastic analogue of the geodesic flow. The regularity of the Brownian
companion process u; with respect to its initials ug can be understood by general theory
on stochastic flows associated to SDEs.

Let X1, -+, X4 be bounded vector fields on a smooth finite dimensional Riemannian
manifold (N, {-,-)). Let (2t)wer, = (2}, ,2{) be a continuous stochastic process on R%.
An N-valued semimartingale (z;)cr, defined up to a stopping time 7 is said to be a solution
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of the following Stratonovich SDE

d
(4.9) dry = Z Xi(x) o dzf,
i=1
if for all ¢ e C*(N),
d

¢
V() = P(wo) + J;) Z Xih(xg) o dzg, 0<t<r.

i=1

The solution to (4.9) always exists when all X; are C! bounded ([Elw]). Note that X =
(X1,---,Xg) is a linear isomorphism from R? to TN. So, z; is a parallel transportation of
2 to the manifold N via X. The pair (X, (2;)swer, ) is called a stochastic dynamical system
(SDS) on N ([Elw]) and it is said to be C7 if all X; are C’ bounded. Using X, we also
write (4.9) as
d{L‘t = X(ﬂj‘t) e} dZt.
The mapping
Fi(w) : mo(w) = a(w)
has the following regularity with respect to the starting point xo(w).

Proposition 4.1. ([Elw, Theorem 3, Chapter VIII]) Let (X, (2¢)er.) be a C? SDS on
N. There is a version of the explosion time map x — 7%, defined for x € N, and a version
of Fi(xz,w), defined when t € [0,7%(w)), such that if N(t,w) = {z e N: t < 1%}, then the
following are true for each (t,w) e Ry x O4.

i) The set N(t,w) is open in N.

ii) The map Fy(z,w) : N(t,w) — N is C771 and is a diffeomorphism onto an open
subset of N. Moreover, the map T — Fy(-,w) of [0,t] into C7~1 mappings of N(t, w)
18 CONtINUOUS.

Corollary 4.2. Let ge M*(M) (k> 3). There is a version of the solution flow
Fy(-,w) 2 uop(w) —» w(w), teRy,

to (4.7) in .7-"(]\7), which is a C*=2 diffeomorphism into ]:(]\7) and is continuous in t.

Proof. Each x € M has infinite distance to the boundary. Hence each solution process u
to (4.7) with ug € ]:x(]\7) projects to be a diffusion process on M starting from z and has
infinity explosion time. Since g € M¥(M), the vector fields H(-,¢;), i = 1,2,--- ,m, on
OF(M) are all C*~! bounded with respect to the § metric. So F(-, w) : ug(w) — w(w) is
C*—2 with respect to the initial points ug and is continuous in ¢ by Proposition 4.1. ]

For | < j— 1, the I-th tangent map of F} in Proposition 4.1, denoted by D® Fy(-, w), can
be formulated and its norm can be estimated if N is equipped with a reference connection.
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Proposition 4.3. ([Elw]) Let (X, (2t)wer, ) be a C7 SDS on N. Assume there is a Levi-
Clivita connection V induced by some metric such that the covariant derivatives V'X;,
t=0,1,---,7,i=1,--- ,d, are bounded and the curvature tensor R of V and its first j—1
derivatives are bounded. The following hold true.

i) There is a version of {Fy(-,w)} such that almost surely, for | < j—1,te€ R, and
vo(w) € TON, vi(w) := [DYOFy(-,w)|vo(w) satisfies the Stratonovich SDE

d
dvy = Z[D(I)Xi(:ct)]vt odz,
i=1

where, if we denote by F} the deterministic flow map generated by the vector field
X; and D(Z)Fti its I-th differential map, then for ve TON with footpoint x € N,
D .
[DY Xi(a)]v = a([D(l)FZ]V)-

ii) For any q € [1,00), there is a bounded function c;(t,q), which depends on t, q, and
the bounds of V*X; and V'R, v <1+ 1, such that ||[[DYE,(-,w)]|r« < ¢(t,q).

Proposition 4.3 applies to the flow map corresponding to (4.7). So we can formulate
the SDEs of {{DWF;(-,w)]}. We will use them to specify ¢/(t,¢) and give a more detailed
study of their norm growths in time for later use.

Let Fi(-,w) be as in Corollary 4.2. The first order tangent map D(l)Ft(u(],w) records
the first order infinitesimal response of Fj(ug,w) to the change of initial point ug. Let
C:(—1,1) » F(M) be a differential curve with C(0) = ug,C’(0) = v. Then

D
Vi 1= [D(I)Ft(uo,U))]V = %Ft((?(s),w) _0‘

The SDEs of v; can be formulated using the parallelism form (0, w) as follows.

Lemma 4.4. ([Ma, Theorem 5.1]) Let Fi(-,w) be as in Corollary 4.2.

i) For any v € Tuof(ﬂ), vy satisfies the Statonovich SDE
dvi(w) = V(v¢(w))H (ug, odBy).

ii) Consider the map

[DD Fy(ug, w)] := (8, @)y, o [DY Fi(ug, w)] o (6, @)L

uo

For (2(0),2(0)) := (£/(0),2(0)) € TF(R™), (=(t),2(t)) := [DVF;(uo, w)](2(0), 2(0))
satisfies the Stratonovich SDE

dz(t) = z(t) o dBy(w),
(4.10) { dz(t) = ut—lR (ug 0 dBi(w),uzz(t)) uy.
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iii) The Ito form of (4.10) is
dz(t) = z(t) dBy(w) + Ric(uz(t)) dt,
(4.11) dz(t) = u; 'R (wd By (w), w2 (t)) ug + u; ' R (wges, wpz(t)e;) ug dt
+u; YV (uges) R) (wpeq, ugz(t)) vy dt,
where the summation X7, is omitted in (4.11) for simplicity and

m

(4.12) Ric(uz) Z R(ue;,uz)ue;, Vue F(M ) zeR™.

For t,¢,0 <t <t <T,let F,;(-,w) be the flow map of (4.7) sending u; to uz. Then
Fy(wo, w) = Fyz(ug, w) = Fy z(ug, w) o Fo (w0, w).
Let [D(l)Fﬁ(-,w)] (I <k —2) be the I-th tangent map of F, 7. When [ = 1, let

—_—

[DOF, ;(up, w)] = (0, @), © [DVE, 3 (ug, w)] o (6, @)y,
Then [D(l)Fﬁ] (resp. [D’(SEZ]) satisfies the same SDE as [D(M) Fy ;] (resp. [DTl)\]?&t]).

To describe [D(Q)Ft(uo, w)], we can follow [Elw] to use the horizontal/vertical Whitney
sum decomposition of T(UN)T]-"(J\?) = Tuf(]\7) X Tu]—"(]\7) with respect to the Levi-Civita
connection. The second order tangent vector

('LL, v; Vo, Vl) € T(u,v)TN

is in one-to-one correspondence with the Jacobi field Y (s) along the geodesic s — C(s) :=
exp(sv) with Y (0) = Vo, VY (0) = V;, where Y(0) tells the infinitesimal change of C(0)
(i.e., the horizontal part change of (C(0),C’(0))) and VY (0) tells the the infinitesimal
change of C'(0) along the geodesic from wug with initial velocity Vj (i.e., the vertical part
change of (C(0),C’(0))). For the geodesic 7+ C1(7) := exp(7V1), let v;(7) be the parallel
transportation of v along C; to the point C;(7) and define

2 [DOF(Ca(r),w)] vy (7))

T

(4.13) Vo [DWFy (ug, w)] (v) =

7=0

Then for almost all w,
[DPF, (ug, w) ] (wo, v; Vo, Vi) = <[D(1)Ft(uo,w)](u0;v); [DPF, (ug, w)] (VO,V1)) )

where
[ D@ Fy (g, w)] (Vo, V1)

- ([D(l)Ft(uo,w)](Vo),VVO [DDF, (ug, w)](v) + [D(l)Ft(ug,w)](V1)> .
By Lemma 4.4, to describe [D® Fy(-,w)] (Vy, V1), it remains to identify
Vt(V, VOa w) = VVO [D(I)Ft (110, w)] (V)
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Lemma 4.5. ([Elw, Lemma 5B, Chapter VIII]) Let g € MK(M) (k = 4). For v €
TuoF (M), (Vo,0) € Tiyo )y TF(M), let vy := [DYF,(ug, w)]v, Vy := [DWF(ug, w)]Vo.

i) On T]:(M), the process Vi := Vi(v, Vo, w) satisfies the Stratonovich SDE

AV, = V(V))H (1, 0dBy) + VP (vg, Vi) H (u¢, 0dBy) + R(H (uy, 0dBy), Vi)vy
ii) On TF(R™), the process (0, @)y, (Vt) satisfies the Stratonovich SDE
d((0, @), (V) = (w(Vy) 0 dBy(w), u; ' R(u; 0 dBy, 0(Vy))wy)

(4.14) + (0, )u, (VO (v, Vi) H (w, 0d By (w)) + R(H (wy, 0d By (w)), Vit )
iii) The Ito form of (4.14) is

(415) dO(Vt) = w(Vt)dBt(w) + RlC(lltH(Vt»dt + q)@(Vt, Vt, dBt, dt),

(4.16) dow(Vy) = 0, 'R (wdBy(w), (V) wp + u; 'R (wes, wyww(Vy)ei) vy dt

+ ut_l (V(utei)R) (ugei, w@(Vy)) ug dt + ©(ve, Vi, dBy, dt),
where the summation S, is omitted and

Bo(vi, Vy, dBy, dt) =0 (v<2> (ve, Vo) H (ug, dBy(w)) + R(H (ug, dBt(w)),Vt)vt>
+ 2w <V(2) (vt,Vt) (ug, ;) + R(H (ut,ei),Vt)vt> e; dt
0 (| H (s, ), VO (v, Vi) H (s, ) + RO (wg, ), Vi | ),

P (ve, Vi, dBy, dt) :=w (V( )(ve, Vo) H (14, dBy(w)) + R(H (uy, dBy(w ))th)Vt>
+2u 'R (utei, w0(V® (v, Vi) H (w, e5) + R(H (w, ei),Vt)vt)) wpdt
+w ([H(ut, €:), VO (vy, Vo) H (g, ;) + R(H (u, ei),Vt)vt]) dt.

A corollary of Lemma 4.5 is that we can describe V; (resp. (6, @)y, (V:)) using the tangent

maps [D(l)Fﬁ(uo, w)] (resp. [D(l)FLg(uo, w)]) by a stochastic version of the variation of
constant method, i.e., a stochastic Duhamel principle.

Corollary 4.6. Let g e M*(M) (k= 4) and let v¢, V; and V; be as in Lemma 4.5.

V= L [DO By a7, w)] (V2 (v, V) H(ur.e3) + R(H (1. ). V,)v- ) o dB.
ii) (0,@)u,(Vt) =

—_——

(4'17) Jot [D(l)FT,t(uT7 w)] (07 w)uT(V(Q) (V’r, VT)H(uTv ei) + R(H(uT7 62'), VT)VT> © dB‘Zr
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iii) The Ito form of (4.17) is

418) (8, @) (V1) = f

0

t

[DOE, o(uy, )] (®o(vr, Ve, dBy, d7), & (v, Vi dBy, 1) )

where
& (vr, Vr, dB,,d7) = By(vs, Vs, dBy, dr)
—w (Vm (vr, Vo) H(ur, e;) + R(H (ur, e’i)vVT)VT> e;dr,
& (vr,Vr,dB,,dr) = B (vr, Vs, dBy, dr)
—u 'R (uTe,-, uTH(V(Q)(VT,VT)H(uT, ei)+R(H (ur, ei),VT)vT)) u,dr.

Proof. For i) and ii), it suffices to show i) since it implies ii) by applying the (6, w) map.
Regard the tangent map [D(l)Ft(uo, w)] as a random matrix solution y;(w) to

dyt(w) = v(yt(w)>H(ut7 OdBt)7 Yo = Id.
Put

i
vy :=Vo + f [DDE, (g, w)] ™ (v<2> (v, V;)H (uy,0dB;) + R(H (u, odBT),VT)vT> :
0

Then the differentiation rule of Stratonovich integral shows that
d(ytvt) = (odyt)vr + yi o duy
= V(yi(w)v)) H(uy, 0dBy) + VP (vg, Vi) H (uy, odBy) + R(H (uy, 0dBy), Vi)ve,

where d should be understood as the covariant derivative. Since yguvg = Vy = 0, we obtain

t .
Vi =y = J [D(l)FTvt(uT, w)] <V(2) (vr,V)H (ur,e;) + R(H (ur, ei),VT)vT) odBz.
0

—_——

Regard [DW Fy(-,w)| as a matrix solution y¢(w) to (4.11) with yo = Id. Put

t

Uy = Vo + J [D(l)FT(uO,w)]_l <<59(VT,VT,dBT,dT),&)w(vT,VT,dBT,dTD )

0

Write yivr := ((ytv1)o, (Y1Ut)w), where (yivi)g € R™ and (yivt)w € F(R™). Then the It6
form infinitesimal differentiation rule shows that

d(y:0r) = (dy+)0¢ + ydO; + dy - dvy
= ((y¢0¢)wdBi(w) + Ric(us(y:Tt)g)dt + Bo(vi, Vi, dBy, dt),
u; 'R (ud By (w), uy(ye)g) we + v ' R (weeq, i (yey)weq) vy dt
—i—u;lVR(utei) (weeq, ue(yi0r)g) wy dt + P (vy, Vi, dBy, dt)) .
This means y;0; with 09 = (0,0) solves (4.15) and (4.16). Thus (4.18) holds true. O
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For [D(2)Ft(u0,w)] on T(u’V)Tu}"(]\AJ) = Tu]:(ﬂ) X THF(M), we can define its Eu-

clidean companion map [D®) Fy(ug, w)| on TF(R™) x TF(R™) as follows. For (V,,V,) €
TFR™) x TFR™), let (Vo,V1) := (((6,@)u) " (Vo). (0, @)ue) ' (Vy)). Let Vi :=
[D(l)Ft(uo,w)]Vi for i = 0,1 and let v¢, V; be defined as in Lemma 4.5. Then

—_—

[D@ Fy(ug, w)] (Yo, V1) := ((6, ) (Vor), (6, @) (Vi + W)

We can continue the above discussion to formulate [D(I)Ft(~, w)], 3<I<k—2 Put

(u(2);v(2)) =: (u,v; Vo, Vy),
(u®;v®0) = (w0, v=0; v vED) y v VDY e Ty TR,

Then,
[D(I)Ft(uo,w)](u(l);v(l)) =<[D(l_1)Ft(u0,w)] (u(1—1)7V(1—1)>; [D(l—l)Ft(uO’w)](V(()l—l))’
(4.19) Voo [P Fiuo, w)] D) + [DO By, w)] (v )
0

and the covariant derivative term V1) [D(Z_I)Ft(uo,w)] (v=1) involves a combination
0

of the I'-th (I’ <1 —1) covariant derivatives
(4.20) oy Viow_r Voo [D(I)Ft(u, w)] (v), W, Voo, -, Vou € ToF(M),

where for I’ = 1, (4.20) was given in (4.13), and for I > 1, let 7 — Cy(7) := exp(7Vo )
be the geodesic passing through u and let V//(T),Vo’o//(’i'), e ,Vo’l/_l//(T) be the parallel
transportations of v, Voo, -, Vg1 along Cy to the point Cy(7), then

VVo,l'vVo,z/—1 T vVo,o [D(l)Ft(u, w)] (v)

D
- (vVo,y_l//(T) VVO’O//(T) [D F(C (T),w)] (v//(T))> .

The Stratonovich SDE of (4.20) involves {V*H}, <y and {V*R},<y_1. But the It6 SDE of
(420) involves {VLH}L<ZI+1 and {VLR}Lgll.

By Corollary 4.2, all the tangent maps [D®F(-,w)] are invertible. The inverse maps
[DOF,(-,w)]~" can be formulated by the same equation as [DWF,(-,w)], but using the
backward infinitesimals dB)T, —dr instead of dB,,dr. We skip the details.

4.3. Growth of the stochastic tangent maps in time. We use the above SDEs to
estimate the LZ-norm (¢ > 1) of H[D(Z)Ft,g(u, w)]| and supy; <1 H[D(Z)Ftvg(u,w)]ﬂ.

A useful tool to the L?-norm estimations of stochastic integrals is Burkholder’s inequality
which can be obtained using It6’s formula for | - |¢ and Doob’s inequality of martingales.
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Lemma 4.7. (¢f. [Kun2, Theorem 2.3.12]) For an Fr-adapted R™ or O(R™) process fr,

t/
j £ dr
t

q
2

t/
(4.21) E ( (frsdBr) Vg =2,
t

> <Ci(g)-E

where C1(q) = (3a(q — 1)(q/(g — 1))472)%.

(When ¢ = 2, the inequality in (4.21) becomes an equality and is referred to as the
isometry property of Brownian motion.)

We would also like to list a simple fact that will be used from time to time for compu-

tations in the remaining paper: for any ¢ > 1 and ay,--- ,a;, € Ry U {0}, ip € N,
20 i

(4.22) (X @) < (io)*™" ) af.
i=1 i=1

We first consider the L%-norm (¢ > 1) estimations of H[D(Z)Fﬁ(u, w)]|.

Proposition 4.8. Let g€ M*(M) (k> 3). Forze M, T e R, let {ut}sepo,r) be the solu-
tion to (4.7) in (’)57(]\7) with ug € 05(1\7) Then for everyl, 1 <1 < k-2, and g > 1, there
exist ¢(l,q) > 0, which depends on l,q and the norm bounds of {VZIH}ZI<Z+1,{V1/R}Z/<Z,
and ¢(1,q) > 0, which depends on 1,q and the norm bounds of {V' H}y<o, VR, such that

(4.23) E H[D(Z)Fﬁ(ubw)]ﬂuq <l )T Vo<t <E<T,

where we simply use the upper-script £1 to denote the map itself and its inverse.

Proof. Using the cocycle property of the map F;, we obtain
[DOF, 3(ug,w)] = [DY Ey(ug, w)] o [DY Fy(ug, w)] "

So, by Holder’s inequality, it suffices to verify (4.23) for ¢ > 2 and 0 =t <t =t < T.
We only consider the estimation for the forward tangent maps since the estimations on the
inverse tangent maps can be obtained similarly using the backward SDEs.

When [ = 1, (4.23) was inspected in [Elw, Proposition 5A, Chapter VIII]. Using this
and the SDEs in Section 4.2, we can obtain all the other estimations in (4.23). Recall that

[D(Q)Ft(uo,w)](uo,V;Vo,Vl) =
([P Fi(wg, w)] (a0 v); [P Fy (g, w)] (Vo) Ty [DD Fy (10, w)] (v) + [P Fy(utg, w)] (V1))
To verify (4.23) for | = 2, it remains to analyze the L%-norm (q > 2) of the mapping

(v, Vo) = Vi(v, Vo, w) = Vy, [ DY F(ug, w)](v).
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Equivalently, we can consider the mapping (v, Vg) — (6, @) (Vt) for v, Vo with norm 1. Put
Vr 1= [D(l)FT(anw)]Va Vi = [D(l)FT(u07w)]VO- Let

(4.24)  Ar(w):= (0, @) ( (vr, V) H (ur, ) + R(H (us. '),VT)W—) ,
B, (w) : ([ (ur, €1), v< V(vr, Vo) H (1, €5) + R(H(uT,e,-),VT)VTD ,
O, (w) = ( (v< )(vy, Vo)V H (0r, €7) + R(H (uy, ei),VT)VT) e

u; 'R (uTei, uTH(V(Q) (v7, Vo) H (ur,e;) + R(H (ur, ei),VT)vT)> uT>

t

Ay (w) = fo [DOF, ,(ur, w)]As (w) dB;(w),

By(w) i fo [DOE, o(ur, w)|Br (w) dr, Cyluw) = f [DOE, y(ur, w)]C (w) dr.

By Corollary 4.6,
(0, @), (V) = Ay(w) + By(w) + Cp(w).
Using (4.22), we obtain
3179E| (0, @), (V)|* < E|Ai(w)]? + E|Bi(w)]|? + E|Ce(w)|? =: (A) + (B) + (C).
For (A), it is true by Burkholder’s inequality and Holder’s inequality that

q
2

2
Fri(ur,w )]AT(w)H dr

q

<T§q—1cl JE‘ Tt(uT,w)]AT(w) dr

1.1 - 2q % 9 %
<T3 cl(q)f E[[DOF(ur,w)][") (EJA-w)[*)* dr.
0
Using (4.24), we continue to compute that

4q

B 1AL ()| <C37 (E v, (w)]*7) - (E1: ()1 < (Ch)E|[DOF: (. w)]| .

where Ca, C'y depend on the norm bounds of {V!H},<5 and {V'R},;<;. Hence, using (4.23)
with [ = 1, we obtain

(A) < C1(g)(CAVT) N/ 1 (2g)cr (Ag)ez (@ GO+ (T,
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Using Holder’s inequality and (4.23) with [ = 1, we obtain

1
(B) ST‘?—IJ (E H D(l)F (ur,w H > (E IB-( )qu) T
<(CT)1 01(2(])61(4q)e%(01(2q)+61(4q))’
where C' depends on the norm bounds of {V'H};<3 and {V'R};<3, and the same inequality

holds true for (C). This shows (4.23) for [D(Q)Ft(uo,w)].

Let I > 3. Assume (4.23) holds true up to the (I — 1)-th differentials. For the estimation

on [-th differential, by the inductive definition of [D(Z)Ft(uo, w)] (see (4.19)), it remains to

(l—l)”q

estimate, for v(lfl),V(()l_l) with norm 1, Esupgc;<r ||Vt , where

Vi = Vo [DUVF(ug,w) (V).

As in Corollary 4.6, we can formulate Vt(l_l) using [D(l_l)Fm(uT, w)] by Duhamel’s prin-
ciple. Using the inductive assumption on (4.23) and following the argument in step 2, we
can obtain ¢(l, q), ¢(l, q) of the prescribed type such that

E Hv(.) [D(lfl)Ft(uO, w)] ()Hq <, q)ec(l,q)T'

We continue to give the L9-norm (¢ > 1) estimations of supy<; <r H[D(Z)Fﬁ(u, w)]|-

Recall the Dambis-Dubins-Schwarz Theorem which relates local martingales with Brow-
nian motion using Lévy’s characterization (see Section 4.4).

Lemma 4.9. (¢f. [RY, Theorems 1.6 &1.7, p. 181]) If M is a (Q,F,P)-continuous local
martingale vanishing at 0. Let Ty = inf{s : (M, M) > t}.

i) If (M,M)o, = 0, then By = My, is a (Fz,)-Brownian motion and My = By w, -
ii) If (M, M>oo < o, then there exist an enlargement (2, F,P) of (2, F,P) and a Brownian
motion B on Q independent of M such that the process

. _{ My, if £ < (M, Mo,
T Moo 4 By, i £ = (M M)y

s a standard linear Brownian motion. The process W given by

W, = MTt7 Zf t<<M7M>007
E7) My, if = (M, M)y,

is a (F;)-Brownian motion stopped at (M, M) .
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Given an (Q,F,P)-Brownian motion B, we know that for almost all w, ¢ — Bi(w) is not
differentiable, but is a-Holder continuous for every a € (0,1/2). Let 1 > 0 be fixed. Define

(4.25) Bro(w)la i= sup [Be(w)] + sup 1or) = Belw)]

0<t<T o<t<t'<t [t —t

The following result of Skorokhod ([Sk]) is a weaker form of the Fernique Theorem ([Fe]).

Lemma 4.10. ([Sk]) Let B be an (Q,F,P)-Brownian motion. For any a € (0,1/2), there
exists € > 0 such that E (eEHB[O’T] Ha) < 0.

Remark 4.11. The original proof of Lemma 4.10 is for T = 1. In general, for any ¢t > 0
and a > 0, B; has the same distribution as y/aB;/,. In particular, this holds for a = 7. A
simple calculation shows that |Bjoqjla < (v/T ++/T/7%)IIBjo,1]|a- Hence the Lemma is true

for every 1 with e(7) = min{e(1)/2,€(1)/(\/T + /T/T%)}-

Proposition 4.12. Let g € M*(M) with k > 3. For x € M and T e Ry, let {ut}seo,m) e
the solution to (4.7) in (957(]\7) with ug € (’)g(]f\\f) Then for everyl, 1 <1 < k-2, andq > 1,
there exist ¢;(q) > 0, which depends on l,q and the norm bounds of{Vl/H}yng, {Vl/R}ygl,
and ¢;(q) > 0, which depends on 1,q and the norm bounds of {V* H}y<s, VR, such that

(426) E sup |[DOF 0] < a(@e@™.

0<t<i<T 7

Proof. We show (4.26) by induction. At each step, we only check the bound for the tangent
map since the estimation on the inverse map can be obtained analogously using its SDE.

—_—

We begin with the [ = 1 case. It suffices to do the computation for [D(l)Fﬁ(-,w)].
Following [Ma, Theorem 5.1] (see Lemma 4.4), the solutions to (4.11) can be understood
using multiplicative stochastic integral in Ito’s form. For each j € {1,2,---,m} and u e

F(M), define a m(m + 1) x m(m + 1) matrix M;(u), which is an endomorphism from
T,F (R™) to itself, such that for (z,z) € T,F(R™),

(4.27) M; (w)((2.2)) = ((2)1%, (Rl (w21 )

Define another m(m + 1) x m(m + 1) matrix N(u) (or an endomorphism from T,F(R™)
to itself) such that for (z,z) € T, F(R™),

(4.28) N()((,2)) = (0.Np,(w3'),

where

g (1) 1= Z {(V(uej)R (uej, uey) ueg, ue, ).

7=1
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Using M, N, we conclude from (4.11) that the It6 form of the SDE of z; := (z¢,2) is

m

dzi(w) = Y (M (u)7:(w) dB] (w) + [My () *Z(w) dt) + N(u)z,(w) d,
j=1

which means, in terms of the multiplicative stochastic integral,

(The coefficient of N in (4.29) is different from that in [Ma, Theorem 5.1] since we are
considering Brownian motion with generator A instead of A/2.) Hence,

(4:30) [DOF, (s, w)] | <ol Ms () dBIw)| | FINGo) ar
Clearly,
E sup e‘]EHN(ur)H dr < E(qug\\N(uT)\\ dT) < CCTq7

0<t<t<T
where C' is some constant depends on the norm bound of VR. Consider the matrix valued
process

M (w) := L M, (u,) dB..

It is a continuous martingale with My = 0 and with the quadratic variation (M, M), < Cit
for some constant C; which depends on the norm bound of R. By Lemma 4.9, there exist
a continuous martingale M and a Brownian motion B on an enlargement ((:)Jr,]? , Q) of
(04, F,Q) so that M has the same law as M and

Fix a € (0,1/2) and consider HB[O,%C;[T]Ha' By Lemma 4.10 and Remark 4.11, there is
¢ = min{e(1)/2,e(1)/(~T ++/T/T?)} for some constant (1) such that

EQ (eEHB[o,%ClT] a) < 611 < ,
where 51 only depends on C' and a, and is independent of T'. Let t; = (%eq_l)i and let
i1(7) :=max{i e N: it; <7}, V7€ [0,T].

We can chop the integral expression of M; — M; into sub-integrals on successive intervals
of length not exceeding t; as

t t ,
M=M= > f i(u,)dBI + f +f M;(u,)dB’
i1(t)t1 i1(t)t1

1()<i<ii(¢

(4.31) = Z (Mit1 - M(z’—l)m) + (ML_ Mil(t)h) + (Mt - Mil(t)tl) :

i1 (t)<i<iy (1)
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By the definition of the Holder norm | - |5 (see (4.25)), forany 0 <7 <7 < T,
Mz — M| < (7 - I)aHB[o,gclT] Ha

In particular, we have

(432) HMi - Mh(t)tl H7 HMt - Mi1(t)t1 ” < tzliHB[O,%CﬁT] Ha'

Hence we can conclude from (4.31) and (4.32) that

i1(T)
(1T

Using Holder’s inequality and then the Markov property of My, we obtain

213 B

Hq §, M, (ur) dB(w

sup H < Mty =Mi— 1ty H) .e [Ov%CIT] a

0<§<E<T

11(T)

E sup HqSt j(ur) dBi( w)H < Ex 62‘1‘ Mit; =M 1)t1H (64qt?"8[0,§clT1 a>
0<t<t<T Q ﬂ Q
T Eg (vl g, (120
< Ex (6 q||Mity =Mi—1)tq ) . ( 0,30171a )
= 1 Q Q

HB 11(T)+1
()™

1 .
iW(T) < (8ge(1 )_1)§T, if T<1
(8ge(1)~Y)aT "2, if T > 1.

By our choice of e,

Hence, if we take a € (1/4,1/2), then i1 (T) < (8qe(1)_1)§(1 + T3). This shows there is
some constant ¢(q) which depends on ¢ and the norm bound of R such that
a8 M () dBE )|

E sup (@) (1+T%)

0<t<I<T

<e

When [ = 2, it is true by the cocycle property of the map F; that

1|9
sup H[ 7(ug, w H < sup H D( )F (ug, w H sup H[D(2)Ft(u0,w)] 1” .
0<t<i<T 0<I<T 0<t<T -
Using Hoélder’s inequality, we see that to conclude (4.26) for the i = 2 case, it suffices to
show there are ¢y(q), ca(q) of the types that were prescribed in the proposition such that

2q

(4.33) E sup H[D(Q) Ft(uo’w)]ilu < oy(q)e2 @

0<t<T

Since (4.26) is valid for the [ = 1 case, to obtain (4.33), it remains to analyze

E sup H(@,w)ut(Vt)HQq,

<t<
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where V; := Vy, [D(I)Ft(uo, fw)] (v) and v, V have norm 1. Using the notations in the proof
of Proposition 4.8, we have

"L E sup Hﬁt(w)H2q+E sup H(th(w)

"
0<t<T 0<t<T

317E sup |(6,)u (V)|* < B sup |Ay(w)

o<t<T 0<t<T

—: (A) + (B) + (O).

[

For (A), it is true by Doob’s inequality of sub-martingales and Burkholder’s inequality that

2q

T
L [DOE, 7 (ur, w)] A, (w) dB,(w)

(A) <C(29)E

T —_— 2
<C(29)C1(29)E ‘ L H [D<1>FT,T(uT,w)]AT(w)H

1

1
— 4q\ 2 2
<C(24)C1(29)1° (E sup | [DOF, 5wy, w)]| ) (E sup \A7<w>n4Q) ,

0<t<t<T 0<7<T

where C(¢) := (¢/q¢ — 1)? and C1(q) is given in Lemma 4.7. Using (4.24), we compute that

1 1
4q _ ~Aq 8q\° 8¢\ °
E sup [Ar(w)[™ <Cy' |E sup [v(w)] |\ E sup [Vi(w)]

0<7<T 0<7<T 0<7<T
8q

)

<(Cg)4qE sup H[D/(lTF;g(uL,w)]

0<t<I<T

where Cy,C’y depend on the norm bounds of {V!H},<s and {V'R},<;. With (4.26) for
[ =1, we conclude that

(A) < C'(@)(CAVT)?y/e1(dg)e (8q)e (1 ) +er BT,
Using (4.26) with [ = 1 and Holder’s inequality, we have

1

(B) <T% (IE sup H [D’(Hﬁ;’t(ut,w)]"élq) ’ . <IE sup Bf(w)|4Q>2

0<t<t<T 0<7<T

- o\ - N
<(CT)™ <E sup H[D(l)Fﬁ(ut,w)]H ) (IE sup H[D(I)Fﬁ(uz,w)]H >

0<t<t<T 0<t<t<T
<(CT)%3/e1(4q)er (8q)ez (110 Ter B)T?

and the same inequality holds true for (C), where C' depends on the norm bounds of
{(V!H} <3, {V!R};<o. This shows (4.33) for [D(Q)Ft(uo,w)]. Similarly, we can obtain the

estimation on [D(Q)Ft(uo, w)]_l. This finishes the proof of (4.26) for the [ = 2 case.
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Let [ > 3. Assume (4.26) holds true for tangents up to the (I — 1)-th order. For the
estimation on [-th tangent map, using the cocycle property of Fi, it suffices to show

E sup |[DO R0, )] < alg)er @,

0<t<T

where ¢;(q), ¢;(q) are the same types of the constants that were prescribed in the propsition.
By the inductive definition of [D(l)Ft(uo, w)] (see (4.19)), it remains to show

(4.34) E sup HV(,)[D(lfl)Ft(uO’w)](,)Hq < o(q)er @™,
0<t<T

This can be done as in the [ = 2 case by formulating Vt(l_l) in terms of [D(lfl)FT,t(uT, w)]
by Duhamel’s principle and using the inductive assumption on (4.26). O

4.4. Brownian bridge and conditional estimations. We want to further estimate the
growth of (4.26) with respect to Brownian bridge distributions using their SDEs, which
can be derived from the classical Cameron-Martin-Girsanov formula.

We begin with some classical estimations on heat kernels in the non-compact case.

Lemma 4.13. ([Sa, Theorem 6.1]) Let g € M*(M) and let p(t,x,y) be the heat kernel
functions of the g-Brownian motion on M. There exist constants by, cy,c2, k1 (depending
on n and curvature bound) such that for any t > 0 and x,y € M, we have

1 c p a2 (1 d%(z,y)
(4.35) p(t,z,y) (bt =0
\/Vol Vol(y,\[)

For later use, we would like to state a simplified rough version of (4.35): there are
constants ¢, (which depends on |¢g*|c0) and ¢y (which depends on [g*|c2) such that

(4.36) p(T,2,y) < cgT e+,

Lemma 4.14. ([Li, Theorem 1.5]) Let g € MF*(M) and let p(t,x,5) be the heat kernel

functions of the g-Brownian motion on M. Let T > 0. There are constants c(i,T),
i < k—2, which depend on i, T and the curvature and its derivatives up to i-th order, such

that, for all (t,z,y) € (0,T] x M x ]\7, the i-th covariant derivative of Inp satisfies

(4.37) IV p(t, z,y)| < (i, T) <1d§(x,y) + \}f) )

Let T'> 0. For x,y € ]\7, the distribution of the Brownian bridge from x to y in time T,
i.e., the Brownian motion starting from x conditioning on paths that are at y at time T, is

Py y7() :==Ep, ("xT = y) .
It is a probability on the bridge space

Cyy([0,T7, ) {we C([0,T], M) : wy =z, wp =y}.
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Proposition 4.15. Write ]P’;y’T = p(T,z,y)Pyyr. FizTy > 0. For any ¢ € Ry and
T > Ty, there exists ¢ depending on q,T, Ty and |g||c2 such that for all x,y € M,
(4.38) Epe 9% [VInp(T—txey)l dt oe(l+d(zy),

z,y, T

Proof. By (4.37), there is some ¢ which depends on ||g|c2 and T such that

T T
1
| 1vmpr el dr < VT e [ i) dr
0 o I'—rT

Hence it is true by Holder’s inequality that for ¢p € (0, min{1,7y/2}) small,

(E]P’* @5 |V Inp(T—t,xe,y)

2 9 cq (10 1 2eq ¢ 0L d
) | dt) <62CqﬁEP* chqSO +d(yry) dr | EP* e cq §o 0 (x7yy) dr
Ty,

z,y,T z,y,T

—PT () () (F) (fo).

where (Yt)te[O,T] denotes the Brownian motion starting from y € M. Let to < To/2. Then
for (E)(to), by (4.36), we have

— 26§10 Ld(yry) dr
©)t0) = Eps_,¥8
— ¢to 1
< QO2mT()_m€CO(1+T)EPy eQEq S(t)o %d(yTvy) dT.

To show there is some small ¢y > 0 (depending on ¢, T, Ty and ||g|c2) such that (E)(tg) is
bounded, we can use a trick from Driver (|[D, Lemma 3.8]) to compare it with Euclidean

Brownian motions. Find finite many smooth functions {f;}\_, on M with fily) = 0 and
d(z,y) < Zé:l |fi(z)] for all z € M, where all f; have bounded first and second order
differentials on M. So for an upper bound estimation of (E)(t), it suffices to consider

EPyGQEqSSO POl AT () (t)

for any C? function f on M with bounded differentials up to second order. Let (y, U, B)
be the triple which defines the Brownian motion on M starting from y. By It6’s formula,

t t t
)] < LUJW(M dB, + j Af(y) dr| < Lwﬂwy» dB,| + (),

where C(f) is some constant which bounds |A f|. Write

t
M} = f U7V f(yr) dB-.
0

The process M; is a continuous martingale with M, = 0 and has quadratic variation
(M';M"); < C't for some constant C’ which depends on the bound of |V f|. By Lemma
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4.9, there exist a continuous martingale M" and a Brownian motion B’ on an enlargement

(€Y, F',P') of (2, F,P) such that l\7|’ has the same law as M" and

Let a € (0,1/2). By Lemma 4.10, there is some ¢’ > 0 which depends on |g| o2 such that

!

Eﬁ, (eE

/
[0,3¢]

L) is finite. By the definition of the Holder norm || - ||,

to _ 1
f *||M/ | dr < HBIO el | 'Jo Tl dr < ;t(a)HBI[O,%C’] a

Hence, for top = min{1, Ty/2, (a(%q)*le')g}, we have

! U
€ |B
[0,3c”lla

(E/>(t0) < 625qt00(f) . E]P’I (625‘1”'\/';0 H) < Eﬁw (6
For (F)(to), by symmetry of the bridge distribution,

) < o0.

(F)( ) EP* ZCQSO 0 d(xT,y) dT+2CqST to 1 d(}’Tﬂ—,y) dr

xyT

1 1
1o 5 1o 3
g =, (2 1 = (2 1
< eCato Td(z,y) (E " 4cq 5 Ed(x,. ) dT) (E]P’* 640‘1 5o %d(}’ny) d7'> )
z,y, T y,x, T

By (4.35) and Markov property of p (see (4.40)),

_ AT AT
EP* 64011 S %d(yq—,y) dr _ EIP’U <e4c‘:qt0 1§27 d(yr,y) dr . p(éT7le’ IL‘)>
t 2

y,z, T
_ -1 %T
< QOQmT()_mGCO(1+T)EPy€4thO §¢ dlyry) dT'

Let tj < min{1,7p/2} be small. Partition [0,7/2] into 0 = 7° < 71 < ... < 7N < T/2,
. , 1
where 7' := it{, and N := max{i,7" < T/2}, and chop the integral SgTd(yT,y) dr into
pieces accordingly. Using the triangle inequality, we obtain
N

ir
J d(yr,y) dr <
0 i—1

i

T 5T
J _71d(yt, yyi-1) dt + t{)d(yT¢1,y)> + JN d(ys, y,n) dt + tad(y.rzv,y)

T

-
I

T

T 3T
J d(YhYTi*l) dt + (N +1- Z)tad(yTHY’rll)) + fQ d(yta YTN) dt.
ri—1 N

Using the Markov property of the Brownian motion and Hoélder’s inequality, we see that

1037 2 R qto(N+1-0)d(y}, y')
=, - ! ’
<Epye40qt0 §¢ dlyry) dT> < | sup Eg,, el So d(y;.y') di H sup Ep e t

Y 'eM =1y reM

N
= (®o)" ' []®),

=1
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where q := 8cqty L y; is the Brownian motion on M which starts from y' and P, is its

distribution probability. For (F)g, we estimate as in the first part. Note that (]\7 ,g) is the
universal cover of the compact space (M, g), although the choice of the f; may differ from
point to point, we can ensure their differentials up to second order are uniformly bounded.
So we can choose t{, (for instance, ¢, = min{1, 7y, €'/q}) such that (F)¢ is bounded. Fix
such a t{, and estimate (F); using Lemma 4.13. We obtain some constant ¢(¢{,) such that

(F); < eftp)ersT (07 (V=

S

where ¢z is as in (4.35). Hence, there is some constant ¢(g) depending on ¢, T, Ty and ||g| 2
such that

1
Ep (64Eq/t51 SOZT d(y+,y) dT) < ec(q)'
y
So,
(F)(to) < 2™ T e +eo(1+T ) +eaty ' Td(ay),

Putting the estimations on (E)(tg), (F)(to) together, we obtain (4.38). O

Consider the Wiener space Co([0,7],R™) with the standard filtration (F)e[o,r7 and
let (Bi)sefo,r] be an (F;)-Brownian motion starting from 0 with respect to a probability
measure Q on Fr. Let f : [0,7] — R™ be square integrable with respect to Lebesgue
measure. Define a random process (My)e[o,r] on [0, T satisfying Mg = 1 and 1té’s SDE

1
th = §Mt<fta dBt>

Then
M, = e{%SS<fndBr(w)>*i §o /-2 dr}

Since EQ(ei fo £+ 12 dry t < T, are all finite, we have by Novikov ([N]), that (M) seqo,r) is a
continuous (F¢)se[o,rj-martingale, i.e.,

Eq (M) =1, Vte[0,T].

For t € [0,T1], let Q: be the probability on Cy([0,T],R™), which is absolutely continuous
with respect to Q with
Qs
dQ
Since M; is a martingale, the projection of Qt on Fr, T <t,is given by the same formula.
The classical Cameron-Martin-Girsanov Theorem ([CM1, CM2, Gi]) says that the process

(By — Sé fr dT)tE[O’T] is a Brownian motion with respect to Q7. In other words, we have
that the probability Q on Wiener space is quasi-invariant under the transformation T :

Co([0,T],R™) — Co([0,T],R™) : w — w+ §, f dr with

—1
(4.39) dQ;J (w) = {35 <rw). dBe ()17 1f- () dr}
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As in the compact case (see [Hs3, Theorem 5.4.4]), we can deduce the SDE of the
Brownian bridge on M from the Cameron-Martin-Girsanov Theorem. Let (Xt, Ut )seo, 1) be
the stochastic pair which defines the Brownian motion starting from z up to time 7. By
the Markov property of p,

APy .1
dP,

Tt p(T' -t
_ Xe,y) _ B U y) 5, Vtel0,T),

7 p(T,z,y) p(T,z,y)

(4.40)

where p(t,u,y) := p(t, 7(u),y). Using (4.7) and the heat equation, one can calculate using
1t6’s formula to obtain

din 5 = a7 'V Inp(T — t,up, ), dBy) — |V Inp(T — t,uy, y)|? dt.
Hence

APoyr| {5y 8 np(T—rur ). dBry—§, [VH In p(T—rur )| 2dr}
P, |y,

Comparing this with (4.39), it implies

t
b= B, - 2f 0V I (T — 7, ur,y) dr
0

is a Brownian motion with respect to P, , 7 and hence Proposition 4.16 holds for ¢ € [0,T).
One can conclude that {U}e[o,7] is a semi-martingale on [0, 7] since

T
Ep, .z <f0 IVInp(T — 7, XT,y)|dT> <

is also true on the non-compact universal cover space (M, §) by (4.38). In summary,

Lemma 4.16. There is a Brownian motion (bt)[o,r) such that the horizontal lift U of the
Brownian bridge x is a semi-martingale on [0,T] which satisfies the SDE

(4.41) dU; = H(Uy, e;) o (dbj + 2H (Uy, €;) InPas (T — ¢, Uy, z)dt) .

In other words, the anti-development of the Brownian bridge x (i.e., the pre-image via
parallelism, see Section 5.2 for more precise definition) is

t
Wiy =b + 2f U 'Vinp(T — 7,%,,y) dr.
0

Now, we can use Proposition 4.15 and Lemma 4.16 to derive a bridge version of (4.26).

Proposition 4.17. Let g € M*(M) (k> 3). Forz € M, let (Ut )sefo,r) e the solution to
(4.7) in ©OI(M) with ug € (’)g(]\f\i) For every Ty > 0,1, 1 <1< k—-2,q=>1and T > Ty,
there exist ¢j(q) > 0, which depends on l,q and the norm bounds of {V" H}p<, {V' R}y,
and ¢j(q) > 0, which depends on l,q,T,Ty and the norm bounds of {vl/R}l/<1; such that

T —
Ul 0gt<ILT
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Proof. We show (4.42) by induction and at each step we only verify it for [D(l)Fﬁ(ub w)].

When [ = 1, it suffices to do the estimation for [D(VF, 7(-, w)] Using (4.30), we obtain

1)

» dBr)| _

]EIP’* sup H[D’(Sfﬁ(ut’ H < eCTqE . sup eQHSt eCT‘](M)’

To<t<t<T 0<t<i<T
where C' is some constant depending on the norm bound of VR. By Lemma 4.16,
(4.43) dB, = db,; +2u'VInp(T — 7,%,,y) dr,

where (br)e[o,7) is @ Brownian motion for P, , 7. So,

_ 2
02 = (Epe  sup M (ur) (@ (w) 4207V In p(T—rx7.) dr)|
O<t<t<T

<]E1P>* sup e qHSt ) b (w )H EIP’* sup e QHSt (ur) (uFtVInp(T—7x,,y)) dTH
O<t<t<T O<t<t<T
=:(M)1 - (M)a.

For (M), the first step argument in Proposition 4.12 applies and shows that there is some
constant ¢(¢q) which depends on the norm bound of R and ¢ such that

(M) < “@0+T%)

For (M), using the uniform boundedness of |M,(u)| for u e 09 (M), we obtain some &
depending on the norm bound of R such that

(M)y < Epr 2% [VInp(T—txug)| dt,
]Psz

So, by Proposition 4.15, there is some ¢ depending on |¢]co and some other ¢(g) depending
on ¢,q,T,Ty and |g| o2 such that

(M), < ecl@)+d(zy))

Putting all the estimations together, we obtain (4.42) for i = 1.

When [ = 2, it suffices to give a conditional version of (4.33), which by the decomposition
of [D® F;] and the conclusion of (4.42) with I = 1, can be reduced to the estimation of

(V) :=Eps  sup (6, w)u, (V1)[*.
x,y, 0

<t<

Let A, B, C, A, ]~3, C be given in the proof of Proposition 4.12. Then

3172(V) < Eps sup Hgt(w))r + Epx sup Hﬁt(w))r + Epx sup Hét(w qu

Fowr 0<t<T 2T 0gt<T oy T 0<t<T

=: (A) + (B) + (C).
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For (B), following its non-conditional estimation in the proof of Proposition 4.12, we obtain

N

— 4q — 8¢
(B) <(CT)* (Ep;“ sup H[D(l)FLZ(u@w)]H Eps sup H[D(I)th(ui,w)]H )

W1 o<t<t<T 29T 0<t<t<T :
<(CT)% /¢, (4q)c, (8¢)ez (@A (4D +e1 (80) (1+d(x.y)),

where C' depends on the norm bounds of {V!H};<3, {V'R};<2 and ¢}, ¢} are from (4.42) for
[ =1, and the constants can be chosen such that the same bound is valid for (C). For (A),
we use (4.43). Let

—_—

A, (w) = L [DOE, ,(uy, w)] A (w) db,(w),

K?(w) = Jo [D’(lTﬁ;,t(uT,w)]AT(w) 2([117])‘)_1V>‘ Inp(T — T, [XT]A,y) dr.

Then,

21-20(A) <Epr  sup HKtl(w)

HQq
x,y, T 0<t<T

—9 2q
+ Ep+ sup HAt (w) H

x,y,T 0<t<T

=: (A)1 + (A)a2.

Using the Brownian character of b, with respect to P, , 7, we can estimate (A); as in the
non-conditional case using Doob’s inequality of sub-martingales and Burkholder’s inequal-
ity. This gives

1 1
—_— 4 2 2
(A)r < C(20)1 (2)T" (EP* sup [[DUF,(ur,w)]| ) '<EP* , SUp ||AT|4Q) ,
T z,Y,

29T 0gr<t<T 0<r<T

where C,Cy are as in the proof of Proposition 4.12. Using (4.24), we compute that

—_—

) . 2jq
(444)  Epr . swp |AJTS(CLPEpr | sup H[D(l)FOJ(uo,w)]H , VjeN,

v ogrg VT o<r<T
<7< <7<

where Cy depends on the norm bounds of {V!H},<2, {V'R};<1. Hence, by (4.42) for I = 1,

(A)1 <C'(q)(CAVT)?4/ ¢, (4q)c, (8¢)e2 (1140 +¢1(80)) (14 d5(x.))

For (A)s, we have

3 g 6q
((A)2)° <Bps  sup |[DOFp(ur,w)][" By sup 4]
YT 0<r<t<T 29T 0<r<T
6q

T
Eps U IV Inp(T — 7.%0,y)| dr
x,y, T 0

Note that
6g

T T
Epx U IVInp(T — 7, x7,y)| dr| < Epx Teﬁq fo IVInp(T=txe.y)| dt,
x,Y, 0 z,Y,
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So by Proposition 4.15, (4.44) and (4.42) for | = 1, we compute that

(A), < (Cg)2q\3/g’1(6q)g’1(12q)g(6q)e%(Cll(6‘1)“’1(12‘1)“(6‘1))(1”@’9)).

Hence (V) has the same type of bound as in (4.42) for [ = 2 as claimed.

Assume we have shown (4.42) for | < lp — 1 < k — 3. Using the induction assumption
and (4.19), we can reduce the estimation of (4.26) at [ = [y to the conditional estimation
of (4.34), which can be done exactly as in the [ = 2 step. O

4.5. Regularity of the stochastic analogue of the geodesic flow. Finally, we employ
the SDE theory in the previous subsections of this section to discuss the regularity of the
Brownian companion process u with respect to metric changes.

Let A€ (=1,1) = g* € M¥(M) be a C* curve. Each lifted metric §* in M determines a
horizontal space HATF(M) of the frame bundle space. For any u € F(M), let H*(u,e;),
i =1,---,m, be the vector in H)TF(M) which projects to ue;. Since g* € M¥(M), the

map u — H*(u,e;),u € ]:(1\7), is C¥~! bounded. Hence the SDE
(4.45) dlu* = > H ([, e5) 0 dBj(w)
i=1

is solvable in F(M) for any initial |ug|* € Fy(M), z € M. In particular, if [ug]* € o? (M),
|u]* remains in (9?(1\7 ) and its projection to M gives the stochastic process of the -
Brownian motion starting from x. Let [F;]* : |uo]* — |u/]* denote the low map associated
to (4.45). Let [DW|F] (-, w)], 1 <1 < k —2, be the [-th tangent map of | F;]* and denote
by [DO|F*(-,w)] its pull back map in T'F(R™) via the map (0, w). They have the
following regularity in A by applying Proposition 4.1.

Lemma 4.18. Let A€ (—1,1) — g* € M*¥(M) (k = 3) be a C*¥ curve. Assume H(-,e;)

has bounded norms (independent of \) for the covariant derivatives up to the (k — 1)-th

order with respect to the reference metric §°.

i) Let A — [ug]* be a C*=2 curve in ]-"(]\7) and let {|u]*}ier, be the solution to
(4.45) with initial value |ug]®. Then there is a version of the solution to (4.45)
such that almost surely, v (w) is C*=2 in X for any t € R,

ii) For each 1, 1 <1 < k — 2, the tangent map [DW|F (-, w)] is C*=27L in X. In
particular, for any v e Tl}"(M), the map A\ — [D(l)[Ft])‘(',w)] v is Ck=27L,

~

Proof. Consider the stochastic process {ti;}ter, on F(M) x (—1,1) with

(4.46) dii; = Y H;(%y) 0 dBj(w), where H; = (H*(-,¢;),0).
=1
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It has the solution ; = (|w]*, \) for Wy = (Jug]*, A), where |u;]* is the solution of (4.45)
with initial value |ug]*. Since (4.46) is a C*~1 SDS on F(M) x (—1,1), we have by
Proposition 4.1 ii) that for almost all w, the mapping ty(w) — W (w) is C*~2. Consequently,
for any C*=2 curve A +— |ug]?®, [w]*(w) is C¥~2 in X for almost all w.

For each I, 1 <1 < k — 2, the SDE of [D®O|F;)*(-,w)] was given in Section 4.1 and it
forms a C*~1~1 SDS on TF(M). As in Lemma 4.18, we can treat the one-parameter SDEs
of [DO|FRIM-,w)] as a C*1=1 SDS on TF(M) x (—1,1) when A — g* is CF in M*(M).
So Proposition 4.1 applies and shows ii). O

For 0 <t <t < o, let [Fﬁ])‘ . |ug]* = |uz]* denote the flow map associated to (4.45)
and let [D(l)[Ft t]’\(‘, w)], Il <k —2, be its I-th tangent map. As a corollary of the cocycle
property of | F, ] and Lemma 4.18, [D( )[Fﬁ])‘(', w)] is C*=2! differentiable in A and we
denote its j—th differential by ([D©" | F 7] (-,w)]);j) for j < k—2—1. Let |u]* be as in
Lemma 4.18 and let ([ut])‘)g\j), Jj <k —2, be its j-th differential in A. We identify

(L)Y = ([DOLF P (ue], w)]) .

In the following, we show the L%-norm bounds in Propositions 4.8, 4.12 and 4.17 are also
valid for ([D(l)[Fﬁ]’\(-, w)])g\j) by a detailed analysis of their SDEs.

Endow ]:(]\7) x (—1,1) with the product metric dzo x d(_y 1), where dyo is the induced
metric of dzpo in F (M ) and d(_ ;) is canonical. Let V be the §° Levi-Civita connection
and 6, w be the associated canonical form and curvature form. Let (H’\)g\j)(u, ), ] <k-2,

be the j-th differential in A of the maps H*(u,-). The SDEs of ([D®) [Fﬁ])‘(-, w)])f\j) can
be formulated by using Proposition 4.3. We state them as follows.

Lemma 4.19. Let |u|* be as in Lemma 4.18.
i) The Stratonovich SDE of (|u,]")\" in TF(M) is
d(lnS = V() E (), edBe) + (HNY (), edBy).
ii) The Stratonovich SDE of (8, ), (([ueM)Y)) in TF(R™) is

(9( [ )Y —de(HA lw ], odBy), tk)l)
w(uM)) = de (H(u, 0dBy), ([uM)Y) + V()5 (@ (A (e edBy)))
= (N ([ odBy) )
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iii) The It6 SDE of (6, ), ((luY)\) in TF®R™) is
a(O(lu) = do (HN (el dBy), (lu),
(VN [l e)dd) (H ([l e), (V) de
+d6 (V(HM[ue e) B ([w], e )
+df (A ([u ,ez>,v<<tut1*>§”>HA<tut1&ez->+<H*>&”<tut1&ei>) dt,

)

Ml e, (M)

MEEN ) + (HY D (ule)) de
dB))) + = () (], dBy))
V() (= (HN (] e)))
(HO ([ ) )t

Note that Ker(d) = VT F(M),Ker(w) = HTF(M) and for any v!,v2 € HTF(M),v3 ¢
VT]-"(M), the bracket [-, -] satisfies the property (cf. [Hs3, Lemma 5.5.1])

[v',v?] e VTF(M), [v',v}] e HTF(M).
Using these facts, we can simplify the SDEs of (6, w) (([ut])‘)g\l)) at A = 0.
Corollary 4.20. Let |u]* be as in Lemma 4.18.
i) The Stratonovich SDE of (8, @) 4,10 (([ut]A)él)) on TF(R™) is
d(O(u)Y) = =(ul)Y) o dB,
d(@([uIM§”) = ([ Rl 0 dBy, 0([u)E) [w]° + w (HNE ([w]°, 0dBy)).
ii) The It6 SDE of (6,%) o (([uY)5”) on TFR™) is
d(O0(lu M) = @(u)) dB, + Ric(wd(|u M) dt + @ ((HNE (1], ei))e; dt,
d(@([udM)”) = (n]®) " R(u)°dBy, [u°0(ludM)§)) [l + @ (EN ([0, dBy))
+ ([l R (Jul e, [ ([l )es ) [u]” de
(1l (Ve R) (Ll [ug]°6([u)) ) Lurl® de.

Using Corollary 4.20 and It6’s formula, we can express ([ut]’\)(()l) using DW|F,4]1°(-, w)

by Duhamel’s principle. This can be verified as in Corollary 4.6. We omit the proof.
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Corollary 4.21. Let [w]* be as in Lemma 4.18.
i) On TF(M),
()5 = [ POLET (o] )| (Lol + Vel(lu ),

where
Ve((lu)g) = fo [ DOLF (L1, ) | (N (L0, 0d By (w)).

ii) On TF(R™), the Ité form of (|u|* )(1) (0, @) w10 (([ut])‘)(()l)) is given by

() = [DOTRI (], )] (m ) + o)),

—

Vel = | [PO (0]
(= (N (0, e))es dr, = ((HN (|01, dB,) ) -

To describe the second order differential of [u;]* in A, we use the horizontal /vertical sum
decomposition of TTF(M) of §°. By Lemma 4.19, it remains to find the SDEs of

() = 2 () = TP

Lemma 4.22. Let A€ (—1,1) > g € M¥(M) be a CF curve with k > 4. Let A\ — |ug]*
be C*=2 and let |u]* be as in Lemma 4.18 with ([ut])‘)g\l), ([ut])‘)E\Z) defined as above.

i) The Stratonovich SDE of (|u]*)? on TF(M) is
d(([u)) = (([ul)P) H (], 0dBy) +v2>( lu M, (NS A (), 0dBy)
+ R(HM (], 0dBy), ([uM)§)) (]S
+29((uD) () (el 0dBy) + (HY) P (], 0dBy).
ii) The Stratonovich SDE of (6, %), (([u]M)$) on TF(R™) is

a((6.) (M)
— (6. ) (H (el 0dBo), (1)) + V(L)) (6. ) (HX () 2dB)

+(0,2) (VO ()Y, (u™S) B (), odBt))
+(0.) (RN [l edBy), ([u]M)5) (a5
(0,2) (29 (L5 () (el 0dBy) + (B ([w], 0dBy) )
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iii) The It6 SDE of (6, ), ((lw]*)$) on TF(R™) is

1 ((0.) (M P))
[, dBy), ([we)P) + V(L)) (6, ) (H (], dBy))
w P, (D)) A (el dBy) )

+(0,@) (VO((| \
+(0.) (RN (a1, dBy), (a1 M) ()5
(0, @) (29 () (N (e dBo) + ()P (w1, dBy))
AV () {d(0, @) (BNl e0), ()
V(] ><2)> ((6,9) (H (el e))
(0. 2) (VO (L3 (o)) A Ll )
(9 w)E R(H A(M e, (a3 (M)
(

Again, we can simplify the SDEs in Lemma 4.22 at A = 0.

Corollary 4.23. We retain all the notations in Lemma 4.22.
i) The Stratonovich SDE of (9 w) 20 (M) on TF®R™) is
a((6.2) ((uMP)) = (FwIF) 0 dBe, ([wl’) ™ R(1w” 0 dBy, 0w 1)) )
+(0,%) (v@ (Y5, (e )6”) B ([, 2dBy) )
+(6.2) (R (H0 (lurl®, o), (lu ) (ue M)
+ (0,%) (29 (1) (1Y) (il 0dBe) + ()2 (il 0dBy) )
(L
/|

0,w

ii) The It6 SDE of 0,10 ) ) on TF(R™) is
d(O((|1)5)) = ((lud™)§)dBy + Rie([u°0((ue]*)5)) dt
+ @p((uI), (), dBe, dt) + 80 ([N, dBy. dt),
where ®g(-, -, dBy, dt) is given in (4.15) for |u;]° and
o> (([uV)g”, By, dt)
— = (29 (L&) () (il ) + ()P (] e0)) e de
0 ([ E (el ), 29 (L)) () (el ) + ()P (il )] ) at,

IThe upper script %2 is to indicate that CDg’Q, ®%? are associated with ([D(O) LE: (-, w)])f).
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and the Ité SDE of W[ut]o((lut])\)§)2)) on TF(R™) is

(@ (a5 = (el R ([l dBe, [ °0(([ue1Y)E) ) L]

[01") 7 R (Jurl e, [P ()P e ) ] de

L)) (V(uelen) R) (Lueles, [ue°0((uel ) ) Ll dt
+ ()5, (el dBr de) + 9%(([ueY)g”, dBr, db),

where ®g(-, -, dBy, dt) is given in (4.15) for |us]° and

22 (M5, dBr,dt) = = (29 ((Lu ") () (], dBy) + (B ([l dBy))
By Corollary 4.23 with Lemma 4.5, we can formulate ([ut])‘)((]z) and (6, w)([ut]k)((f) using
DM | F>]°(-, w) by stochastic Duhamel principle. We only state the conclusion.

Corollary 4.24. We retain all the notations in Lemma 4.22.

i) On TF(M),

()5 = [DDLEI (ol ) | ([0l + ¥ g [ POLEP (Lol w)| ((Luol)EY)

uo] )0
+ Ve (™)),
where
Ve((u)) = f (DO 0] {72 (S, () O (0,10, o,
0

- VvO(IDWF H(tuoml,[ NE Y (Luo )Y HO(lur1°, 0d B,)
+ R(H([u-1°, 0dB.), (lu 1)) (lur1Y)5”
— R(H([u,]°,0dB;), [DV|F ] (|u 1*)1)[D<1>[ ]][uo] M

+ 2V (([u §Y) (HN) ([ur1, 0dBy) + (H 0,0dB,)} .

ii) On TF(R™), the Ito form of (Jus|* )(2) (0, w)l A0 ((lut])\>(()2)) is

() = [DOTER L w)] (L)
+ (0,2) (V0 [ D1 (ol ) | (00 )E7)) + Vel (D),
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where

Ve = | [DOE 0l w)] { (@ ) (L P (e B )
— (@9, @) ([P F ") (luo )", [DHEA N (o], dB-, dr)
+ (257,02 ([ )6, dBr dr) = (@ (@2 ([ )6, (M) s

(107 Rl e, [ 120 (@22 (L, 1Y, ([ 1)) 1) ar}

Let [D@|F;]%(-,w)] be the restriction of the second order tangent map of |F;]|° on the

space T(l 1. ]A)(l))Tlu]O]:(M). We can deduce from Corollary 4.21 and Corollary 4.24 that
u]Y,([u]?)5

(), () = DDIEICw)] (o), (o))
(

(4.47) (L)Y, (e M)§) = [POLEPC w)](([uolM), (luol )
+ (ValueME, Val(ueHED) ) -
Continuing the discussions in Lemma 4.19 and Lemma 4.22, we can derive the SDEs

for the differentials ([ut])‘)f\j), 3 < j <k —2, and their pull back ([ut]’\)g\j) via (6, w)-map,
whose It6 form involves {V(l')(HA)E\J/)}]K]-J/H/SJ-, (VO RNy o;. We omit the details.

The SDEs of ([DO|F](, w)])E\J) can be formulated as in Section 4.2 by analogy with

the deterministic case. We only state the SDEs for the (I, j) = (1, 1) case using the reference
connection of §°, whose calculations can be done as in Lemma 4.5.

Lemma 4.25. Let A € (—1,1) = ¢g* € MF(M) be a CF curve with k > 4. Let \
(luol*, vj) € TF(M) be C* and write

(Lol ) s= (L (ol [DDLE (ol w)]va )« (v = (a5 ve
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i) The process (vt)‘)g\l) satisfies the Stratonovich SDE
) =V (GO N (el 0dBy) + V@ (), (a3 B (], 0d By)
+ R(E(ul e), ([uM )i + V) END Y (], 0dBy).

ii) The process (0,w)|,,» ((v?)E\l)) satisfies the Stratonovich SDE

= d(6, @) (H(lul, 0dB,). (W)Y) + V(D) (6, @) (H (], 0dBy)) )
(VO ()Y B (el 0dBy) + RO (il edBy), (u 1)) v?)

+(0.2) (VO EN ([, 0dBy) )

iii) The Ito SDE of the process (6, ), (v))1)) is
A((6,=) (D))
= d(s, w) ( q (B, (D) + VO (0, ) (H (L], dBy)))

+ (6, WYV ([l dBy) + R(E (el ), ([u]H))v?)
MV (el dBy) ) + VN (e, ) {0, @) (B ([, e0), (7))
Luele)) + (0.2) (VO (2, (a3 B (el )
vt +(0,2) (VOO (N (el ) | .
As before, the formulas in Lemma 4.25 can be simplified at A = 0.

Corollary 4.26. Let A\ € (—1,1) — ¢g* € MF(M) be a C* curve with k > 4 and let
A= (lu]?,vp) e TF(M ) be C*=2=1. We retain all the notations in Lemma 4.25.

i) The process (8, ), (V1)) satisfies the Stratonovich SDE
a((0,=)((vDF) = (=D 0 dBr, ([l R(ludl® 0 B, 0((v)5 ) Luel°)
+(0,2) (VO (R, (™)) B (), odBy) )
(0, @) (RN (el 0dBy), (u))ve + V) (Y ([, 0d ) )
ii) The Ito SDE of the process 8, (v)S") in TF(R™) is
d(O(vN§)) == ((v)§)dBy + Ric(|u °0((v)§)dt
+ @ (v, ([N, dBy, d) + g (v, (M), dBy, ),
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where ®g(-, -, dBy, dt) is given in (4.15) associated to |u;]° and
0y (v0, ([N, dBy, dt) =20 (V (D) ()Y ([, €)) et
0 ([H(lurl® ), VOO E (0], ) |)
The Ito SDE of the process wy,,pr ((v)S) in TF(R") is
A=) = (] R (lwl°dBy, [ °0(D))) [l
()R (e, [ = () er ) L] dt
(1) (T (Ll e R) ([ Lud00(eD))) [l de
+ @ (v, ([N, By dt) + @ (v, ([u] M), dBy, dt),
where ® (-, -, dBy,dt) is given in (4.16) associated to |u;]° and

PP, (LG B dt) = (V) HE ([l dBy) )

We can formulate (vf‘)él) and (0, w)(vf‘)él) by stochastic Duhamel principle.

Corollary 4.27. We retain all the notations in Corollary 4.26.

i) The process (Vt)‘)(()l)

(VN8 = [DDLEL (o], ) [ (v)$) + Y ([uoMH§) [DDIE (w01, w) | (v]) +Ve((v)5)),

where

Ve((v)g) = fo (DD (1%, )] (T HENS (1%, 0dBr))

has the expression

ii) On TF(R"), the process (Vi‘)((]l) = (Q,W)ludx((v?)[()l)) has the expression

()8 =DOLEI o], w)] ()6 + (6, ) (T (Lol )§H [DDLET (o], ) ()

+ V()M
where
VD - | [ DO (% )] { (@, 011) (62, 1), B )
0

~ (=(TEDENP (01, e))eis 0) dr}

2We use the upper script ! to indicate the functions @é’l, ®L! are associated with ([D(1> LF: (-, w)])(;).



60 FRANCOIS LEDRAPPIER AND LIN SHU

Proof. By a comparison of the SDEs in Lemma 4.25 and Corollary 4.26 with those in
Lemma 4.5, we can compute as in Corollary 4.6 to derive i) and ii). We note that for ii),

\z((vi‘)él)) has an extra term
= (0. (1) 'R (Luar e, [ur 100 (V) (H)E ([1r1%, ) ) [u1°) dr,

which turns out to be zero since Q(V(vg)(H’\)él)([uT]o, e;)) is zero. O

We are in a situation to state the norm estimations on the differential processes.

Proposition 4.28. Let A — ¢* € MF(M) be a C* curve with k > 3. Let x € M and
A — |ul e (9?(1\7) be a C¥=2 curve in F(M) and let {lue] o) be the solution to
(4.45) with initial |ug].

i) For every ¢ = 1 and (I,j) with 1 <1+ j < k — 2, there exist ¢ j)(q) depending
on q and the norm bounds of {V(l/)(HA)g\J )}jlgﬂlﬂlslﬂ, (VO RM <, and (@)
depending on (1,7),q and the norm bounds of {VV) R }y <1, such that

(19
ws) B[0P )] | e 0T, TR,
(l) by (]) q o1 s ( )T3
(4.49) E sup ([D |F,5] (ut,w)]) < ey (@O VT e R,
0<t<I<T - - A ’

i) Let Ty > 0. For each ¢ > 1, (I,j) with 1 <1+ j < k—2 and T > Ty, there exist
Q’(ljj)(q), which depends on q and the norm bounds of {v(ll)(HA)(Aj/)}j/ng/_Ar]’/gl_;’_j,
(VOO RNy, and c’(l’j)(q), which depends on (1,7),q,T, Ty and the norm bounds of
(VOO RMy<1, such that, for any x,y € M,

MK

(IO w)])

/

< i (q)ecl(l,j) (@) (A+dya (z,y)) .

(4.50) Eprs+  sup

29T 0gt<¥<T

Proof. We can show (4.48) and (4.49) in a similar way by using Proposition 4.8 and Propo-
sition 4.12, respectively. Hence, we only present the proof for (4.48).
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For (1,7) = (1,0), (4.48) is (4.23). For (l,j) = (0 J), without loss of generality, we verify
it at A = 0 and we can do the estimations for (Juz]* )(J ) by induction. By Corollary 4.21,

(L) = [POLE, Muo]o,w)] (luo])§"

ﬁJD (el
+| DOIE, (|1, w) | (
(4.51) —: (D) + (ID); + (HI)

Hence, by (4.22),

—_—

q
310 \(M)&” < E| (D] + E|(ID);] + E| (I

Clearly,
E|()7l* < B | [ DOyl w)] | [ (1ol < e(1, et 0T |(lug )|

where ¢(1, q), ¢(1, q) are the constants given in Proposition 4.8. For (II);, we have
2q 1 27\ 2
| (11);]? < 77! f (B[P ]| B[ () o)) ar
< (C1T)0/c(1, 2¢)ez1:20)T

where C1 is a bound for the norms of {V®) (H)‘)E\i)}ﬁigl and {VW R, <. Using Burkholder’s
inequality, we obtain

q
)

-

q

t — 2
|| (PO )] (0.2 () el )| e
Then, using (4.23) and Hoélder’s inequality, we continue to estimate that

E[| (1) < v/C1(20)(C1v/T)7{/c(1, 2q)e20T.
Putting all these estimations together shows (4.48) for the (I,7) = (0, 1) case.
When (I,7) = (0,2), we deduce from (4.26) and (4.47) that

(2| <e2 e (o) (o)

Using the the Ito expression of \z(([uﬂ’\)((f)) in Corollary 4.24, (4.26) and (4.48) for the
L

(1,7) = (0,1) case, we can follow the calculations for (|ug|*),

A (2))“(] < 22’072) (q)eCFO,z)(‘I)T7

(E|(IIT)9)

gl-af L))

[

to show
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where cfy 2)( q),c o.2) (g) are of the same types as ¢ 2)(q), ¢(0,2)(¢) prescribed in (4.48). This
finishes the proof of (4.48) for the (I,j) = (0,2) case.

Assume we have shown (4.48) for all (0,7), j < jo < k — 2. For the jj step, following
Corollary 4.21 and Corollary 4.24, we obtain

(Lug™ - (LueNE™) = [DUIF (-, w)] (quowg”, . qutmgjo))
(T Tl M)

where \Z(([u;])‘)(()j )) is the ‘variation of constant part’ for ([uﬂ/\)((]j )
pressed using [DOLE, 510(|ur 1%, w)], (VO () )i s (VO R g and ().

So, using Proposition 4.8 and the inductive estimation assumptions on {([uﬂ*)&j )} j<jo, the
same computations as above will derive (4.48) for the j = jo case.

whose It form can be ex-

For (1, 5) with [ 0, it is equivalent to consider (4.48) for ([DEZ)T/FLE]/\(, w)])(J) Without
loss of generality, we check it at A = 0. Consider the case (I,7) = (1,1) first. Let A — Vt €

T(l t]k)u)}"(]\f\i) be C! with (Vi‘)él) of norm 1. Corollary 4.27 shows that
ut 0 =

(D8 =(0,) (IDVLE (Ll )l (D) + V(L) [DOLEA 0l )] () )
+ V(D)

where

This, together with Lemma 4.5, implies that
(P ) =[Ol w)] (L) e )
+ (VellluHE), Ve va i)

So,

(v w MY |+ [ Ve((ve M|

where H\7 vi ) 1 H is interpreted as the norm of the mapping (v, (vi\)él)) > (vg\, (v%\)él)).

Using (4.26) and (4.48) for D(l)[ 171% and (|u P‘)él), and the above expression of\//vc((vtz‘)(()l)),

< [Tt ]|
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we can compute as in the proof of Proposition 4.8 to deduce that

EHVC(QVE]A)E)I))H < 921171)((1)66;'1,1)((1)7“7

where cf] (q), i () are of the same types as ¢y 1y(q), ¢(1,1)(¢) prescribed in (4.48). Then

using (4.26) and (4.48) for D?)|F;7]° and ([ut]/\)(()l), we obtain

279K H([ lFtt W H

< \/Q(o,l)(2Q)Q(2,0)(2q)e%(c(o,1)(2<1)+C(2,0)(2l1))(1+T3) + Qz’l’l)(q)ecyl,l)(q)(l—’_Ts).

For (I,7) with [, > 1 and 3 < 1+ j < k — 2, we can continue the discussion in Lemma

4.25 to formulate the It6 SDEs for ([Dﬂ)\[l?}])‘(-,w)])g) as a sum of [DUHD|FA (-, w)]

and a variation of constant part using [DW|F, 4] (-, w)], {V(l,)(H)‘)gf‘/)}j/gjyl/ﬂ/glﬂ and

(VR }y<;. Then using (4.26) and the inductive assumption on (4.48), we can argue
exactly as in the case ([,j) = (1,1) to show (4.48) is valid.

For ii), it can be reduced to the estimations in (4.42) by using Lemma 4.16 and Propo-
sition 4.15. We show ii) by an induction on [ + j. For (I, j) = (0,1), we compute

‘ q

Let (I)z, (II); and (III); be as in (4.51). It is true by (4.51) and (4.22) that

(U) i= Bpor sup |([ug]M))

29T 0<F<T

3179(U) < ]EIP’O* sup |[(I)g]|* + EPO* sup [|(ID)g]? +EPO* sup ||(III)g]|?
29T 0<I<T 0<i<T 9T 0I<T

—: (I) + (II) + (TII).

Hence (U) will satisfy the bound estimation in (4.50) if (I),(II) and (III) do. Let
¢ (q), ¢ (q) be given in Proposition 4.17 such that (4.42) holds with = 1. Then

q
0 <y, s [[ DOl [ (ol

=0T o<f<T
< g (g)ed @0 o) H(tuomé”Hq-

Similarly, we obtain

(10 < TEpoe  sup |[DOLE (P w)|[ Bpoe sup oo () (101, e1))er]

2T 07 <3<T o, To<r<T

< p'(T, z, y)(ClT)2qg1(Qq)ec/l(QQ)(l'i‘ng (@)
Let ¢y, co be given in (4.36). Then

(IT) < 4/cod) (29)T,, (CIT) 30 (1+T)+3¢ (20) (+dgo (2.))
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which is of the same bound type as in (4.50). It remains to consider (IIT). Again, we can
use Lemma 4.16. Recall that
dB; = db; + 2(|u-|") ' VInp!(T — 7, %%, y) dr,

where (br)-e[o,7) is @ Brownian motion for Po yr- Let

(IV) = f | DOLE 101, w) | (0. () (- %, b)) )

0

= L [D(l’)[\1[7:%]0([117]07 w)] (0, w((H’\)(()l)([uT]O, 2w ")V In p*(T — 7, | 1% v) dT))) ‘

V)

|

Then
21_‘1(III) < Epox  sup [(IV)g|? + Epox  sup [[(V)]|? =: (IV) + (V).
=0T 03<T =0T 0E<T

0

zy,7» Doob’s inequality of

For (IV), using the Brownian character of b, with respect to P’
sub-martingales and Burkholder’s inequality, we obtain

[ e e R T 0 q

0

(IV)Q gC(Qq)Cl (2(])EP2,>§ .

1
4q 2
<C(29)C1(2)(C3T)" (EPO% sup H[D(l)[FﬁﬂA([uT]’\,w)]H )
DY ogr<t<T
Using (4.42),

(IV) < v/C(20)C1 (20) (C1VT)1 4/ ) (2g)e 1 PO o m),

For (V), we have
q T q
(V) < (201) Bpox  sup | [DVLF (1%, w) ]| ‘ fo [V Inp’(T — 7, [x,1° y)| dr

29T 0<r<¥<T

Using Holder’s inequality, (4.42) and (4.38), we continue to estimate that

1
(V) <(201)? er(Qq)e%c'l(2q)(T3+Td§o(z7y)) (]Epo,* 62q§gHVlnpO(T—T,[XT]O,y)H d7'> 2
x,y,T

<y ™(201)7 ) (29) "D TR G+ dpo ),

where ¢, ¢ are as in (4.38). Altogether, this shows (U) has a bound type as in (4.50) and
finishes the proof of (4.50) for (I,7) = (0,1). The other cases of (4.50) can be handled by

a similar conditional treatment parallel to (4.49).

Assume ii) holds true for (I,j) with [ + j = i — 1. For (I, j) with [ + j = i, the cases
(I,7) = (i,0) were verified in Proposition 4.17. Then we continue to check the cases
(1,7) = (0,4), which will follow from (4.50) with (I,7) = (1,0) and a variation of constant
part estimation which can treated using (4.50) for (I,7) = (0,7) with j <4 — 1 and (4.49)
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with (1, j) = (1,0). The remaining estimations in (4.42) for ([, j) withl+j =7and [ <i—1
will follow from (4.50) with (I, j) = (i,0),(0,7),j < i, as in the non-conditional case. [

5. THE FIRST DIFFERENTIAL OF THE HEAT KERNELS IN METRICS

Our main result in this section is a first step of the proof of Theorem 1.3.

Theorem 5.1. For any ¢° = g e M*(M) (k = 3), there exist . € (0,1) and a neighborhood
V, of g in M¥(M) such that the following hold true for any C* curve X € (—=1,1) — g* € V.

i) For any x € M and TRy, A — pNT,x,-) is Ot in Ck"(]\f\f) with

(5.1) (InpM)(T,2,) + (Inp) P (y) = 6M(T, 2, y),

where p*(y) = (dVol*/dVol°)(y) and ¢}, is as in (5.16).
ii) Let To > 0. For ¢ > 1 and j, 0 <1 < k — 3, there are constants 5 A (), 1)(q) which

depend on q, T, Ty, |g*|ci+s and |X>|cis2 such that for all € M and T > Ty,
(5.2) Hv D p) (T, )|
q

< enan ()

~

iii) The function x +— Sﬁ(p )( (T, x y) (y) dVolza(y) is continuous for any uniformly

continuous and bounded f € C(M).

5.1. Strategy. We show Theorem 5.1 by describing the C! vector field z;‘il such that (1.6)
holds true. Before that, let us recall some classical results for parabolic equations.

Let D € D; x Dy with D; being a bounded interval of Ry and Dy being a bounded
connected open domain of M. For g € M*(M), consider the parabolic equation

(5.3) Lg:= (5 ~Ag=r.

where A is the §-Laplacian on C? functions on M and r is a continuous function on D. By
a solution ¢ to (5.3), we mean a function ¢ on D which satisfies (5.3) and all the derivatives
of which appear in Lg are continuous functions on D. Such a ¢ can be smoother, depending
on the regularities of both L and r. For instance, ¢ is C® if both both L and r are C®. In
our case, L varies C*~2 Holder with respect to base points and ¢ is mostly C* Holder in
general even in case r is smooth.

Lemma 5.2. ([Fr, Theorem 11, p.74]) Let L be given in (5.3) which is C*~2 and Hélder
continuous with exponent v. Assume r in (5.3) is such that

D'Dlr, 0<n+2<k—-21<l,

are Hélder continuous with exponent v, where DY means the b-th differential form with
respect to the a-coordinate. If q is a solution to (5.2), then

D'Dlg, 0<n+2<kl<l+1,
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exist and are Hélder continuous with exponent ..

In particular, if r is (-Holder and g solves (5.3), Lemma 5.2 shows that all the differentials
of ¢ up to the second order (where 0/0t is considered as second order differential) exist and
are (-Holder. The next lemma from [Fr| further shows these differentials have bounds
completely determined by the bounds of ¢ and r. For P = (7,z) € D, define

dp = sup d(P,Q),
QeD(r)

where D(7) is the intersection of the boundary of D with the half-space t < 7. For a
function f on D and any non-negative integers n,j and for ¢ € (0, 1), define

i j
Flng =D Naalfly |flngee = Flng + Y Nugsl £,
=0 0

where

Nulf] = Y sup {dIDLr(P)I}

PeD

|DLf(P) — Déf(Q)l}

Nn,l+L[f] = Z sup {min{d7113+l+L’d%+l+L}' d(P Q)L

P,QeD
and the summation is over all the differentials of order I.
Lemma 5.3. ([Fr, Theorem 1, p.92]) Let L be as in Lemma 5.2. There exists some

geometric constant k (which depends on v, |g|lc1) such that if |rla, < 400 and q is a
bounded solution to (5.3) and all its derivatives appearing in Lq are v Hélder, then

|9lo2+0 < K(lgloo + [7]2.)-
(Both Lemma 5.2 and Lemma 5.3 were stated in [Fr] for domains in the Euclidean case.
They apply to the manifold case since (5.3) can be treated locally in coordinate charts.)

A companion notion of a solution to a parabolic equation is a solution as distribution.
Recall that the distributions on the domain D are the linear continuous functionals on
the test function space C(D) of compactly supported smooth functions on D. Given a
distribution ¢ on D, one can define its weak derivative of any order «, denoted by D%Vq,
as a distribution on D by letting

(D“¥q)(f) = (=D)*lg(Df), ¥f e CZ(D).
Any locally integrable function ¢ € L] (D) can be identified with a distribution by letting

q(f) = JD qfdt x dVol, Vf e CX(D),

and hence its weak derivatives of any order always exist. Let L be as in (5.3). The L
distributional derivative of a distribution ¢ on D will be denoted by L%¢q. Using mollifier
and Lemma 5.3, we have the following classical result.
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Lemma 5.4. Let g€ C¥(M) and let L be as in (5.3). Assume r € CO(D) for some 1 > 0
with |r|a, < . Then for any g € C(D),

LYgq=r = Lg=r.

As a corollary of the above lemmas, we have the following.

Lemma 5.5. Assume there are locally L' integrable functions {¢}(T,z,y)} on

zeM TeR,
M which are continuous in \-parameter and are continuous in (T,y)-parameter, locally
uniformly in X, such that, for any f e CF(M),

(1)
(5.4) <J F)IPN(T, z,y) dVol*(y) >A = fﬂf(y)qbi(T,w,y)pA(T,x,y) dVol*(y).

Then, Theorem 5.1 1) holds true.
Proof. Let T € R, and z € M. If (5.4) is true, then for any f € CSO(M),
f 1) (T 2.9)0" ) = (T, 2, 9)°(y) ) dVoL’(y)
- f fwf(y)@(T,x,y) (T,,9)p (y) dVol"(y)dX
0 JM
>\ Y Y ~
(5.5) - s ([ ekramt @t mar) avor ),
M 0

where pj\ = dVOlX/dVOIO and the second equality holds by Fubini theorem. Note that if
a continuous function ¢ is such that {3 ¢(y)f(y) dVol(y) = 0 for all f € CP (M) and a

volume element Vol of a C? Riemannian metric, then ¢ is zero. Hence we can conclude
from (5.5) that

~

A ~ ~
(5.6)  pNT,2,9)0Ny) — (T, 2,9)0°(y) = L O3 (T, 2, y)p (T, 2, y)p™ (y)d

since the functions appearing on both sides are all continuous in y-variable and A-variable.

Since A ~— p* is CF, (5.6) implies the existence of (p)‘)(;)(

67 V(T )0 @)+ N T y) - ()W) = GAT 2, )T, 2, 9)0" (1)

Then (5.7) implies that (p)‘)g\l)(~,x, -) is a continuous function on R X M since we have
the continuity in the (7T, y)-coordinate of both p*(T’,z,y) and @3 (T, z,y) by assumption.

T, z,y) for every y and

Shrinking the neighborhood V, of g if necessary, we may assume there is ¢ > 0 such that

pNT,x,-) e CF(M ) for all A. Since it is a local problem, for (7, y) € R4 x M, we can also
restrict ourselves to a bounded domain D containing (T,y). Note that L*p* = 0. Lemma
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5.3 implies [p*(T, z,-)|o,2+. < 00 on D. For each x € M, since (pk)g\l)(T,x,y) is continuous
in (T,y), its weak derivatives in (7', y) of any order are well-defined. So

(5.8) LI (T, ) = @O T e, ) = LYV, ).

We can handle the equation locally. Shrinking the domain D to D; if necessary, we deduce

from |p*(T,z,-)|0.2+, < 0 on D that \(L’\)E\l)pA(T,:c, )|2,, < o0 on Dj. Since (p/\)E\l)(T,at, )
is continuous, Lemma 5.4 implies that (5.8) holds true in the usual sense, i.e.,

(5.9) LTz, ) = — () VpNT 2, ).

Then we can apply Lemma 5.3 to conclude that |(p ) )(T z,-)]o,24., < o on D; and apply

Lemma 5.2 to conclude that (p ’\)E\)(T,x,~) e C* (D). The norm of (p’\)g\l)(T,x,~) in
C*(Dy) are locally uniformly bounded in A by using (5.9), Lemma 5.2 and Lemma 5.3. So
the continuity of A — (pA)E\l)(T, x,-) in C(M) is improved to the continuity in Ck’L(M). O

For Theorem 5. 1 it remains to find a candidate ¢} (7, z,y) for Lemma 5.5. Let = € M
and let |ug]* € (’)g (M). Recall that the solution to the SDE

ZH’\ w], e;) o dBl (w)

with initial value [ug]* projects to be the Brownian motion |x¢|* on M starting from  and

the heat kernel function p*(T,z,-) is just the density of the distribution of w — |x7|(w)
under Q. Hence for any f € CP(M), we have

j F (T, 2, ) dVol (y) = E(f(|xz ] (w)))

and the equality continues to hold if we differentiate both sides in A. Choose A > |ug]* to
be a C¥=2 curve. By Lemma 4.18, for almost all w and all t € R, A — |us]M(w) is C¥~2.

By Proposition 4.28, the differentials ([ut])‘)&j)(w), j < k—2, are L' integrable, uniformly
in A. Hence,
1)

(B(s(xrP@)))
(5.10) = E(( Vi pp(Fom @), (lurMw)) )
| B () Dr(lar ) ), [ lxrPw) = ) 2T vl o).

Note that (5.11) holds for every choice of |ug]* € O (M) at A. For some technical

considerations which we will mention later, we choose [uo]* in ©9" (M) at random with a
uniform distribution normalized to be probability 1 and then choose

Lo = [N ([Ho) o], X e (—1,1),

(5.11)
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where [ﬁo]:\ is some fixed C* curve in .7:(]\7) with [ﬁo]x € ng(]\?/). Write E for the new
expectation when the random choices of |ug]* are taken into account. Then

(5.12)

(B ert)) - | B (70, Drar) ), [1xrPw) = o) -9 (T.0) dVor ).
For any C* bounded vector field Y on M , let

(5.13) BA)(w) = E (@4 (Viw)| [xr 1 (w) = y) |

where

(5.14) @4(v,w) 1= ¥ ([xr1 (), Dr(lur ) (w)),.

We will show the linear functional @, ) is such that Ei(Y) is C! in y variable, from which
we can deduce that

(5.15) 237 () = E ( Dr(lur ) ()| [xr () = y)

is a C! vector field on M. Hence, we can apply the the classical integration by parts
formula to (5.12) and compute that

X (1)
(B (el (w)))
—fﬂf(y) D1VA >‘1 +<z Y), VM InpMNT, z,y >)\> (T, z,y) dVol*(y).
This gives a candidate of ¢} for Lemma 5.5 as
(5.16) O, z,y) = <(D1v)‘ M) + <Z ), V:InpNT, z,y >/\)

If we can further verify that ZT’l(y), Div)‘zé’l(y) are both uniformly continuous in 7" and vy,

we can apply Lemma 5.5 to obtain a continuous version of (p )(1)(T x,-) in distribution.

To justify that (5.16) is well-defined, we need to show the C! dependence of 6; (Y)(y)
in y-variable. Let V be a smooth bounded vector field on M and let F* be its flow map.

To compare Ei(Y)(FS(y)) with Ei(Y)(y), our strategy is to extend F** on |x7|*(w), the
endpoint of Brownian motion paths at time T, to be a ‘flow” F* on Brownian paths up

to time T'. Let @/\ denote the product of the probability P} with the uniform probability
on O (M) for the choice of |ug]*. We will ensure the maps F* are such that Fi o F* are
absolutely continuous with respect to sz. Clearly, for any bounded measurable function f
on M,

= = (=1
(5.17) B (@3(Y,w)f(lxr*(w)) =E (B30 ()f ()

(5.18) =J‘Iﬁ(Y)(Fs(y))f(Fs(y))pA(T,%Fsy) dVoI* (F*(y)),
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where the first equality holds by the definition of conditional measures and the second
equality holds by changing the variable to F*(y). The left hand side of (5.17), after a
change of variable under F*, is equal to

A
— dP, o F*
E q)}\oFS.foFS.wfo)\
P
AP o F
(5.19) :JE R
P
Since f is arbitrary, a comparison of (5.18) with (5.19) implies that
=1 S in S
TA)(F*(y)) =E (@} [xr*(w) = F*())

by A
A pNT, x,y) dVol
w e .
ber [ (w) )pA(T,x,FSy) dVol* o F's 2

x| Mw) = y) F(F(y))pNT, @, y) dVol*(y).

dﬁi\ oFs
P

(5.20) =E <q>§ oF*.

Note that p’\(T ,x,y) and the volume element Vol* are C* in y variable. So the differen-

tiability in the s parameter of Ei(Y)(Fs(y)) will follow from the differentiability in the s
parameter of

A
x

—A

_ P, o F*

(5.21) E ((I%\OFS Ee0T
d

x| (w) = y) :

In order to show this differentiability in s, we will show that our one-parameter family
of maps F* satisfy the following properties (see Proposition 5.23, Proposition 5.29 and

Proposition 5.30), where all the integrals are taken with respect to @i conditioned on
x| (w) = y.

i) @i o F? is absolutely continuous with respect to @i and the Radon-Nikodyn deriv-
ative d@i oF? /dPi‘ is L? integrable for ¢ > 1, locally uniformly in the s parameter,

ii) the differential of d@i oFs /d@i in sis &5 (d@i oFs/ d@i), where £, is L7 integrable
for ¢ = 1, locally uniformly in the s parameter, and

iii) ([uT]A)g\l) o F? is differentiable in s with the differential stochastic process L? inte-
grable for ¢ > 1, locally uniformly in the s parameter.

With these three properties, we will obtain

=\ ! =\ =\
Pl oF*. L)wf ) _elorm wa L (0} o F¥)’ L’){O Fs
A X A T 5y A s 5
P, ), dP dP’,

and this differential is absolutely integrable, locally uniformly in the s parameter. Hence
(5.21) is differentiable in the s parameter and we are allowed to take the differential inside

T

the expectation sign. The uniform continuity of zi)}’l(y) and Div’\z%’l(y) in T and y will
follow from (see the proof of Theorem 5.1 with k& = 3)
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iv) the uniform continuity in 7" and y of

d@;\ oFs
—A
7)1

)o

E( <I>}\| |x7]MNw) = y) and E ((@i oF*.

xr]* (w) = y) :

The major part of the remaining subsections is devoted to the construction of F® and
the verification of its properties i)-iv) mentioned above, which will conclude i) of Theorem
5.1. We will discuss Theorem 5.1 ii) and iii) in the last subsection.

Fix T' > 0. For each y € M , we will construct a one-parameter of maps F;, on Brownian
motion paths starting from y up to time 7" with F;, , being its conditional map on paths that
will arrive at x in time 7. We will achieve this in two steps: one for the SDE description
of F; and the other for its existence by Picard’s iteration argument. The desired map F*
will be the collection of all F?

XT,T*°
d@;‘ oFs/ d@i since ®} and @;‘ are associated with the diffusion paths from 2. This and the
verification of i)-iv) will be done in Sections 5.4 and 5.5. Finally, in Section 5.6, we will
show the assumption of Lemma 5.5 is satisfied and will give the estimations in (5.2) by an

But, we need to justify the meaning of @i o F® and

analysis of Z%’l(y) and DivAz%’l(y) using the SDE theory.

5.2. A description of Fj. In this part, we fix T' € R*. Let y € M and B € (92(]\7) For a
smooth segment ¢ — oy = (a1, ,m) € R™ t € [0,T], with ag = o, let 8 = (Bt)te[O,T]
in ©9 (]Tf ) be the unique smooth segment with initial 3, satisfying the differential equation

— 4 dog
VpBi= 2 HBue)

In the language of Section 4, this means that 3 is the transportation (or development) of
« in O9(M) with starting point 3, using the parallelism differential form (0, ). The Tto
map Zg C([0,T],R™) — Cr([0,T], M) is given by

(5.22) Iﬁo(a) = 7(B) = B.

It is invertible since « for (5.22) can be uniquely determined by the equation
dat > \—1
E = (Bt) V§Bt,

where 3 ¢ (957(]\7) is the horizontal lift of 3 with initial value ), i.e.,
— — =1
V%ﬁt = H(Bta/Bt V%Bt)'

For € C°([0,T1, ]\7), its Z-preimage Lgl(ﬁ) is called the anti-development of 8 in R™.
0
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For a smooth segment (or curve) 8 = (Bt);e[0,77 o0 M , the classical parallel transportation

map //?17,52 of tangent vectors along the segments (8¢)e[s, 1,] (0 < t1 < t2 <T) is given by

PR i_l ~
104, (V) = By, 0 By, (v), Vv e Tp, M,

where 3 is a horizontal lift of 3. This definition is independent of the horizontal lift chosen
since if 3’ is another horizontal lift of 3, then B; = BtBO’IBg for t € [0, T] and hence

—/ - N — - 5 —1= —I\—17% 71 = ——1

/Btgo(/Btl) 1:ﬁt2/80 BOO((IBO) lﬁoﬂtl):/gtzoﬁtl‘
The It6 map and the parallel transportation map can also be defined in the stochastic
case. Call an O9(M)-valued continuous stochastic process 3 = (Bt)te[O,T] horizontal if there

exists a R™-valued continuous stochastic process o = (ay1,- - ,aum)te[O’T] with ag = o
such that 3 solves the Stratonovich SDE

(5.23) B, = > H(By i) o do.
=1

For a continuous stochastic process (5t)te[0,T] on M , its horizontal lifts are those horizontal

processes ( in O9 (]\7.7 ) projecting to it and its anti-developments in R™ are those « satisfying

(5.23) (cf. [Hs3]). For a fixed y € M and B € (’)g(M), (5.23) is uniquely solvable for every

semi-martingale o and the It6 map
T; (a) == 7(B) = #

is well-defined. In the sprit of Section 4, IBO (c) is the projection process of a transportation

(or development) of a in O9(M) using the parallelism differential form (¢,z). The one-
to-one correspondence between «, 3, and (3 for semi-martingales is discussed in [Hs3].

For a semi-martingale 8 = (5;)s[o,r] on M, its horizontal lifts are uniquely determined
by the distribution of 3 (cf. [Hs3, Theorem 2.3.5]). Hence, for almost all w € ©, we can
define a stochastic ‘parallel transportation map’ //tﬁ1 +, of tangent vectors along the path
segments (S¢(W))se[r,1o] (0 < 1 <t2 <T') by letting

J— i_l ~—
Vores(¥) 1= Be, 0 By (v), ¥V € T, () M.

As in the deterministic case, this definition is independent of the horizontal lift 8 chosen.
Each // fl 1, is an isometry between T,Btl(W)M and TBtQ (w)M with the inverse map

-1 — ——1 ~
(//tﬁl,tg) (VI) = /Btl © ﬁtg (VI)7 vvl € T,Bt2(W)M
Moreover, the parallel transportation maps // ?17152 also satisfy the cocycle property

//fhtS://f?nt2o//fht2’ VO<t1<t2<t3<T'
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Let V be a smooth bounded vector field on M. For each Yy € M , we obtain a smooth

curve s — F*(y), s € R, with

LW v )

Let T' > 0 be fixed and let {(y, Ut) }e[0,7] be a stochastic pair which defines the g-Brownian
motion starting from y. The mapping w — (y+(W))e[o,7] gives the distribution of Brownian

paths up to time T" in Cy ([0, T'], M), where we use w to differ it from w for |x¢]*. We want
to construct a one-parameter of mappings F;, on Brownian distributions (Yt)te[O,T] so that

yi (W) = (Fy(yjo,r(W))) (t), Vt € [0,T],
is differentiable in s ‘direction’ for almost all w with initial restriction dy§/ds = V(F*(y)).

Choose a C* function s : [0,7] — R, with

(5.24) s(0) =1,s(T) =0, tlin% T 1

s(t) < oo.

For almost all w, we obtain a vector field along the paths y[o 7 (w) with

Tvy(t) :==5(t) - fou(V(y)), te[0,T],
where N
//t1,t2(V) 1= U, © Ut_ll(V), Vv e Tytl(W)Mv 0<t1 <ty <T.
Our desired maps Fy on (y¢(w))e[o,7] are such that (y;(w))eo,r] satisfy the equation

(5.25) dyfi(sw) = Ty ys (1),

where

T,y (t) :=s(t) - /5,.(V(¥5)), te[0,T],
and //* denotes the parallel transportation map for the process y*. The length of tangent
vectors remain unchanged under parallel transportations. Hence

1Ty ()] = s(t) - [V(y6) | < s(t) sup{[[V' ()]},
which tends to zero of order (T —t) as t — T by our choice of s. So, if the processes y*
exist, the ending points y7 remain in yr.

Remark 5.6. In [Hs3|, Hsu introduced a class of maps for the Brownian motion starting
from some point y on a compact manifold: in our notation,

Ty ys(t) = Oi(h(1)),
where h is a fixed R valued curve from the Euclidean Cameron-Martin space, i.e., the
completion of the space of smooth paths h : [0,7] — R™ starting from origin with the
Hilbert norm |h| = (S(l) \h(t)|2)% In his construction, the initial point y{ remain unchanged
since h starts from 0 and hence the equations of all y* can be transferred back to R using
a single It6 map at y. In contrast, in our construction, our manifold is non-compact and we
use a vector field V on the manifold instead of a Fuclidean Cameron-Martin space element
h to generate the random vector field Ty ys. Our ends y7 remain unchanged for almost
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all paths since s(t) tends to zero as ¢t goes to T'; while the initials y§ changes as s varies
so the Ito transfer map of y* to R™ also changes with s. The C! requirement of s(t) is
stronger than the L? integrability of the differentials of h(t). This is to guarantee that we
can obtain a continuous version of the resulting process y; (and all other related processes)
in the parameter (¢, s) (see Theorem 5.17), which is not true for general h.

We will solve the SDE (5.25) by identifying the anti-developments of = 1581 (yi) using
Picard’s iteration method, where Uj is the parallel transportation of Ug along the curve
(F*(y))ser, - In many places, the transferred equations using V only differ in notations
from that for the case of h in [Hs3]. But, technically, we have to write every steps in details
since the construction is different, the footpoints of the It6 maps are shifting, and we need
more regularity of y; and also more information of the associated random structures.

We first consider (5 25) for smooth paths. Let y € M and Bo € 0 v (M M) be fixed. For
B = (Bt) € CF([0,T], M), the equation

(5.26) O et = s0) V(")) 5= 5,

where [/§,:=/ g St, is always solvable. Consider a; = Z'E_sl (8¢), where By is the parallel trans-
’ ’ 0

portation of 3, along the curve s — F*(y). Then (daf/0s)|,_, differs from Bt_l(TVﬁo (1))
by an integral of curvature term, which can be determined by a standard calculation exactly
as in [Hs1, Theorem 2.1]. We give the proof for completeness.

Lemma 5.7. Let V be a smooth bounded vector field on M. For ﬁ e C;°([0, 77, M), let ¢
be the solution to (5.26) and let B° be its horizontal lift in OI(M ) with initial point By.

i) The differential (o), := daf/0s is given by

(08), = Y e (1) := f /(1) (B L (V(B]) dr - L Ky e (7) dat,

0

t

where

T —s —s oo’ —s
Ky®) = | B REG T ) s

0
ii) The differential (8;), := V%Bf satisfies the equation
Vo (0(()5) = IV (E),
Vo (w((7)) = (m 5. B (B) s ()V(Fy)) B;.

Proof. For i), we have

(5.27)

0 (oai\ 0 (0daf\ —s
at(as>—as<at)—v;é(9(vzﬁt>>-
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Using the exterior differentiation formula in covariant derivative (cf. [GHL]) and the
structure equation (4.3) for 0, we obtain

Vo (025)) = Ve (0(V2B)) +a0 (V2 5.V 2 5,)

= s'(t)(Bo) M (V(BD)) — w(viﬁi)(agf)'

We continue to compute that
¢

=(VpB;) :J Vo (=(VeB))) dr,

0 orT
where, by using the exterior differentiation formula, Ker(w) = HTF(M) and (4.4),

Ve (w(V28) = Ve (2(V ) + d= (V250 V2 57)
I CERESNEREARERIED))

(5.29) - B R (B Tva() ) B

For (5.27), the first equation is true by the construction. The second equation holds by
(5.28) since Yy gs (1) = B..(Bg) " 's(1)V(F*y). O

For every smooth segment a = (at)te[O,T] in R™, consider the associated flow maps
{F} 1, }osti<to<7 for the transportation of a to M using the parallelism differential form
(0, @), where F ;, : ]-'(]\7) — ]-'(]\7); B?l — Bf; with (Bta)te[tlh] solving the equation

—a —a do
V%Bt :H(ﬁt,d—tt).

Each Fj ,, is a C*~1 diffeomorphism since H is C¥~! and « is smooth. Let DFy ,, be the
tangent map of Fy} , . It can be read in the (6, w)-coordinate as follows.

Lemma 5.8. ([Ma, Proposition 3.2]) Let a = (at)sepo,r) © R™ be a smooth segment. For
any ty € [0,T] and v € TBZ]:(M)’ let v§* := [DFtol‘7t (7f,w)] vg fort e [t1,T]. Then v§
satisfies the equation

doy

(5.29) Vo () = (VO () 2L

In the (0, w)-coordinate, we have

{ i (O0) == ()G B
4 (@ (7)) = B R (B %5, 37 (0(v2)) ) B
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Let a® = (af)e[o,r] be a one-parameter of smooth segments of curves in R™. For any
t1,t2 with 0 <ty <ta < T, s—> DF} ,, = DF,{’I‘?,52 is said to be C! in s if the image curve
s — [DF{ v, is C* for any C! curve s — v§, € T F(M).

1

Lemma 5.9. Let af = Z%}(Bf), where 3° are given in Lemma 5.7. The tangent maps
0
(DFf 4)o<ti<to<r are C'in's. Let s — v, € Tg: F(M) be C'. Then the differential
’ - 1
(V§)s := Vpjasvi, where v§ := [DF} , (,6’i,w)]vf1 for t € [t1,t2], solves the equation
— oa’ _
(5.30) Vo (), =(V(DH B ), + @ (5)L).
where

—s (90zt

O () = V2 (v () H 5 ) + DO (5o v ae) 1 (1T 00, (B0, ) v
In the (0, w)-coordinate, we have

Vo (0(0)0) == () G+ 0 (@0 (B)L))
Vo (= (1)) = (B R (525, Fo(1)) B + = (0. (BD)).

Proof. Using (5.29), we obtain
—s 0
VpVopvi = vath+R< (B, O‘f) ( t)>

= (V(( ) VH (/Bt7 )) +@( t?(ﬂt) )

Using (5.30) and the structure equation (4.3) for 6, we continue to compute that
sy J s (7
Vo (6(041) = (V0 () + 0 (TN H ) G ) +0 (00t (01)
—s 0o s s /S
_ a0 (H< ), <vt>;) o (@(vt, @)

— (v, )a;t +0( (vf,(Bf)/s))

Similarly, using (5.30) and the structure equation (4.4) for w, we obtain

S 50zf

Ve (@ (000) = o (1B 50000+ (0. BD0)
—(B)'R (ﬁt‘hﬂﬂt ((v >>)6§+w(@(vf,<6:’>;)).
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We will solve (5.25) by identifying the anti-development of a® of y* in the set
¢ t
A= {at = f O,dB; +J grdr, te [O,T]} ,
0 0

where O; is an O(R™) valued Fr-adapted process, g, is a R" valued Fr-adapted process
with |g| < Const.sup |V| and {F;}cr+ is the filtration of the Brownian motion in R™. We
see that A is a complete infinite dimensional Banach space under the norm

wir 1=/ lglZ + 1012 1.

e

where
lgl%r =E sup |gl? [O5% s =E sup [Of.
te[0,T7] te[0,T7]

Let V and s be as above. For a € A, let 3 be a horizontal process in Og(]\/\f) with
projection 8 = IBO(O‘) on M. For t € [0,T], put

Ty 5(t) == s(t) - [5,(V(50)) = BBy [s(£)V(o)]-

We define
t

Yy (t) = f /() {(V(By)) dr — fo Ky o) o day.

0
where o denotes the Stratonovich stochastic integral, and

(5.31) Ky o(r) = L "B'R (B (odag), Tv.4()) Be.

Lemma 5.10. For a € A, the Ito forms of Xy ,, Kv,a are

Tva) = [ {30V - Rie (v} dr — [ K alr), dar

0
(5.32) =: Ry o(t) — L<Kv,a(7)v dor),

where Ric was defined in (4.12) and
(5.33)

t t
Kvalt) = j 3. 7'R (B.day, Tv.5(r)) B, + j 3.7 (V(B.e)R) (B.er, Yv.s(r) B, dr.

Proof. Using It6’s formula, we can identify the Ito integral expression of Ty, , as

t

Tyalt) = | &/0)85 (V) dr = | (Kva(r)dary = 5 | Rva(r),oda),

0
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Let oy = o161 + -+ - + Q¢ m€m, Where {eq,--- , ey} is the standard orthogonal base of R™.
Since o € A, we see that (oday ;, odoy ;) = 2dt. So, using (5.31), we obtain

1 t 1 t _ - o
3 | @Rvar)cdary = 5 [ BR(B(odan). Ty (7)) Broodar)
t
= LBTIR (Brei, Tv (1)) Brei dr

= LRic (Yvp(r)) dr.

The It6 integral expression for Kv o(t) can be obtained similarly using It6’s formula. O

We want to solve (5.25) with y° being the Brownian motion on M starting from y.
Lemma 5.11. Let V be a smooth bounded vector field on M with flow maps (F*)ser, . For
ye M, let (U5 € OF, (M))ser, be a solution to dU33/ds = H (U3, (53) "V (F°y)).

i) Let o = So OidB; + SO g; dr € A be a one-parameter of stochastic processes with
of = B;. Then o solves doi(w)/ds = Yy o (t) iff

(5.31) 0 —1d —f Ky o (1)02 dy,
0

(5.35) gl = Of—fo (02171 {(©) " [$" (1) V(F7y)] — Ric (GL(U3) [s(T)V(F'y)]) } dy.
ii) Let a® be as in i) and let U° be its horizontal lift in (’)57(]\7) with initial GF. Then
U? is differentiable in s iff the following SDE is uniquely solvable with initial (G§),:

{ dO(Y7) = @ (Y7) o dag + od XLy o,
dw(Yy) = (B3) ' R(5; o dog, B;0(Y;)) U

iii) Let a®, 0% be as ini), ii). Then s — y* = Iis3(a®) has the differential process Ty ys.

(5.36)

Proof. By analogy with the deterministic case (Lemma 5.7), we have y* solves (5.25) iff o*
solves daj(w)/ds = Xy ,«(t), which means

af —af = ” @) OV E) dr dg- | f<Kw< ),dod) dy
—f f Ric (U(5}) ' [s(m)V(F?y)]) dr dj
J f wh)” YW (Fy)] dr d]—J f Ric (BL(U}) " [s(m)V(Fy)]) dr dj

- j j Ky (r)gh dr dj— j j Ky (r)0} dB, d).
0 JO 0 JO
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Note that o = B; and hence O = Id, g’ = 0. So a comparison of the above expression
with the the assumption that of = Sé 02dB; + §} g dr gives (5.34) and

g - | ) S (D (Fy)] dy - ) Ric (5(U) " [s(r)V(Fy)]) d— | Kval(n)el 4y
Hence by the variation of constants method (i.e., Duhamel’s principle), we obtain (5.35).
Let a® be as in i) which solves daj(w)/ds = Xy ,s(t). Then U* is differentiable in s iff

the following SDE is solvable with initial (U§)%:
(5.37) dYy = (V(Y)H)(U;, odai) + H(U}, (oday)y).-
Writing (5.37) in the (0, w)-coordinate, we have

d(0(Yy")) = df(edU3,Yy") + 0(H (UF, (0dey))) = w(Yy') o daj + odXy 4

d(w(Y")) = Q(H(UF, odaf), H(GF, (YY) = (U7) " R(U; o dai, BF0(Y;)) U}

Let o®, 0% be such that i), ii) hold true. For iii), it suffices to check the equality
Vpjos(m(U%)) = Ty ys. Let Z] := 0 ((55))). By (5.36),

t

Z) = Yy o) — Ty o(0) + f

<f (BL)TR(V, 0 dd?,, 0%, Z2,) 15, )odaf_.
0 \Jo

Write 2/ := Z] — §{(U03)~'[s'(1)V(F7y)] dr. Then we have

j (f UJ T,Odo/ U’ ZJ)UJT,>odaf_.

Using 1t6’s formula for | - |? = {-,-) or the isometry property of Brownian motion, we can
find some constant C'(sg,T") depending on R, so,T such that

t

E((2))?) < C(s0,T) f E((22)?) dr.

0
This gives Z/ = 0 by Gronwall’s Lemma (see Lemma 5.16). Thus (y®). = Ty ys. d
t s Y

Corollary 5.12. Let U° be as in ii) of Lemma 5.11. Then Y* = (0®) is given by

(539 { i 0y R(Gt o ded 5 05) V)
whose Ito form is
do(Yy) = S’(t)(U )~V (Fey) dt,
(5.39) A= (¥}) = (OF) R(Oydog. s(107(07) 'V (F*9);
+(U5) V(e R) (Uies, s(t)UF (B5) 'V (F*y)) U} dt.

Proof. Note that U° is a horizontal lift of y°. Reporting this and (y®);, = Ty ys in (5.36)
shows (5.38). Then (5.39) follows by applying the It6 formula. O
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For a = (a1, ; um) € A, consider the associated flow maps {Fy} ;, }o<t; <to<7, Where
Ff e, }"(]\7) — f(M); Bfi — Bf;, with (B?)te[tl,tg] solving the Stratonovich SDE
(5.40) dp; = H (B, oday).

By Proposition 4.3, Ff;, are C*=2 diffeomorphisms for almost all w and the first order
tangent map DFY} ,, satisfies the following (see also Lemma 4.4).
Lemma 5.13. Let a € A. For almost all w, any t1 € [0,T] and v§; € Tgo F(M), v§ :=
[DF? (ﬂz,w)]va,t € [t1,T] satisfies the Stratonovich SDE
dvi' = (V(vi")H) By , odav).
In the (0, w)-coordinate, we have
d(0(vy)) = @(v) o day,
a (= (7)) = (B) 'R (B o dau, By (0(v7)) ) BY
and its Ité form is
d(v§) = w(v§")day + Ric(B; 0(vg)) dt,
dw(v¥) = (B1) 'R (B das, B 0v) ) By + (B7) R (Benw(vi)e:) B dt
+ (B V(B enR) (Bres B o)) By d.
Let a® € A be a one-parameter of random processes. We abbreviate
By =B, , F,, =F,,, DF, =DF,.
The maps (DFf ;,)o<t,<t»<7 are said to be C'! in s if, for almost all w and any (vf,, Q5,) €

TBs.F(M) which is C1 in s, [DF} ,,](vf,, Qf)) is also C1 in s. The following can be formu-
lated using Lemma 5.13 and It6’s formula by analogy with Lemma 5.9.

Lemma 5.14. Let af,y* and U* be as in Lemma 5.11. Then (DF ;. Jo<t,<t,<7 are C'
in s iff for any v§, € TUflj:(M) C' in s, there is a unique (U )te[ty 1] continuous in (t,s),
with vi, = VpasVvi, , that solves the SDE
(5.41) dv; =(V(v))H) (U7, odai) + @ (v, (U7)5),
where

® (). (B7),) =V (v}, (57),) H (U, odaj) + V(v H (U}, 0d Y s (t))

+ R (H(U, oday), (U7)) vi.

In the (0, w)-coordinate, (5.41) is

d(f(vi)) =w(vi)odai + 6 (®(vi,(U7).)),
Ga L) TG S + = (000
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The Ito form of (5.42) is
(5.43)
( i) = w(Ut F)da + Ric(B70(vf)) dt + 6 (@1(\1@, (B7)5)) + @4 (v, (UF)5),
=(vf)) = (0 )R (Updag, Bi6(v7)) Uf + (U7) 'R (Gjes, je(v)er) Uf dt
(US) HV(Uiei)R) ( tqut@( )) O dt
v (@u(vi. (U7)1)) + @F (v, (01},
where @ (v§, (O )’) is ®(v§, (U})},) with oda; replaced by the Ité infinitesimal dos,
@ (vi, (U5)) = ( (Vi (09, eq)) e dt + 0 ([H(U;, e5), ®(v3, (U5)s,e5)]) dt,
®Z (Vt7 Uf);) 1R(Ut €is USG( ©) (va (Uf);v 6,)))Uf dt
+ w ([ (¢, ei),(@(vt, (U3)L, ei)]) dt,
®(v;, (07), e) =VO(vi, (07)0) H(U;, e0) +R(H (BF, €3), (B35 )vi +V () H (BF, Kv a5 (t)es)
5.3. The existence of Fj. In this part, we prove the existence of the mapping y — FZ(y)
By Lemma 5.11, it suffices to solve doj(w)/ds = Yy ,s(t) in A with o’ = B. We will do
this using the classical Picard method as in [Hs1, Theorem 3.1]. In the meanwhile, we will

also show the existence of the differential processes of U° and DF}} ;, in s. The tool we will
k)
use to obtain a continuous version of a two-parameter process is Kolmogorov’s criterion.

Lemma 5.15. (c¢f. [Kun2, Theorem 1.4.1]) Let {V{ (W) }e[0,1],se[s0,50] D€ @ One-parameter
of random processes on a complete manifold. Suppose there are positive constants b,by,bo,
with by,by > 2, and Cy(b) such that for all t,t' € [0,T] and s,s" € [—so, so],

/b _lbl _/|72
< Co(b) (|6 =" +[s = s72),

then Y7 has a continuous modification with respect to the parameter (t,s).

E Uyt — Vs

Besides Burkholder’s inequality (Lemma 4.7), another useful tool to estimate the L9-
norm of stochastic integrals is Gronwall’s lemma:

Lemma 5.16. (¢f. [Elw, p. 13]) Let ¢, ¢1 be real valued Lebesgue integrable functions on
the interval [0, s] such that for some C > 0,
7
00) < 1) +¢ | o) df. Vo< [0.5]
Then

J /
o) < d1(y) + CJ el )d>1(j/) dy, for almost all j€ |0, s].
0

We are in a situation to state the existence theorem of the maps Fyj.

Theorem 5.17. Let V be a bounded smooth vector field on M and let F$ be the flow map
it generates. Fory e M, let (U] € (9%5y(M))Se]R+ with d3/ds = H (U5, (B3) "V (Fsy)) be
a fized horizontal lift of the smooth curve (F*y)ger, -
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i) There exists a unique family of stochastic processes a® € A such that for almost all
w, s — a°(w) is differentiable with
S
(5.44) aj(w)=w +J Yy ot w) dg, Vte[0,T].
0

The process Ly 4 (t) has a continuous modification in the parameter (t, s).

ii) Let U° € (’)5(1\7) be a horizontal lift of y* with initial Oj. There exists a one-
parameter of Fi-adapted stochastic processes (Yy*)ieqo,r] with Y*(w) € Tiss (w) (O (M))
for almost all w, which satisfies

V%Uf(w) =Y (w), Vte[0,T].

The process Yy has a continuous modification in the parameter (t,s).
iii) Let y* = Iiss(a®). Then s — y*(w) is differentiable for almost all w with

(5.45) Vagyf(w) =Ty ys(t,w), Vte [0,T].
The process Yy ys(t) has a continuous modification in the parameter (,s).
iv) For almost all w, (DF{ ;)o<t,<i<T are C' in s. For v € TUglf(M) Cl in s, the

process vi = [DFY, v, is differentiable in s and the differential process vi has a
continuous modification in the parameter (t,s).

Proof. For simplicity, we will use C' to denote a constant depending on |g||cs and the norm
bound of V and use C(-) to indicate the extra coefficients it depends on, for instance,
C(s0,T) means C' also depends on sg, T. These constants C' may vary from line to line.

We first show i). For any sp € R, we use (5.34), (5.35) for Picard’s iteration and show
the iteration converges to a one-parameter processes o® (s < sg) in norm | - | 7. Let

g% =0,0%% = Id, o*® = B and let U*° be the horizontal lift of Ti53(B) in (95(1\7) with
U(S)’O = U§. Assume g*" 1 05"~ and a®"~! are obtained for some n € N. We write U%"~1
for the horizontal development of o>~ ! in O9(M) with U(s)’n_l = U§ and put

t
Ko () = [ (@377 R (03 oz 03 03) 7 ) VP )] 03

4
+f (O DUV (07" e R) (U7 e, O HTF) T [s(1)V(F*y)]) U7,
0

Ry qet (1) = (03) ! [8'(OV(F*y)] = Rie (07" (05) " [s()V(F*p)])
Then define g™, O*™ a®™ as the processes determined by the following SDEs:
Of’n = Id - SS Kv7a],n71 (t)0g7n d],

g = 07" §LOF" T Ry a1 () dy,

ap" = §L 02" dB,y + [ g2 dr.
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When n = 1, the definitions of g%, O%? g%! O%! show that

s S
oyt - 01" = _L Ky o0} dj, g —g;" = 07 JO (0P Ry as0(t) dy.

Abbreviate | - |7 as | - |. There is some C such that
t 2
| Ky as0]® < 2E sup f (0397 R (03%dB,, U3°(65) " [s(m)V(F*y)]) U°| + CT?,
te[0,7] 1J0
T 2
<MEJ(U?rﬂR«ﬁ%BﬁU?aﬁr%aﬂvu”mDU? +CT?,
0

T

< 4Ef (G5 R (5%, 520(55) M [s(r)V(F*y)]) 52 dr + CT?
0

< C(T +T%),

where the second inequality holds by Doob’s inequality of sub-martingales and the third
inequality holds by Lemma 4.7. Hence there is some C(7T') such that

HOs,l _ OS’O

S
< [ 1y ool ds < s
0

There also exists some C such that g1 — g0
obtain some Cy(T") such that

| < C's since Ry qs0 is bounded. So we

Has,l o as,O

< Co(T)s.

If we can further find some constant C1(7") such that
S

(5.46) Ja*™ —a®" 7| < Cl(T)j Ja?" =t — a2 72| dy,
0

we will obtain

s,n s,n— 1 n.n
Ja*™ = a1 < —(Co(T) + Co(T))"s",

which will imply the existence of the limits
g’= lim g>", O°= lim O%"

n— -+ n—+00
Then of = Sé O dB; + SS g> dr will be our desired process for i) by Lemma 5.11.
For (5.46), let us analyze [O*" — O®"~!| and |g*" — g*"~!|. Since each O*" is O(R™)
valued and is invertible, we have
O™ — Os,nfl = 5" (Id o (Os,n)flOs,n71>

dy

$=]

_ SN Si s,n\y—1s,n—1
_ 0 Lds[(o )10 ]

s,n s i s,ny—1
0 L(ds [(O°™)~]

i d

7,n—1 7,1
O + (O7™) I

§=]

[0

) dy.
5=)
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By the inductive defining equations of O*"~1, O%", we obtain

d s,n—1 n—1
% [O ’ ] - —I(\/'70[j,'rz—20‘77 P
=]
d S,n\— ny— d s,n ny\— ny—
SO = =00 (00 = (09 Ky e
s=3 s=3

Hence
S

Os’n - Os’nil - _OS’nL (O'Ln)il (KV,Oé]’n_l - Kv7aj,’ﬂ—2) O']’nildj.

Using (5.33), we conclude that there are some constants C, C” such that
S S

(5.47) |O®" — 0" 1| < CJ |Kv qon—1 — Ky qan—2| dy < C’J o™t — P72 dy.
0 0

For ||g®™ — g®" 1|, we can use the inductive definitions of g>" and g*"~! to compute that

S

g =" = (01" = 01" ) | 01T Ry o (4)

#0p [101 7 (00 = 01 (08 Ry (1)
0

01 [ 108 T Ry a (1) = Ry ona (1))

=: (a); + (b), + (),
Hence
lg™" — ™" < [l(@)] + [(B)] + [ ()]

Since V is bounded on M and s is C* on [0,T], Ry qsm-1(t) is also bounded. So there are
some constants C, C’ such that

(@l < Csafor = 01| < s [ e — 2]y
0
Ib)] < ¢ f jorm=t = o dy < € f "t — a2 d.
0 0
For (c), we also have

01 <€ [ [Rns = Ryoncs] dy< 0 [ [t =572
0 0

where the last norm is measured using the distance function on O9 (]\7 ). Recall that

t m
(5.48) oy =U" + f Z H(G2" e;)oda2™, 0<t<T,

0 =1
where a?™! 4 = 1,---,m, denotes the i-th component of o/”. Embedding (9?7(]\7)

into some higher dimensional Euclidean space R! and extending all H(-,¢;) to a small
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tube neighborhood of O9 (]\7 ), we can consider (5.48) as a Euclidean SDE and compare
o=t — 53 =2| with [|a?™"! — a?" 2| using the Euclidean norm. By (5.48),
t
ot f (H(W2" 1 e;) — HUZ" 2, ¢;)) o (02" 1dB,)!
0

t
| H@e o (0t - 0 tab,)
0
t
i f (H©2 " o) = HO 2, e0)) g Vidr
0

t
+ | HE )@ - g
0
=: (D¢ + (I)¢ + (III); + (IV),.
Using (4.22), we obtain, for f € [0, 7],

- 9.2
E sup |U§" ! - o 2| <A4E | sup |(I),5|2 + sup |(H)t|2 + sup |(IH),5|2 + sup |(IV)t|2 )
te[0,1] te[0,2] te[0,] te[0,1] te[0,]

For (I)¢, we can consider its It6 form and then apply Doob’s inequality of sub-martingales
and Lemma 4.7, which gives

P P
E sup |(I)¢f* < CEJ o2t — 52 dr < CJ E sup |07 07" dr
te[0,t] 0 0 te[0,7]

The same argument shows there is some C' such that

&
E sup |(I1);]* < CEJ ozt — Oi’”_z‘g dr < CT |a?" ! — a]’"_QHQ.
te[0,f] 0

Note that |H(-,e;)|| and |g&"~!| (for all s and n) are bounded. Hence

d 7
E sup |(IID),]* < CfEJ o2t — 502 dr < CTJ E sup
te[0,f] 0 0 te[o,7]

For (IV);, we have

E sup |(IV),5|2 < Ct? Hg”’"il — g”’"72H < CT? Hoﬂ’”*1 — oﬂ’"*2||2.
te[0,1]

Altogether, there are some constants Cy(7"), C5(T") such that

U],n—l U],n—2 2 d
t — O T.

t
E sup ]Ui’”‘l—Ug’”‘2}2 < Co(T) o™t = aj’"2|2+C'3(T)f E sup |Ug’n_1— Ui’n_2|2 dr.
te[0,1] 0 t€[0,7]

Applying Lemma 5.16, we obtain some constant C'(T") independent of j such that

|p7n =t — 52 < O(T) o2t — o)
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So,
)l < Cf [t = dy < 0<T>j a2t — @t 2| dy.
0 0

Putting together the estimations of |(a)|, [(b)|| and ||(c)|, we conclude that
S
Hgs,n _ gs,n—IH < C(T)j ||a],n—1 _ a],n—2” d].
0
This and (5.47) imply (5.46). Hence the limit

lim o®" =f (0 dT-l—J g; dr =:a°
0 0

n—00
exists and o satisfies the equation (5.44) by i) of Lemma 5.11.

The {a®} obtained by the above iteration is the the unique parameter of processes in
A satisfying (5.44). Assume {&°} < A is another parameter of processes solving (5.44).
Then, by using (5.34), (5.35) for a® and &, respectively, the above argument shows that
(5.46) holds true by replacing o™, a*"~! by o, &*, respectively, for all s, i.e.,

S
ot ~a*] < C(1) | or @] dy
0
This implies a® = &° by Gronwall’s lemma.
We proceed to show
(5.49) E[Ty o () = Ty e (B)] < CO, 50, T) (|t’ — 42 4|8 — s|b)

for any b > 4, t,t' € [0,T] and s,8" € [—sg,S0]. This, by applying Lemma 5.15, will
imply that Yy ,.(f) has a continuous modification in the parameter (¢, s). Without loss of
generality, we assume t < t’. Using (5.32) and (4.22), we compute that

E‘I\/,asl (t/) - IV,ozS (t) ‘b

! + t
< 5b71 ( IE| J Rv,as/ (T) d7'|b + 1E| J <KV,aS’ (7—)7 daf'/>|b + E| f (RV,as/ - szas)(T) d7—||7
t t 0

| [ (R e — Koy ) (), + B [ (B elr). (0 aiw)

=571 ((d) + (e) + (f) + (g) + (h)).
To conclude (5.49), we will show
(5.50) (d), (e) < C(b, 50, T)|t' — 2" and (£), (g), (h) < C(b, s0,T)|s" — s|.

Clearly,
(d) < C ¢ =t < (CT)[¢' —t]2°
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for some C' which bounds |Ry qs|. For (e), we have

t/ t/
_ s b s b
2'7(e) <E| | (K o (1),05dB;))| +E\f (Ky oo (1T),85 ) dr|” =1 ()1 + (€)a.
t t

By Lemma 4.7, with the constant Cy(b) there,
tl

t/
() <COE| | [Ky (M dr]?’ < Cl(b)(J E([Ky oo (7)) dr) - [t — ]2,
t t

Using (4.22) and Lemma 4.7, it is easy to deduce that
b

T

E(|Ky 40 (1)) < 377 <E

L ()7 R (6£05B,.. 5% (6) sV (F )] ) 0%

b
+E

| @R (whetar 5w stV ) O

+E

f (U5) " V(O2en) R) (Uhes, B3(TY ) [s (7 )V (F*'y)]) 05, dr’
0

b)
(5.51) < 3b_1(§’(7%Ij +77).
Hence there is a constant C'(b, T') such that

(€)1 < C(b, Tt —t]2".

Since |g?| is bounded by some constant depending on sp and sup |V|, using Hélder’s in-
equality and the estimation in (5.51), we obtain

tl

@2 (| BUKy 0o )P) dr) - =t < OO P
t 7
Thus,
(&) <271 ((e)1 + (e)2) < 27H(T2" + 1)COB, Tt — 2" = OB, Tt — t|2°.

Using Hoélder’s inequality and Burkholder’s inequality, the conclusion in (5.50) for (f), (g)
and (h) can be reduced to showing

E|(Ry oo — Rv.ae)(0)'s E|(Ky oo — Kva) ()], Elaf —aif < CO,50,T)]s — /',
which can be further reduced to verifying
B0 —0:|, Blgd —gif, Bj6Y — 03| < C(b,50,T)|s" — s
By (5.34) and (5.51), there is some constant C(b,T") such that

/ b
E’Oﬁ/ - Of.‘b =E j Ky oo ()0 dy

(5.52) <C0,T)|s — s
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Using (5.35), (5.52) and Holder’s inequality, we obtain some constant C'(b, sp, T') such that
b

Elgd —go| <2 ' E(l0s — 03P .|f0 [02] Ry o(7) dg) + E f [02] ™ Ry s (7) dy

(5.53) < C0,s0,T)|s — s|.
Recall that each O° satisfies the SDE

=0j +f Z H(U(w), e;) o da’(w), Y7 € [0,T].
0 =

As before, we can treat it as a Euclidean SDE. Hence,

b

m
E[oy —vs) < 3! (\Ug’ ~ 3" +E| JOT 2 H(G%,e;) o d(aly" — )

+E’f H(GS), e;) — H(U,, e;)) o dail/’i b)
=370 + () + (K)).
Clearly, (i) < C|s’ — s|” for some C' depending on sup |V| and . For (j), we have

J)éE’J ZH(Ui,,ei)o(O - 0%) —i—E’J U2, e)(gs — g% dT|
=1

= (1 + ()2
where we use the superscript i to denote the i-th component of a vector. For (j)1, we can

transfer the integral into It6’s form. Note that all H(-,e;) are C! vector fields on O9(M )
with bounded first order differentials. Hence, using Lemma 4.7, Holder’s inequality and
(5.52), we can conclude that there is some constant C'(b,T) such that

T b T
()1 < €0, T) (E(f |05 = O3 dr')= + E(J 05— 032 dr')’)
0 0
<COH,TT? '+ 1) J (E|O3, — 0%|% + E|O3, — 0% ")dr'
0
< C(b,T)(2s0)|s" — .

For (j)2, we can use Holder’s inequality and (5.53) to conclude that

(j)2 < C(b,so,T)Tb|s’ — s| .

For (k), the same argument as for (j) gives some constant C(b, sg,T") such that

(k) < C’(b,so,T)J E[0, — 0%, dr’
0
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The inequality also holds for supz¢(g IE|U — 02 | Hence we can apply Lemma 5.16 to
conclude that there is some constant C (b, s0, T') such that

Altogether, there is some constant C(b, sp, T') such that

E[5Y — 55" < C(b, 50, T) <|s’ — s’ + f E|US, —
0

(5.54) E[5¢ — 02 < C(b, 50, T)|s" — s,

This finish the proof of (5.50) and hence (5.49) holds true. By Lemma 5.15, we can obtain
a continuous modification of Yy ,.(t) in the parameter (¢, s).

Let o®, U° be as above. By (5.54) and Lemma 5.15, U® has a version such that s — U*(w)
is continuous. By Lemma 5.11, to show U? is differentiable in s, it suffices to show (5.36)
is uniquely solvable with Y = (U5)%. Let Y*? =0 and let Y*" (n > 1) be such that

(5.55) { oY) = w(¥;" ) odaj + odXy o,
dew(Y") = (U;) 7 R(G5 o dog, B;6(Y;" 1)) U;.

For a R™ x F(R™) valued process (0, Q)c[o,7], let

[(0, Q)] := +/Io]]* + [Q]2, where [o]* =E sup |o,*, [Q[* =E sup [9/*
te[0,T] te[0,1]

We show the sequence (6,w)(Y*™) converges in norm | - ||. Clearly,
(5.56) [(0, @) (Y*!) — (0, =) (Y*?)| < CT||o”).
We continue to estimate [(6,@)(Y*") — (,)(Y*" )|, n > 2. By (5.55),
{ Ao =00 ) = (@) — w(Y" ) o dag,
d(= (Y = 6(Y; ")) = (7)1 R(U} o dag, B (6(Y™) — 6(Y;™ 1)) 05

Following the above discussion on HUJ’"_I — UJ’"_QH, we can use Doob’s inequality of sub-
martingale and Lemma 4.7 to conclude that

Esup, (o E]| (0,@)(Y*") — (,) (Y1)
< C(so, T SOEsupte[O . ‘(9,@)(}/5’"’1) — (0, @) (Y“”’"fz)‘2 dr.

2
(5.57)

Iterating this inequality for n steps, which, together with (5.56), imply

E sup |(6,)(Y*") — (6,) (V") P < 2(CT + C(s0, T))"F".
e[0,7] n!

In particular, when ¢ = T, this is
1
10, ) (Y*") — (0, =) (Y*" )| < —l (CT + C(s0, T))"T".

Hence (6,w)(Y*™) converges in | - || with some limit (6, w)(Y®) which solves (5.36).
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Such a solution Y*® is unique. Assume )® is another solution to (5.36) with V5 = (U7)%.
Then the same argument as for (5.57) shows that

t
E sup |(6,@)(Yy) — (0, @) (V5)|° < Cls0,T) f E sup |(6,w)(Yy) — (8,@) ()| dr,
te[0,f] 0 te[0,7]

from which we can conclude Y® = )® by Gronwall’s Lemma.

By Corollary 5.12, the solution Y* to (5.36) is actually given by (5.39). Hence, to show
the process Y;® has a continuous modification in the parameter (¢,s), it suffices to show
both U; and w(Y;®) have a (¢, s)-continuous version. Let b > 4, ¢,¢' € [0,T] with ¢t < ¢’ and
s, 8" € [—s0, s0]. Using (5.54) and applying Burkholder’s inequality and Holder’s inequality
to the difference Uj, — U, we obtain

R[S — G5 < CO, 50, T) (8 — s’ + |t — t]2°).

So Lemma 5.15 applies and shows that there is a version of Uf which is continuous in the
parameter (t,s). Since w(Yy) = 0, by (5.39),

2Ry — Uy < B[O - U

w(V}) = fo () R(Bdas, s(r) 05 (05) "V (F*y)) 5%

| 071V R) (361571020 V() B dr

Again, by Burkholder’s inequality and Holder’s inequality, it is easy to deduce that
' b
]E‘w( i) —@(Yy)

t/ t/ t/
< C(s0,b,T) (E|J o — asf? d7|3 +E;f 08 — 03] dT|% + EJ 0 — 62| dr)
0 0 0

t/
< C(s0,b,T) f (Elad — a2’ + E[US — U dr
0

< C(b,s0,T)|s — s
and
Bl (V) = ()] < Clso,b.T) (|t =43 + |/ = t]) < Cso,b, T — 3.
Hence
2'Elw(Y) — w(¥y)| < Elw (Vi) — w(Y)| + Elw(Y) — w(¥y)]
< C(b,50,T) (|8 —s|” + |t/ — t]2"),

which implies that w(Y;®) has a (¢, s)-continuous modification by Lemma 5.15.

Now we have shown i) and ii). Hence we can use Lemma 5.11 to conclude that y® =
Tisg (@) is differentiable in s and satisfies (5.45). The differential process

Ty ys(t,w) = s(H)0F (U5) 'V (F*y)
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has a (t, s)-continuous version since U; does.

Finally, by Lemma 5.14, for iv), it suffices to show for v{ € Ts; F (M) C' in s, (5.43) is
unlquely solvable with initial (v§,);. Again, this can be done by P1card’s iteration method.
Let vf° = (6, w)Us (60, @)w;, (Vi ). Forn > 1, let vy" with initial (v§ )} be such that

d(0(vy™)) = w(vP™ ) dag + Ric(G0(v;" 1) dt + 0 (@1(v, (U)L)) + @4 (vi, (B7)),
d(w(vy™) = (U5)~ 1R(that,6;§”0( P08+ (0F) TR (Ues, Ui (v e U dt
+(U5)~ (V(Uer)R)(Ufel,USG( S h)og dt
+w (®1 (Vf> (Uf);)) + ®w (Vt’ (US) )’

where v§, ®1(v§, (05)%), @4 (vi, (U5),), ®F (vi, (U5)%) are as in Lemma 5.14. We will show

(0,)(v;™") converges in norm |- |, where, for any R x F(R™) valued process (0, Q) 1],
[0, )] := v/[o[2 + [Q[2, [o]> =E sup [o>, [QI* =F sup |Qf*
te[tl,tg] tE[tl,tQ]

Clearly, we have

H(G, w) (vt — (H,w)(US’O)H < C(s0,T) +

L ¥ (@r(v3, (Ui)’s))H +

1 1

UteaA( @) + Ut@A( (©2))
=: C(SQ,T) + (A)l + (A)Q + (A)3 + (A)4

Using Doob’s inequality of submartingale, Lemma 4.7 and Hoélder’s inequality, we see from
the expressions of ®r (v, (U7),), @4 (v§, (05),), ®F (v{, (UF)}) that

(A)i < Cs0, T) (0, @) (v) | + 10, @) )P - [IBF)]), i =1, 2, 3, 4.
Note that the process v; satisfies the SDE

d(0(vi)) = w(vi)deg + Ric(U56(v§)) dt,
(5:58) § dlw(v) = (©F) " R(O1dad, 500v)T; + (07) R (Ues, Biw(vi)es)f e
+(07) 7 (V(Oie) R) (Bfei, Bi6(vi)) U dt.

So, using Doob’s inequality of sub-martingales and Lemma 4.7, we compute that

[ =@ o)

7
E sup |(0,w)(v§)||7 < C(So,T)f E sup |(9,w)(vf)|b dr, b =2, 4,
te[t1,t] t1 tety,7]

which, by Gronwall’s lemma, implies
(5.59) 16, =) (v, (8, ) (v)[*]| < C(s0,T).

With a similar computation, we conclude from (5.39) that |||(35{)%]?| is also bounded by
constant C(sg,T'). So,

(5.60) H(G,w)(vs’l) - (9,w)(vs’0)|| < C(s0,T).
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For n > 2, the difference (0, w)(v*™) — (0, w)(vs’"_l) satisfies the SDE

d(0(vy™) — O(vy™~ 1)) = (w(vy" N —w(vf™ 7)) dog + 1Rlc(us(e( PN =0 ) dt,
d(w(vf™) — w(y™ ™) = (©F)~ IR(USdat,US(ﬁ( Snh) (o %)Uf

+(U3)~ 1R(U§ez,65( (v} i h- w(u;;’”‘ )e;) U5 dt

+(07) UV (Ot R) (Bges, U3 (00" = 0(67™ ) ) U5 .

As before, we can use Doob’s inequality of sub-martingales and Lemma 4.7 to obtain

IEsupte ~]| (0, ( s’") — (6, w)(v{f’"flﬂ2

(561) s,;n—1 s,n—2\ |2
< C 307 St ESUPte[o 7] }(evw) (Ut ) (H,W) (Ut )‘ dr.

Iterate this inequality for n steps and then let £ = t5. This, together with (5.60), implies

|6, 2) (o) — (6,) (") | < - Cls0, T)'T™

Hence (6, w)(v*™) converges in || - | with some limit (0, w)(v*®) which solves (5.43). We can
also use (5.61) and Gronwall’s Lemma to conclude the uniqueness of such v;.

For the existence of a continuous version of v; in the (¢, s) parameter, we use Lemma
5.15. Let b > 4, t,t' € [t1,T] with t < ¢’ and s, € [—s0, so]. Using (5.58) and Lemma 4.7,
we deduce that

t’

E|(0,@)(vi)) — (6, @) (v})[" < C(b,50,T)(Is' — s + f E|(8, @) (v2) — (8, @) (w2)| dr),

1

which, by Gronwall’s lemma, implies

E|(8, ) (v) — (6,@)(v5)|” < C(b, 50, T)|s" — s’

Similarly, it is true that

E|(6, @) (v5) — (6, ) ()|

< C 0,50, T)(10 @) ¥ + 16, @3] + 16, @I - [P (1 — 112+ |1~ o)
C(b, 50, T)[' —#]2°

where, to obtain the last inequality, we first show H|(Us)’s|%b\| < C(b,s0,T) by (5.39) and
then argue as for (5.59) to show H|V|%bH, |||U5|%bH is also bounded by some C'(b, sg,T). Thus,

21| (0, @) (v})) — (0, @) (v})[” <E|(0,@)(vi) — (0.@)(v5)] + E|(0, @) (vf) — (6, ) (v})]"

<C(b, 50, T) (\3' —sP |- ty%b> .

By Lemma 5.15, there is a continuous modification of (6,w)(vy) in the (¢,s) parameter.
Note that (6, @)y varies continuously with respect to Uf, which is also continuous in the
(t,s) parameter. So, we can also obtain a (¢, s)-continuous version of the process vi. O
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Remark 5.18. As we will see in the proof of Proposition 5.19, for almost all w,
a® o a®(w) = a®1T%2(w), for all s1,s9 € R.

Hence, intuitively, (a®)ser introduced a one-parameter of ‘flow’ maps on Brownian paths
starting from the o € R™. Consequently, (F#)cr also behave like a one-parameter of ‘flow’
maps which satisfy the cocycle property Fs! o F$2 = F51%52 for any s1, 83 € R.

5.4. Quasi-invariance property of F;. Let y* = Fjy be as in Theorem 5.17. We
continue to study its distribution using the classical Cameron-Martin-Girsanov formula.

Let (y¢, U;) be the stochastic process pair which defines the Brownian motion on (]\7 ,9)
starting from y up to time T, i.e., y; = n(U;) and U; € O9(M) solves the Stranovich SDE

dG; = Y H(Uy,e;) 0 dBi(w), Vit € [0,T].
=1

By an abuse of notation, we continue to use P, to denote the Brownian distribution in

~

Cy([0,T], M) (i-e., the distribution of (y¢)e[0,7]) and use Q to denote the distribution of
(Bt)te[o,r] in Co([0, T],R™). Using the It6 map, we have the relation

B = (IUO)_I(Y) and Py = Qo (IUO)_I'

~

Similarly, let Pps, denote the Brownian motion distribution on Cgs,([0,T], M). Then
PFsy = Q e} (IUS)_l

Let y® and o be the one-parameter of stochastic processes on M and in R™, respectively,
that we obtained in Theorem 5.17. They are related by the identity

o = (Tisy) ' (y*)-
Let P, Q° be the distributions of y*, a®, respectively, where Q = Q. Then
(5.62) P* = Q%o (Tys) "

To compare P° with Pps,, it suffices to compare Q° with QP, which can be understood by
a simple application of the Euclidean Cameron-Martin-Girsanov formula.

Proposition 5.19. The distribution Q° is equivalent to Q° with

(5.63) jg; (w) = 3Gl (). dBe(w)—4 (T i@ ()P de}

Consequently, the distribution P® is equivalent to the Brownian distribution Pps, with
dPps dQ® _ ~

(5.64) (8) = gop (@)™ (8)), B Crey((0,T), M).

d]P)Fsy
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Proof. We follow the proof of [Hs3, Theorem 3.5]. Clearly, (5.64) follows from (5.63) by
using the identity (5.62). For (5.63), recall that Q° is the distribution of (o )e[o,r], Where

o) = [ 02w) aBoiw) + [ g2(w) .

The process Sé 0?2 dB; has the same Brownian distribution as B; since O® are orthogonal
frames and the distribution of a Euclidean Brownian motion is invariant under orthogonal
transfers. So a® only differs from a Brownian motion by a drift term Sé g’ dr. Let

M (w) i {8 558 ().03 (W)aBr ()= les (wI? dr)
and consider a new distribution QS on Cy([0,T],R™) which is given by

dQs .
a0 (w) = Mqp(w).

Since |g®| is bounded from above by a multiple of s-sup |V], the Novikov’s condition is sat-
isfied. Hence the classical Carmeron-Martin-Girsanov Theorem says that the distribution
of a® under Q° is the same as Q, i.e., for any measurable subset A of Cy([0,T],R™),

Qfwe A}) = OF ({o*(w) € 4}),
which, by a change of variable, gives
Q(fwe 4}) = Q" (M (a~"(w)) : we A}).
Since A is arbitrary, this means Q and Q° are equivalent and
dQ? 1
1Q ™ " M)
Note that the process M; satisfies the equation

(5.65)

AN = — M (g3 (), OF (w)dBu(w)
So, by Ito’s formula,
(5.66)  —dInM(a™(w)) = %<gf(078(W))a 07 (a*(w)) da;>(w)) + ilgf(CJFS(‘?V))l2 dt,
where the second term of the right hand side of (5.66) has coefficient 1/4 since «; ° has
variance 2t. On the other hand, we have
(5.67) a’oa*(w) =w = B(w), for almost all w.

(Because of (5.65), the composition a®*oa®?, s1, s9 € R, is well-defined and has a continuous
version in the parameter (si, s2) using Kolmogorov’s criterion as in Theorem 5.17. So, by
the uniqueness of the o® family and its continuous in s, we must have a®! o a2 = 1752,
In particular, (5.67) holds true.) Now, from (5.67), we deduce

Of(a™%(w)) da™%(w) + gi (o *(w)) dt = dB(w).
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So, (5.66) is also of the form
_ 1 _ 1 _
—dInM;(a™*(w)) = {gi(a"(w)), dBi(w)) — - |gi (a™*(w))[* dt

and hence
b AT, dBiw)— 1 (T lei(a () at)
M7 (a=*(w))
O

Proposition 5.20. The probability Ppsy o ¥y is absolutely continuous with respect to Py
and the Radon-Nikodyn derivative dIP’FsyoFZ/d]P’y conditioned on yr = x is LY integrable for
every q = 1, locally uniformly in the s parameter. Moreover, dPFsyOFZ/dPy 18 differentiable
in s with differential E3(dPps, o F}/dPy), where &% conditioned on yr = x is also L9
integrable for every q = 1, locally uniformly in the s parameter.

Proof. For P, almost all path 5, let w = Igol(ﬁ). Then Iggl (FZ(ﬂ)) = a’(w). As a
corollary of Proposition 5.19, we have Pps,, o F} is equivalent to P, with

d]P)FSy o FZ _ d]PFsy s _ dPFsy s _ dQO s
TP?J( ) = W oF,(B) = oF,(8) = aQ (a®(w)).

dps
Note that da®(w) = O%(w)dB(w) + ¢*(w)dt. So, by (5.63) and (5.35), we have
M(ﬂ) — A3 50 @ (W), dBr(w)+5 5 85 (w)[? dr}
dP, )
where

g(w) = LS[OHI {(G9) 7 [ (n)V(Fy)] — Ric (BL(G) " [s(r)V(Fy)]) } dy.

Put
& (w) = el =3 L@, dB- )+ eI dar} vy ¢ [0, 7]

For ¢ > 1, we estimate Ep« _[E7(w)|?. Let by be the Brownian motion with respect to the
y,xr

bridge distribution (from y to z in time T) as in Lemma 4.16 such that
dB,(w) = db.(w) + 20 'V Inp(T — 7,y,,z) dr.
Then conditioned on yr = z, |£5(w)|? has the same distribution as

ol=3a80 @ (w), dbr(w)+5aly g5 (w)? dr—q (] &3 (w),07 ' ViInp(T—7.yr.2)) dr}

So, by Holder’s inequality and the Cameron-Martin-Girsanov Theorem,

1
Epx |E5(wW)|? <v/p(T, z,y) [EPU A=l a@ ), dbr ()= [g lgs (WP dr}] 2
y,x, T Y,

1
. [Ep* 2450 @ 07V Inp(T—ry7,0)) dr+(ka+3¢%) ] (€512 dr}] 2
y,x, T

. 1
(5.68) <\/p(T,m,y)[Ep* 12055 @07 VInp(T—ry-.2)) dr+(5a+34°) §; €51 dT}] :.
y,x, T



96 FRANCOIS LEDRAPPIER AND LIN SHU

Let us continue to use C' to denote a constant depending on |[|g|¢s and the norm bound
of V and use C(-) to indicate the extra coefficients it depends on. By our choice of s (see
(5.24)), for s € [—s0, s0], |85(W)| < C(s0,T') for some C(so,T). Report this in (5.68) and
then use (4.36) and (4.37). We obtain some C(q, sg,T), 5(q, 50, T) such that

~ 1
Bps  |E5(w)|7 < Clg,50,T) [Bpr | elClasoD s [VnpT—ram)] dr
Yz,

y,z, T

which, by (4.38), shows that dPps, o F*/dP, conditioned on yr = x is L? integrable for
q = 1, locally uniformly in the s parameter.

Note that & (w) satisfies the SDE
dgr(w) = £ () (5@ ). aBw) + GBI WP dt).
The differential process (£5(w)), = (d€](w)/dy)|,—s exists and satisfies the Ito SDE
e ) ~(0w) (5w, dBw) + SlEiP ar)
1) (@) B () + (LW B ) dr )

Hence the Radon-Nikodyn derivative dPps, o Fy/dP, is differentiable in s with differential
(%)% (w), which, by using stochastic Duhamel principle (or It6’s formula), is

(£, = 6%~< f (@80 + 3 [ (. g ar)
= & (5 [ anoamon g [ @ f(w)>dt>
— & B

Conditioned on yr = x, £ has the same distribution as

]‘ T / 1 r / T / 1
-5 | @+ 5 | e dr - | (@0 V(T — rya)) ar

where both [g7| and |(g)}| are bounded by some constant C(sg,T’). Hence, by Hoélder’s
inequality and (4.22), we compute that
2q

T
jo (&) dbyy| + (Cl(s0.T))™

=i 2 _
(EPy,x,T|5;|q) < 32q ! <Epy,x,T

+Ep

y,x,T

T
f (@) BV Inp(T — 7,yr,2)) dr
0

)

—: 3%1 (@+@+@) :
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Since b is a Brownian motion with respect to P, ;. 7, by Lemma 4.7,

T
< 01(20) [ Bo,..0 (@) dr < Cla,0,T),
0

where C; is from (4.21). Using |(g2).w)| < C(so,T) and (4.38), we obtain

T
(TII) <C(50,T)2quyyzyT(J0 IVInp(T — 7,y-, )| dT)Qq
<C(s0, T)*Ep, , el2a% IVInp(T—r.y-2)] dr}
<o, TYH(p(T, ) )

Putting all the estimations on m, (II), (III) together, we conclude that &5 conditioned on
yr = x is L7 integrable for ¢ > 1, locally uniformly in the s parameter. g

Consider the distribution of P, on Cy([0,T], M). Let (x,u) be the stochastic pair which
defines the Brownian motion on (M, g) which starts from x. The distribution of (x¢)se[0,7
is independent of the choice of ug. Hence P, ,,), which is the distribution of (x;);e[o,7] With

a initial frame ugp, coincides with P, on C,([0,T], ]\7) and P, )7 1= Epwuo) (~|XT = y)
coincides with Py, 7 on Cy (0,7, M ). This means

J f sy DT>, ) dVol(y) dVol(uo) ( J f vt p(Ts 2, y) dVol(ug) dVol(y ))

- JJP(Ivuo),y,T -p(T, x,y) dVol(ug) dVol(y),

where dVol(ug) is the uniform distribution on 05(]\7 ). For any y € M, the Brownian bridge
process connecting x and y in time T has the following symmetric property.

Lemma 5.21. Let (X, Ut)t€[07T] be the pair of stochastic processes for Brownian bridge
from x to y in time T.

i) Under Py 1, the process (X1—t)iejo,r) has the law Py . 7.
i) If Uy is chosen randomly with the uniform distribution in (’)g(]ﬁ), then Ur is also
uniformly distributed in Of(M).

Proof. 1) is [Hs3, Proposition 5.4.3]. (It is true since by (4.40), the finite margin of X, or
the joint density function of X, -+, X;,, 0=ty <t; <--- <t, <tnpy1 =T, is given by

1
m Hp tit1 — ti, @i, Ti11), where xo = 2,241 = ¥,

which is the same as the joint density function of )N(T_tn, e ,)N(T_tl of the bridge X from Y
to x in time T'.) For ii), we consider (4.41). Note that the distribution of the R™-Brownian
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motion b; is invariant under rotations. So if (Uy)sepo,1) solves (4.41) with initial frame Uy,
then for Uy = Upv with v e OR™), (U, = Utv)se[o,] solves (4.41). This implies ii). O

Let F; be as in Theorem 5.17. It induces a map from C, . ([0, T, M) to Crsy2([0,T7, M).
We define F* on C,([0, 77, M ) conditioned on the value of Sr by letting

F(8) := Fp.(8).

By Lemma 5.21, a uniform random choice of ug at z will result in a uniform distribution
of up at y for the Brownian bridge connectmg x and y in time T'. Therefore, to analyze
P, o F*, we can choose the initial Uy € Og ( ) with a uniform distribution to define Fj_

Lemma 5.22. For P, almost all 8 € C,([0,T], ]\7),

dpm oF* dIPFS,BT oF?
5.69 —(p) =
(5.69) o i

dVol(F*Br)
dVol(Br)

(8) -

Proof. Lemma 5.21 implies that the distribution of uz is uniform if ug is. So if we disinte-
grate P, according to the value of (x7,ur), we obtain

ff (z,u0),,7 "P(T, 2, y)dVol(ug) dVol(y ff (w007 P(T, x,) dVol(Bg) dVol(y),

where dVol(Uo) is the uniform probability on o7 (]\7 ). For any measurable subset A —
C.([0,T1, M), by the change of variable formula,

P, (F(4)) = f f By ey ooy (F*(A)) - p(T, z, F*y) dVol(F*Bo) dVol(F*y)

= s . \dVolo F*?
| [P () ol o) L ) avol(@s) dvoly)

By Lemma 5.21, the distribution of P, (s, psi5e)r 00 Ca, sy ([0, T, ) Crsy,2([0,T1], )
can be identified with that of P(ps, pst5)) .7, the Brownian bridge from F*y to z in time

T with the initial frame F*Uy € O%, (N) Hence

(5 70)

s dVol o I'$
JJ (Foy,Ps50),a,7 (F(A)) - p(T, F yax)WQj) dVol(Ug) dVol(y).

The absolute continuity of P, o F* with respect to P, will follow if P(psy psvg) e © F*
is absolutely continuous with respect to P, 5,) .7 and the Radon-Nikodym derivative
dP(Fsy, Fs50),2,T © F°/dP, 150),2,7 s integrable. Since the bridge process from y to z in time
T is just the conditional process of y on yr = x, Lemma 5.19 implies that P s, pst5y) 2,70F*
is absolutely continuous with respect to P, :50) 2,7
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As to (5.69), we see that for any measurable set A ¢ Cy (0,17, M),
(5.71)

s dPps, o F* dP sy o F®
Ppey o F*(A) = Py (XA ‘ df;y) = ny,z,T (XAZ B, )p(T, y,2) dVol(z),

where /L is the collection of elements w € A with wp = z. On the other hand,
Prey o FS(A) = f Preyor o F*(x 1) - p(F*y, 2,T) dVol(2)

d]P) Sy 2 OFS s
(572) = JPy,z,T (ng : W) p(T,F yaz) dVOl(Z)
y,2,T

Since A is arbitrary, we conclude from (5.71) and (5.72) that
d]P)FSy,Z,T oF? . dPFSy oF? p(T, Y, Z)
dPy.r  dP, p(T, Fsy,z)

Reporting this in (5.72) and (5.70) shows (5.69) for P, almost all 3 with Sy =y € M. O

An immediate corollary of Proposition 5.20 and Lemma 5.22 is

Proposition 5.23. The probability P, o F* is absolutely continuous with respect to P, and
the Radon-Nikodyn derivative dP, o F*/dP, conditioned on xp = y is L7 integrable for
every q = 1, locally uniformly in the s parameter. The differential of dP, o F*/dP, in s
exists and is of the form (6? - (dP, o F*/dP,,), where (S_;Sp conditioned on xp = y is square
integrable, locally uniformly in the s parameter.

Using (5.69) and the proof of Proposition 5.20, we can deduce that 5(-% differs from &

by the differential of dVol(F*y)/dVol(y) in the s parameter, where £ can be understood
as a backward stochastic integral on the bridge paths from x to y in time 7.

5.5. The extended map F*. In order to show the properties iii), iv) of F*® in Section

5.1, we need to clarify (Dﬁ([uT]’\)g\l)) o F* for @} o F*, where ®} is as in (5.14). We will

achieve this by extending F* to the process ([uT]A)E\l) and letting

(Dw([uT]A)g\l)) oF®:= Dr (([uT])‘)g\l) o Fs) .

The rough idea is that the maps F* on orbits extend naturally to their tangent maps for
the parallel transportations and hence can be defined for the objects they make.

We first deal with ([ur]*){” o F5. Let A — [ug]* € 09" (M) be C*=2 in F(M) and let
([ € 07 (M))tefo, with initials |ug]* be the unique solution to

(5.73) dlug]* = i H(|u ], €;) 0 dB(w), Yt e [0,T].
=1
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By Lemma 4.18, there is a version of {|u;]*} such that A — |[u;]*(w) is C*~2 in A for almost

all w. By Lemma 4.21, the differential process ([ut]k)(()l) is given by
(5.74)

T
() = [DFortuo )] (ol + | [DF rton )] (1196 w.ex) 0 aBiw),

where u = [u]® and {D?;,Z}Ogg ~i<r are the tangent maps of the flow maps {?ﬁ}oﬁ <I<T
associated to (5.73) at A = 0 (the arrow is to indicate the time is recorded starting from x).
By Lemma 4.4 (see also Lemma 5.13), the {D?tj} are determined by the paths (x,(w) =

m(w(w)))refo.r (or its anti-development in R™). Hence (5.74) shows that (Jur]*)S" (w)
are objects completely determined by (x-(w))refo,7r], ([uo] )81) and (H /\)(()1).
(1)

By symmetry of the Brownian motion, we can describe the distribution of (|uz]*)y’ con-
ditioned on xr = y using (yt, Ot)e[o,7], Which is the stochastic pair deﬁning the Brownian

motion on (M, §) starting from y. The two path spaces Cy.2([0,T7, M) and C, 510,71, M M)
can be identified. Moreover, the distribution of y conditioned on y;r = x coincides with
x conditioned on xp = y. This means for almost all such path (Yr)refo,r) (W) =: B, it

is associated with a path (x¢)ie[o,1](w) = (Br—r)refo, 1) = B. So the stochastic parallel
transportation of u; along ? is well-defined and is given by

= Ur—4(Ur) Mo,
For any element X € Ty, F (]\7 ), let
(0, @), X = (X', X?).

Note that the orthonormal frames u; and Up_; have the same footpoint x¢(w) = yr_¢(w).
Hence X also naturally corresponds to an element Y(X) =Y in Ty, ,F(M) with

(0, @)5r Y i= (OpLuw(X1), Ad(U7Lu) (X)) .

We see that X and Y(X) are just the same vector expressed in different frame charts.
Denote by Y this map which sends tangents X € TuTF(M) to Y(X) € TUT,T]:(M) for any

€ [0,T]. Let (Fi, ty)oxts<to<r and (DFy +,)o<t, <to<7 be the invertible stochastic flow
maps and tangent maps associated to y (cf. (5.40)). The following is true.

Lemma 5.24. Let 8, X, Y be introduced as above. Then for almost all 5, we have
(5.75)  Y(DFpr(u,w)X) = D(Fyr—t(To, w)) 1Y (X)) = [DFOVT_t(UO,w)]fl(Y(X)).
Proof. By Corollary 4.2, for almost all w, the maps Fy (-, w) are C¥~2 diffeomorphisms.

So for almost all w, the tangent maps D(Fy1—+(Uo,w))™* and [DFyr—(Uo, w)] ™! exist
and are equal. For (5.75), it suffices to verify the first equality.

Write (6, @)X =: (X}, X?) and let
(X3, X3) := (6,@)y ! DF 1 - (g, w)X, V7€ [t,T].
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It is true by Lemma 5.13 that

(5.76) dX! = X2 0 dB,(w),
(5.77) dX2 = (u;) 'R (u; 0 dBr(w), uX}) uy.
Let

(YL ¥2) = (0, )5h Y (0, (X1, X2)).
Note that (O7_,) tu, = (Ur) tug. So (5.76) gives
dyl = (Or_,) tudXt = (Or_,) 'u, X2 0 dB, (w)
= —(Or_) X2 (Or_r) " uy) o (Urp) hurd Brop(w)
= —Y20dBr_-(w),
where 0B (w) denote the backward Stranovich integral. Similarly, using (5.77), we obtain
dY? = ((Or—r) " ur)dXZ((Or—r)Mur) ™
= (Br_;) 'R (uT 0 dB;(w), uTXi) Or—_-
= ~(Ur—7) 'R (Or_r 0 dBr(w), B, Y}) Ur .
Altogether, we have
dY} = ~YZodBr ,(w),
a2 = ~(Or-) 'R (Or-r 0 dBr—r(w), 07 Y}) Ur-s
and the solution (Y1, Y7.) is exactly (6, @), (D(Fo,r—t(Co, w)) 1 (Y(X))). O
As a corollary of (5.74) and Lemma 5.24, we have

Corollary 5.25. Conditioned on xp =y, the distribution of ([uT])‘)él) given by (5.74) is
the same as, conditioned on yr = x, the distribution of

- T .
(lurMS? == [DFo (B0, w)] " (luo] ) — fo [DFot(Vo, )]~ (HY)S) (B¢, e) 0 d By (w),

where od By(w) is the backward Stratonovich infinitesimal.

Proof. Consider the mapping
()5 () = (HN) (Or4(6r) o, )
from T,R™ to Ty, F (]\7 ). We have
() (ue, €2) © dBj(w) = ()" (uy, od By(w))
and its correspondence at TUT_i]:(]\?f) is —(H)‘)(Ol)(UT_t, odBr_i(w)). So, by Lemma 5.24,

| D (e, w) | (BN (w4, 0dBy(w) = ~[DFyr-1(0, W)™ (HN) (71, 0d Bri(w))
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and the conclusion follows by taking the integral with respect to ¢ on [0, T]. g

Let a®,y® and U° be the processes obtained in Theorem 5.17. Let (F} 4, )o<t; <to<T be
the parallel transportation stochastic flow of y* and let [DFy ;, (U7, w)] be the associated
tangent maps. By Proposition 4.1, [DF,(Uf, w)] is invertible for almost all w. Hence the
inverse maps [DFg, (U5, w w)]~! are well-defined. Corollary 5.25 shows the distribution of

([uT]’\)((Jl)(w) is the same as ([uﬂ*)él)(w). We define

(lurM§ (w) o F* := (lugp)$Y (w) o F* = ([ug )5 (w),

where

e (1) T
(L) = [DFg (55, w)] (tuoP)é”—fo[DF&A W) HN (05, e) 0 da (w).

So the differentiability of ([uT]A)él) oF* in s will follow from the differentiability of ([usT])‘)él)

in s, which is intuitively true by the differentiability of (in s) of af, Of and [DFg,(Uj )L
We will justify this and formulate ((|ur] )(1) oF#)" in the remaining part of this subsection.

Lemma 5.26. Let of, O}, g, Ly o, and Uf be as in Theorem 5.17. Fizx Ty > 0. For any
s0>0,q>=1and T > Ty, there are constants cy (which depend on so,q,s and ||g°|cs)
and ca (which depends on q, T, Ty and |g°|cs) such that

(5.78) sup Epx  sup |Al? <gAeCA(1+d§A($’y)),
se[—s0,50]  ¥™7 te[0,1]

where A = O‘f? (Of)/sa (gf)fsa IV,OLS’ (Uf); or (9,’@)((6?);)

Proof. By our construction, of = Sg O2dB; + g5 dr, where O° € O(R™) and |g*| <
csgsup V| for some ¢ that bounds supepo 7 {|s| |s’|}, sup{||Ricl|}. So,

q

21_‘1EP* sup |aj|? <EP* sup OsdB + 0Ty ™ (csoT sup |V])Tec0+T)

T tefo,1] T tefo,1]
=:(I) + co Ty (csoT sup |V])2ec0(+7),

where ¢, co are from (4.36). Let b be the Brownian motion in Lemma 4.16 for P, , 7, i.e.,

(5.79) dB; = db, +2(0Y) 'V Inp(T — 7,y%, z) dr.

Then,

q
(I) = Epx  sup
v T tel0,T]

JOS db, + 205 (B VInp(T — 7,y°, z) dr

fO db,

q
< 207! EP* sup
T te [0,7]

= (D) + (I)z-

+22q 1IE x| U }Vlnp —t, vz H dt




THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 103

For (I);, by successively using Doob’s inequality of submartingale, Holder’s inequality and
Burkholder’s inequality, we obtain

T
21—q(I)1 < C(q)p(T,nr:,y)IEH»y’I,THf0 0? de“q

N

T
8 2
< Cgp(T, 3,y) (Epy,ﬂn [ or ] )
< Ty "C()Ci(g)VT e,
where C(q) = (¢/q¢ — 1)? and Cq(-) is as in Lemma 4.7. For (I),, by Proposition 4.15,

21724(1),, < Eps

T 0
Vnp(T—t,y?, dt 1+d(z,
NT(eqso |V Inp(T—t,59,)| ><ec< (z.9)).

where ¢ is as in (4.38). Putting the estimations together, we obtain (5.78) for A = 7.
Next, we consider (5.78) for (Of)%, (gf)%. By (5.34) and (5.35), we have

(07)s = —Kv,a+(7) O},
(g)s = —Kv.as(r)gi + (U5) [ () V(F°y)] — Ric (G5 (T5) " [s()V(F°y)]) »

where
e 6) = [ (071 R (65302, 5305) o)V () 0
[ 01 (V@30 1) (530 0208) o)V ()53
Since O° € O(R™), |g°| < cspsup|V| and all |s|, |s'|, V| are uniformly bounded, it is clear

that (5.78) holds for (Of)%, (gf)’ if it holds for Kv 4+(t). Using (5.79) and (4.22), we obtain
Epx _ sup |Kvqs(t)]?
v=T 1e[0,T]

q
< 30! EP* sup

t
| @27 R (20282, 53 0) [s(r) V(P )
te[O T]1J0

q
+ 3771 (2sup | R| sup | V) Eps«

y,x, T

T
jnvaT—uﬁwnﬁ
0

+ 397 (sup |V R sup [V]soT)?,
which has the same bound type as in (5.78) by a computation similar to the one for (I).

To verify (5.78) for Xy ,s, it suffices to check it for K; := S(t)<KV,aS (1),das) since

Ly as(t) = f (T3) [ (M)V(F*y)] = Ric (U3(T5) " [s(1)V(F*y)]) — K.

0
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By (5.79) and (4.22),

31 qEP* sup |Ky? < EP* sup
te[O T T te [0,T]

f<Kv (7). 024

q
+ EP* sup

t
J (K qs(T), QU;IV Inp(T — T, yg, x) dr)
te[O T

0
+ EP:T . Sup J (Kv s (1), 85 d7'>
te[0,T]

]
—: (ID)1 + (W) + (ID)s.

For (IT);, it is routine to apply successively Holder’s inequality, Doob’s inequality of sub-
martingale and Burkholder’s inequality, which gives

2q

((I)1)* < (T, y)Eps tesgr;

f (K e (7), O340,

2q
<C(29)p(T,z,y)Ep, , ;

f (K e (1), 02D,
0
T

. [CKv (1), O

(2q)C1(2q)T‘1EP* sup |Kv as (7).
T re[0,1]

q
<C(2¢)C1(2¢)p(T, z,y)Ep, , ,

For (II)2, it is true that

2q

T
(e <28y sup [Kyae () Bey_ | IV t0p(7 = oyt ar
7 rel0,T] v&t1Jo

For (II)3, a routine calculation shows

(IT)3 < (esp sup \V|)qTqIEP* SElp] |Kv a0 (T)]%.
0,T

Putting the estimations on (II)1, (II)9, (IT)3 together, we conclude from Proposition 4.15
and the estimation for Ky os that (5.78) also holds true for K;. This shows (5.78) for Ty ...

Finally, to check (5.78) for (U§)), (,w)((U5)), it suffices to consider the latter, which
holds true by the above conclusion for Ky ,s since, by (5.39),

0(Yy) = s(t)(U) " V(F°y), @(Y") = Kvas(t).

Lemma 5.27. Let a® be as in Theorem 5.17. Fort,t, 0 <t <t < T, we abbreviate
[DF},(Uf,w)] == [DF (55, w)],
[(DFtst)( 0:W)] = (eaw)iif[Dth( iaW)](eaW)z;zl'
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Let Ty > 0. For any so >0, ¢ =1 and T > Ty, there are constants cp (which depends on
50,q,s and ||g°|c2) and cp (which depends on so,q,s, T, Ty and |g°|cs) such that

swp Epe  swp |[DF5@5w)] 7 sw |[(DF) (05 w)]

se[—s0,50] V™7 O<t<t<T o<t<t<T

(580) < QFeCF(lJngA (xry))_

[

Proof. For (5.80), it suffices to consider the second estimation. Let s € [—sp,so] and
t,te [0,T] with ¢ < t. For (vo,Qo) € T,F(R™), let

(Vi-r, Qir) 1= [(DFE) (55, w)] ™ (vo, Qo) V7 € [t,1].
Then Lemma 5.13 shows that z, := (v,, Q;) satisfies the It6 form SDE

dzi_r(w) = Z (=M (U)z¢—r (W) da s (w) + [M;(U2)])%2—r (W) dr) + N(U5)z—r(w) dr,
j=1
where M, N are given in (4.27), (4.28). In terms of the multiplicative stochastic integral,

<—s,] s -
. LASMG () 4T (w)-N(3) d }ZO.
Note that |g°| < csosup|V| for some c that bounds supypo r1{[s(t)],[s'(¥)|}, sup{|Ric|}.
Hence, there is some ¢’ which depends on ¢ and sup{|R|, |[VR]|} such that

The remaining estimation for (5.80) can be done by following the proof of Proposition
4.17. O

Lemma 5.28. Let o® be as in Theorem 5.17. Then ((DFot)_l)te[O 75 ((D/FES_ )telo, T]
are C' in the s parameter. Let Ty > 0. For any so > 0, ¢ =1 and T > Ty, there exist e

(which depends on so,q,s and |g°|cs) and ¢ (which depends on so,q,s,T,To and |g°|cs)
such that

[ M, (653) d(03d b )J-N(B2) dr

H[(DFf,t)(GzaW)]_IH < ecsoTsup|V] e{

— _ B q
sup Epe sup |([(DF) @5 w7V, sup |([(DFg,) @5, w)] s
s€[—s0,50] =T te[0,T] te[0,T7]

(5.81) < cpeTUHiprw)),

Proof. The C! regularity of s — (DFS,S)*1 follows from that of s +— (D’FE:)—1 since
[DEF, (05, w)] ™ = (0,w)55; [(DEFg (@5, w)] 7} (0, w53

and s — (0, w)z_jsl is C'. By Theorem 5.17, (DF(it)( s,w) is C! in s for almost all w.
Hence [(DFOSt)( s,w)]~!is also C! in s by the identity

[(DES ) (U5, w)] ™" o (DF,) (U5, w) = 1d.
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For (5.81), it suffices to consider the second estimation. For zg € T, F(R™), let
Zy .= [(D/FOTJ_:T)(US,W)]71ZQ, V7 e [0,t], Vs € [—so, So]-
It satisfies the SDE

dz;_,( 2 SOz (w) A2 (w) + [M (0P, (w) dr) + N(U2)z_ (w) dr,

where (Mj)lgjgm,N are given in (4.27), (4.28). For (z}),, := (dz}/ds)|,, its SDE is

= i (=M (07)(z ) (w) A3 (w) + [M; (O] (27 ,)(w) dr) + N(U7)(z ) (w) dr

+ 2 = (My(03) dayd (w)) 28, + (5 [M; (0 + N(©3)), 2, dr.
j=1
Let O° = ((OS){)ij, g = (g%7)j<m. They are differentiable in s by Theorem 5.17. Let

(Af)2 = 3 (MG ©3)L00] + M) ((02)])L) v < m

j=1
(AD)2 o= 3 (M), + (IML12)) + (NOD), —2 3] My)(03)] (AL):.
j=1 lj=1

By Duhamel’s principle, we have

(2), = [[(%)(Ua,wﬂ‘lfg [(z’ﬁfbmi,w)}(A§”)i<w>[<BF§;><Ui,w)]‘ldﬁi} Z0
[[(DF&)( sl |

0

t

This means
l

([(DFg) (@5, w)] "), = jo [(DE)(©5,w)] ™ (AV) () [(DFE) (@3, w)] ' d B,

+ | R )@5,w]) ™ (A9 () [(DF) (3, w)] i
=: (I)f + (IL);.

For (5.81), it suffices to show the same bound type is valid for
(D)= sup Eg sup |77, (I):= sup Eg«  sup [(IDZ]".

s€[—s0,50] Py.a, T tef0,T] s€[—s0,50] Pyar te[0,T7]

This will follow from Lemma 5.27 and Proposition 4.15. Clearly,

_ (i)\ s q — 71129 1112g 1119
Be; . S0P, (AP )| < emllpy  max{ sup |G sup [OD:[T, sup (e}
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where ¢y depends on the norm bounds of {M;} and their differentials. Hence by Lemma
5.26, there are constants c, (which depends on sg, ¢, s and |g%)|¢s) and ca (which depends
on q, T, Ty and |g°|¢s) such that

(5.82) Ep+ Sup H A(Z )HqggAeCA(1+d§>\(zvy))'
y,:c,T
Let
b -1 s e —— s -1
;= | (DR @5 (A 0) [(DFE) @] T,

V)i = | (DR @5 w)] (A7) 0 [(DF) @] (079 gl = 7y2.)) d,

where b; is the Brownian motion in Lemma 4.16 for P, ; 7. Then

Egr sup (D77 <29 B sup [(IIDF|? + 2% 'Egs  sup [(IV)7]7.
Fyar 4o €[0,T] ¥2T 4e]0,T] v& T e[0T

As usual, we can use Holder’s inequality and Doob’s maximal inequality of sub-martingales
to deduce that

— 2
(Epx  sup |(IID)]?)” <p(T, z,y)(
v T 10,17

29 s |12q
5= 7) By, | (D

Let C1(+) be the constant function in Lemma 4.7. We continue to compute that

s 112
.y

T _ s 2 q
<ci0Be || (OR8] (AP [(DFE ) )] 1H dr
1
2
i s s —118¢ =
C1(29)T7 <EPZMO<§1<1&T{[DFt,t( L) Bee ., S0 H H ) :

which has the same type of bound as in (5.81) by Lemma 5.27 and (5.82). Similarly,

3
(EP* , sup (IV)§|q> <Bps  sup [[DF(6, w)) 7" Bpo sup. H H

t€[0,T] =T o<t<t<T B veT
3q
‘on] [ 19mp@ 0,01 ar

0

which also has the same type of bound as in (5.81) by Proposition 4.15, Lemma 5.27 and
(5.82). Altogether, the same type of bound as in (5.81) is valid for (I). This is also true
for (IT) by Lemma 5.27 and (5.82) since

)

_ —_— 2q __ 2q
(Bor_JOD317) < TEpe  sup [(DFL)@; w7 " Eer , sup [(A):(w)]

T 0gt<t<T vl rel0,7)

O
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With Lemmas 5.26-5.28, we can deduce the differentiability of (Dw([uTV‘)(()l)) oF?in s.

Proposition 5.29. Fiz Ty > 0. For any ¢ = 1 and T > Ty, there are cg (depending on
50,48, |§°c2 and |X°|c1) and cp (depending on so,q,s, T, Ty and ||g°|cs) such that

- H(DW([UT]/\)(()I)) oF? ! < QFQCF(1+d§(xvy))'

(5.83) sup Eg

%
P
s€[—s0,50] L

The one-parameter of processes {(DF([UT])‘>(()1)) o F*} is differentiable in s. Let

/
Vv Dr(lur M) = ((Dr () o F7)

S
For any ¢ = 1 and T > Ty, there are cp (depending on so,q,s, |g°)cs and [X0)|c2) and cf
(depending on so,q,s, T, Ty and ||g°||cs) such that

(5.84) sup  E HVST,V,SDW([UT]’\)(()DH(] < et (1+d5(@0),

s€[—s0,50] P:’I‘T
Proof. Recall that
(Dr(lurM§”) o F* = Da((lur]M)y” o F*) = Dr((lug )5 (w)),
where
T i
(Mg (w) = [DF&Twa,w>]—1<1uo1k>é”—fo [DFS, (G5, w)] " (HN)S (05, €5) 0 dai (w).

Let

(I )G (w) = (8, @) ((tumél’(w)) C (g = 0.0 ((olh)EY) -

It is easy to obtain the following It6 form expression:

(L) () =[(DFgp) @5 w)] (g

T
—jo [(DFS ) @5, w)] (= ((HN (7, e0))es dt, = () (07, dw(w) )

For Proposition 5.29, it is equivalent to show the differentiability of s — ([u‘}])‘)él)(w) and
estimate the conditional L? integrals of its differential process and itself.

The estimation in (5.83) is valid since

q

(e ) o (L )P ()

sup E@*

s€[—s0,50] v, T

Y

< sup E@*
s€[—s0,50] ., T

where the second term has a bound in (5.83) by following the argument of (4.50) in Propo-
sition 4.28 and using Lemma 5.26 and Lemma 5.27.

The processes o, 0° and [EFE( s, w)]~! are all differentiable in s by Theorem 5.17.
Lemmas 5.26-5.28 show that af, Ty o, (U7)}, [(DFg,) (U5, w)] ™ and ([(DEFg,) (G5, w)] ™),

S
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all have bounded sup L? (¢ > 1) norm with respect to P, , 7. Hence s — (|u ]A)(()l)(w) is

y Ly L ® T
also differentiable in s and the differential is
(1) ()
= ([(DFg 1) (G5, )]~ )suu] )

T

- | (PR ws.w ( (EN @7, e)es dt. = ((HO)S (07 dwiw))
T

- | (DR w3 ( () 5 e0) e di.

W(<HA>8”(U§, ) dmi(w) + @ ((HN(0F, Xy 1)) )
=: I(s) + II(s) + III(s).

This process has a continuous version in s by Kolmogorov’s criterion (or by continuity of
a’, 0%, Xy 45, (UF)5 and [(DF(ft)( &, w)]~! in s using Theorem 5.17).

For (5.84), we do the conditional LY estimations for I(s),II(s) and III(s). Clearly,

R

q

Y

Epr M) <Fpe  sup |([(DFE, )5 w)] 7).

s
y,x, T y:CTtEOT

which, by (5.81), has a bound as in (5.84). Put

T
I (s) = — L ((DFg) @5, w7, (= (D07 e0)es dt, = () (07, g3 (w)d)) )

T
Mas) = = | ((DF5) @5 1Y, (0.5 () (05, 0faBi(w)) )
For II(s), we have

q q—1 9 T q
Epe ()" <2 <E o ()| + Epe | Ha(s)] )

As before, we can use Holder’s inequality, Doob’s inequality of submartingales and Burkholder’s
inequality to obtain some C(q, T) depending on s, q,s, T, |¢°cs and | X2 such that

Eg  [(s)|” <C(g, )Ty (E sup |([(DFg,) @5, w)] |

szteOT

+

(g sup | ([(DFg) (5, w)] ™),
¥ te[0,T

sz

2q 1
"B ef201 IVInp(T—rivh0)| dT})2> ’

which has a bound as in (5.84) by Lemma 5.28 and Proposition 4.15. The same argument
applies to III(s) and we obtain some C’(q,T) depending on sg,q,s, T, [¢°]cs and |X°]q2
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such that

By (o) <0 " (B | swp |[(DFg@5,w) 7' [

Fy, yZTtEOT

{ + (B (2450 IV Inp(T—7.y9,2)] df})%

y,m,T

<<Eﬁ* [P ey

y,x,T
)}

[ T 1
dt)? + (Egx J |y o 9 dt) 2
x, 0

f\ CRIRICR

which also has a bound as in (5.84) by Lemma 5.26, Lemma 5.27 and Proposition 4.15.

We can define (D (|ur]? ) (1) ) o|F*]* for all . Let V, F** and s be as in Section 5.2. For
y e M, let (lye 1M (w), |G (w ))te[o 7] be the stochastic pair in (M 07 (M )) which defines

the g*-Brownian motion on M starting from . Followmg Theorem 5.17, we can extend
the flow map F** on y to be a map |F y])‘ on paths (|y¢]*(W))se[o.r] so that

i) = (IF5 P (0)) (@), Ve e [0,7],

and its horizontal lift (|0;]*(w)) with (|G§]*)% = 0 are such that

te[0,T]
d%(lyﬂA(W)) = Ty o () = s@OLOTNTHIY) T V(EF* ()

Accordingly, we denote by |af]* the anti-development of |y]* and let (|
the stochastic flow map corresponding to the SDE

dBy = H*(By, od|af](w))
with tangent maps (D[Fiﬂ/\)0<t<f<T' We will omit the upper-script at s = 0. For x € ]\7,
we define |[F*]* on C,([0,T], M) conditioned on the value of A, i.e.,

[F1N(B) = [F3, 1NB), VB e Cu([0,T], M).

Let (|x:]*(w), [ut])‘(w))te[O’T] be the stochastic pair in (]\7, ng(]\/\j)) which defines the §*-
Brownian motion on M starting from x. The correspondence rule in Corollary 5.25 shows

that conditioned on |x7|* = y, the distribution of ([uT]A)g\l)(w) is the same as, conditioned
n |yr|* = x, the distribution of

(lur ) (w) :=[D[Fo 1 (Bo]Y, W)~ (luo M)
T
- f [D[Fo, (B0l w)]HHY Y (16, 0d By (w)),

0

A
tt] )0<§<E<T be
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where odﬁt(w) is the backward Stratonovich infinitesimal. Then we define

(Dr(lur) V) o [F1 := Dr((lurIMSY o [F*1Y) = Dr((lus M) (w),

where
(a5 () = [DLFg B3 w)) (ol
(5.85) - DL EP W) (Y (071 o D).
The proof of Proposition 5.29 works for |F*]*, which gives the following.
Proposition 5.30. For each A, the one-parameter of processes {(Dw([uT]A)g\l)) o|F*]*} s
differentiable in s. Moreover, (DTr([uT])‘)g\l)) o |[F*]* and the differential stochastic process
Vit Dr(lur ) = ((Dm(lur ) o (1)

conditioned on |x7| =y are L (q = 1) integrable, locally uniformly in the s parameter.

For later use, we list and reformulate some differentials related to VT,V’SDW([UT])‘)E\I).

The upper-scripts A in VA, R*, Ric?, 6}, @ and (6, )* are to indicate the metric §* used.
Lemma 5.31. We have the following for almost all w and for all t € [0,T].
i)
(laf 1o = X3.5(1)

= f (([UO]/\)fl(s/(T)V(y)) — Ric)‘ (TV,[yV‘(T))> dr — L<K<\/’B(T)’ dBT>’

0
where Yy |y (1) 1= s(T) |G |Co]M) MV (y) and
K.5(7) = | (0 B ([0:P 4B Ty 0 () 071

+f0 (61~ (T (51 ) BY) ([5:1 i, Ty gy (7)) 1051 7.
ii)

(0, ) (110 = (OBl V(). K (1)
iii) For s — vj € HT s F(M), let v := [D|FZ, M (U31), w)]~'vi, 7 € [0,4]. Then

0y = [ [DLF (0 )] (8 (519))
where

@& (vr, ([051M)6) =V (vr, (1851M6) HM|U- 1Y, 0dBr) + VA (v ) HX (|61, 0d X3y (7))
(5.86) + RMH (|6, 0dB,), (|[UE]1M)6) vr-
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The Ito form of (vg)g in (0,w)-chart is

’ —_— —

(0, sy 2 () = j | DLE P (B0, w) | {6, ) @1 (vr, (15 1)5)
(@ v (105190, 85 v (15319))

where @ (v, ([B£1N)5) is & (vr, (|US]Y)h) with the Stratonovich infinitesimals od By,
odTQ/,B(T) replaced by the Ito infinitesimals dB,, dTva( T),

A (vr, (02))) = A( (vr, (|05 ,el)) e; dr+ 0* ([H(UT,ei),(@ (vr, (|05 )O,ei)DdT,
OF (v (1U519) = (10N B (1041 s, (6,10 (@ (v (15519 0))) [0,
([H/\([U] ,€i), ® (VT,([US] )O,ei)D dr, and

@ (v, (0310, €) = V(Q)’A(vm (1531)0) B[ e0) + RMHMU-1, e0), ([051Y)o) vr
+ VA v HY|6-1, K3 ges).

Proof. Without loss of generality, we can consider the case A = 0. The i), ii) are straight
forward consequences of Theorem 5.17 reporting a® = B in the formulas in Lemma 5.12
and Corollary 5.10. For iii), a comparison of the SDEs (5.41), (5.43) in Lemma 5.14 with

that of the tangent maps [DFy ]}, [DF\O;]_l shows that we can use Duhamel’s principle
to formulate (v§)(, (6, @), (v§), as above. O

Proposition 5.32. With all the notations as above, then

SR / T
<(luSTP)§”(w)> - f [DLF0 (1ol w) ™ {@* (161N, (15514))

0
(5.87) —(PAABI ED AT, ) 0 dBr —(HN Y (15,1, 0d Xy 5(7)) |

where & ((|0-] )(1) (B)g) is as in (5.86) replacing v, by ([UT]A)S) and
(1615 (w) =[DLE 21D w)] ™ (o)

T
- f [DIE- (16,1, w)] 7 DO (5, od By (w)).

T
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In (0,@)*-chart, we have the Ité integral expression

/

((9,wmg((tu%wé”(w)))o

T, . 1 .
- j | DIEM (Bl w) | {0 =) @t (165, (15:1%)
(B (oY, (o0, &7 (oMY, (1031M))
+ (= (VMO ED (o1, e»)ei dr,
= (VMO EN (0,1 dB,) + = (N (01 42y (7)) ) |-
Proof. Differentiating (5.85), we obtain
((tw;]w&”(w))O — (IDLE 2 BE, W) ) (o)
T
- | ADURs QB ) (11 0dB )
T
- fo [D1Fo. ([Tl w)] (VAT HN ([, ) 0 dBi(w)

T
- fo [D[Fo, NGl w)]HEY D (160, 0d TR (t,w))
=: (I) + (I1) + (III) + (IV).
By iii) of Lemma 5.31, we have

T
(1) - f [DLF 1M (T61 w)] ™ @ ([DLE 1M (Tl w)] ™ (o), (15515 ) -
ForO<7<t<T, put

Vg i= [DLE (01, w)] 7 HENS ([0, 0dBy(w).

We continue to compute that

J f DI Fo (] w)] ™ @ (v, ((551))

=~ [ U P 0] @ ([ v (0219

T

Altogether, we obtain

T
(D) + (IT) =L [DLFo. MG w)l ™ @ (155, (1531)0)-
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Hence (5.87) holds true. The It6 form integral expression of ((6,w)ss (([u%]/\)((]l)(w)))zJ can
be obtained using the It6 form in iii) of Lemma 5.31. O

As a corollary of Proposition 5.32, we can further express the differential
1 1
((Lur )5 o 1B = (M) ()

using (|u¢]*(w))sefo,7] and the tangent maps {[D[?Lﬂ)‘([ud/\, w)]}o<s<i<r Of the flow maps
(L7

(Jug]?, w)}o<y<i<r associated to (5.73). We only give the Stratonovich form. Let

K\)‘,”%(t,w) =

| Qs 8 (1) B (), Lur 5P ) sV )] -1

0

+ jo (L) T (s BY) (L2 1es, lug—+ 1M ([ur ) [s(G)V)]) L1 a7,
X5 (7) =

T—7 T—1
f ((lur1) (s OV () = Ric* (lur—e M (o]~ [s()V(y)]) ) dt — . (Ky'p(t,w), dBy).

0

Then I%/%(T) corresponds to I{\/, p(T — 1) and they have the same distribution. Put

(1051 = (0, )0 (ST = ) (LarP) V() Ky (T = 7).

Corollary 5.33. With all the notations as abowve,

(P @),
T
- | DI P ] {0 () (2 )0)

(TP ED (s 1Y,)) 0 dBr (w) + (HY ([ur]?, 0d Ty (1) §
where

A (), (M) = = VYO ()Y, (w2 6) B ([ur ], 0d By (w))
~ M (lu )M HE (Jue om‘}g(ﬂ)
— RMH(|u Y, 0dB, (w)), ([05.£1M)6) (|u
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In (0,@)*-chart, we have the Ité integral expression
(=) (i w))
T
= [ IPUF P ] {620 @ (a1

0
+ (B ()Y, (o 1M0), 85 (LMY (s 1))
+ (2 (P P EN D (L, ei))es dr,

(VA3 )0 (NS (e dB)) + 2 () ([ue 1 X (7)) ) | -

/

!/

Proof. Note that (([uST]A)g\l)(w))g conditioned on |x7|* = y is the same as (([u;fp]A)g\l)(w))O
conditioned on |yr|* = z. The formulas follow by Proposition 5.32 using the correspon-
dence between

[DIF 1M ([ug] w)] and [DIFr_; 7 |01 w)]
]

5.6. The differential of \ — p*(T,z,-). We will show Theorem 5.1 in two steps, namely,
the k = 3 and k& > 3 cases. We begin with the k = 3 case. As we sketched in Section 5.1,

the strategy is to show zi)}’l defined in (5.15) is a O vector field, then derive a conditional
path-wise formula of Div)‘z;’l(y) and use it to give the estimation in (5.2).

Lemma 5.34. Let)\e( 1,1) — g* e M3(M) be a C? curve. Letz e M, T eR,. The
map 61 Y — CIDA( ) defined in (5. 13) is a locally bounded C* functional on C* bounded
vector fields Y on M. Consequently, {ZT (y)} is a C* vector field on M.

Proof. Recall that
AV W) = E (¥ (ber P (w), Dr(ur ) ()| Ixr M w) = ) = ()22 (0)-

Hence,

O] <" W] < B [(lurh )] = ————Fprs_[(lur]") w)]-

T X y) T y T
By Proposition 4.28, there are ¢} (depending on |g*|c2 and [X*|c1) and ¢} (depending
on T, Ty and |¢g||s) such that

ol PTG 1 1y (2y).
H(I>>\ H F;;;’,‘,TH([UT]A)A (W)H < mgq)e ot

Txy

where the last term is locally uniformly bounded in the y-coordinate. This shows the map
Y — 51 (Y) is locally bounded.
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To show 5; is O, it suffices to show for any flow F** generated by a smooth bounded
vector field V on M, s — 6; (Y)(F*y),y € M, is differentiable at s = 0 and the differential

@BV F)h = ST )E)

s=0

varies continuously in y. Let [Fs]’\ be introduced in Section 5.5, which extends F* to

Brownian paths starting from z up to time 7" using the auxiliary function s. By Proposition

5.23, @i o |F*]* is absolutely continuous with respect to @;\. So the change of variable

comparison in Section 5.1 works, which gives (5.20), i.e

N 4P o [FS])‘> p(T,z,y)  dVol*
P

—1 s 1 s T
O, (Y)(Fy) = E- O\ (Y, w) o |F?|" -
A( )( y) ]p;’ny ( A( ) l ] dﬁi A t,:c,FSy) dVol* o F's

(y),

where
(Y, w) = Y (Ixr]N(w)), D (w)),-
By Proposition 5.30, the process ®} (Y, w) o [FS])‘ is dlfferentlable in s with
(5.88)
(@} 0 [F*TN); = (Fyesny Y (1510, Dr([ug 1), + Y (15 1), Vi o Da(lur ),
and this differential is L? integrable conditioned on x7 = y fc for every ¢ > 1, locally uniformly
in the s parameter. By Lemma 5.22, for 5 € C, ,([0,T1], )

Lo PP ) Proyar P ) (L2, ) Vol o B
dP) P, 7 pPMT,z,y)  dVol®

(y)

By Proposition 5.20, dPp., , 7 o [F*]*/dP, , 7 is differentiable in s with

! =5
(dPFSyxTO lFS] /dPya:T> (dPFsyxTO lFS] /d]P)yJ:T> '5T7
where

ET——f< ), dBy(w)) + = f<gt ) g (W) d.

and both (dIP’Fsy’x’T [FS]A/dIP’yI r) and &7 are L7 integrable for all ¢ > 1, locally uni-
formly in the s parameter. Using Holder’s inequality, we conclude that

— _ /
(@) o [FT - (dF; o [F*1/dPy) )
is also L9 integrable for every g > 1, locally uniformly in the s parameter. Thls allows us

to take the differential in s under the expectation sign of the expression of ¢ )\(Y)(Fs )
In particular, this shows s — 5;(Y)(F %y) is differentiable at s = 0.

Let us derive a formula for (6}\(Y)(Fsy))6 Note that |g°]* = 0 and
(g 1Ma(w) = (B0l [$' (V)] = Rie* (161 (1Be1) (VW)
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Using the correspondence between |U;]*(w) conditioned on y7 = x and |[ur—_¢]*(w) condi-

. C . =0 =A .
tioned on x} = y, we have the distribution of £, under P, » 7 is the same as

T
Erva == | S0V xr1) = Rl (1) TV (s ). d o).

under szT? where s is given in Section 5.2. So, by (5.20) and (5.88), we have
@O E D) =B ((Fy(ur¥: Dr(lur] >§”>A + (Y (171", Vv o Dr(lur]H),
+ (Y (Ixr]"), D (|ug >)\8TVS>
(5.89) = Epn (WY, V)(w)),
z,y,T

where we omit the upper-script 0 of x,u and Vv s at s = 0 for simplicity.

To show (6}\ (Y)(F*y)), is continuous in y, we compare it with its value at nearby points.
Choose another smooth bounded vector field W on M and let "F be the flow it generates,
where we use the left upper script to indicate the parameter associated with W. As before,
we can extend "F to be a one-parameter of maps |"F]* = {|"F,]*} on §*-Brownian paths
starting from x up to time 7. Let ["a]*, [TO1, ["g]*, [N, I"y]Y, |01, (|"O]1). denote the
corresponding stochastic processes of |"F]* in Theorem 5.17. Then a change of variable
argument for (5.89) with |"F]|* shows that for z = "F(y),

—1 PNV d]fD o"FIM\ pMT,z,y)  dVol?
BN =B (%(Y Vel e )MT,I,Z) W

Since p* and Vol are continuous in y, for continuity of (5§\ (Y)(F*y)); in y, it remains to
show the conditional expectation of the following difference tends to 0 as r goes to O:

A dP o|"F]*

dP)

VLY, V) o 'FI* - — UL(Y,V)

= (W V) I'FP - w1, V)

=:"([)1 - "(D2 + "(ID)1 - (IT),.

For this, it suffices to show

(5.90) imE,  ["(D1]” = 0 and lIm By |" (> =0

r—0 IFDm,y,T Pz ,y,T

=\
IP "F P, o |"F*
ar Ol [ OLA P eivv
P P

T

since E_ B " (I)2|? is locally uniformly bounded in r by Proposition 5.23 and E@A |(11), |2
y, T

z,y,T

is bounded by using Proposition 5.20 and Proposition 5.29.

Note that |Y],|VvY| are locally bounded at y and the difference between Y (z) and Y (y),
VvY(2) and VvY (y) under parallel transportation along (2 = *F(y))[0, i3 bounded by
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a multiple of r. Using this, (5.89) and a standard split argument by Holder’s inequality,
we see that to conclude the first property in (5.90), it suffices to show

_ - - 4
") = Epo ([€rvso I"FI* = E7ve ) —0, r—0,
Z,Y,
_ 4
") i= By ([Drllur)Y o TFIN = Dr(lur)y| ) —~0, 10,

_ 2
"V)i= Ep (|VoveDr(urM)Y o 'F — Vi D <tuﬂk>&”\)~o,mo.

Let
T -
ErolFP = = | (B0 [ OV )]~ Ric (BT OV, el
1 (T -
— =5 | ¢, dre).
For "(III), we have

2.7(1) = 2-Ep ({E‘}or *—EOT]“)

N — 4
< E. ]§0< ([ O — 14)dBy(w) + g1 dt)|
y
_ 4
E@ !So< [&16(w) — (L&), dBr(w)))
=: "(III); + "(III),.
For "(III);, the usual argument using Lemma 4.16 and Burkholder’s inequality shows
2
5737 (111), ' f T - WP ()| dt
- 4
FEp j 2 (&) [ [IFOT — 1d] [V I p\(T — ¢, [y (w), )| de
B [ g liTer a

Note that there is some constant C' which depends on |¢*|c,s and sup{||V|} such that

«—

1"&: 1 (W), " (g7 1M)6(w)| < O
Hence

37%-T(I), < (Cr)°T* + (Cr)'T?Epn  sup || ro* - 1d|*
v:@.T 1e[0,T]
1

2

+<zc7~>4(EPA up [FOT — 14 By A7 -] )

v,2,T e[0T v,z T
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By Lemma 5.26 and Lemma 5.28, for any g > 1, there is some Cj(q,T") such that

Foul = lou| < Ca(a. T

]E@ sup
v:@T 1e[0,T]

Using this and (4.38), we conclude that "(III); — 0 as » — 0. Similarly, using (4.41),
Burkholder’s inequality and (4.38), we obtain some C3 depending on T, d(z,y) such that

2

T
"), < E (& 1™6 — (&M dt
y,x, T 0

T 4
cEp | [ (@ - (BP) 208 VA T — Ly ) e
y,x, T 0 A
T(|=S —s 4 r(|=s —s 8
< CQEFA < sup H (lgt-l)\)é) - (lgt])\)éu + sup ” (lgt])\)é - ([gt])\)()H ) .
v, T\ te[0,T] te[0,T]
The argument in Lemma 5.26 shows there is some C3 depending on [¢*|cs such that
Ex sup (18510 — (1g51M0]* < Cs - Epy sup [ = o)
veT 4e[0,T] Fyam e
< Csr?  sup pr sup H Ut])‘);Hq.
w€e[—ro,ro] Y= T te0,T
This immediately implies that lim,_,o " (III), = 0. For "(IV), we have
4
"(IV) < Const. - Ep ( (IrarM)g” = (Lur ) ) -
y x,
Note that
T
(0,0) o (Tur MY = (DI Fo r (7001, w)] ™ ([ug])S +f [D]" Fo ("ol w)] ™!
0

(w((HM&”(VUA D)es dr = (HN (O dlaT) ) -
By Lemma 5.26 and Lemma 5.27, for any ¢ > 1,

i

—_—

(D] Fo Mo, W)],lHq - Tgerc(HdgA(x,y)),

sup E@A sup

re[—ro,ro] " ¥®7T te[0,T]

)

where "¢ depends on 79,q,s and |g*|c2, and "¢ depends on rg,q,s, T,Tp and [g*|cs.
Moreover, by Lemma 5.26 and Lemma 5.28,

Ep swp [Iar = e < Curt,
v, T 1e[0,7T]
— —— i q
Ep  sup |[DI Fod Mol w)) ™ = [DLR (0ol w)] ™" < Cor,

v.2.T ¢e[0,T



120 FRANCOIS LEDRAPPIER AND LIN SHU

where the constants Cy, Cs depend on |g*| 2. Again, a standard split argument using these
estimations and Holder’s inequality gives lim, " (IV) = 0. To conclude that lim,_,o"(V) =
0, we see from (5.87) that it suffices to show for any ¢ > 1,

_ q
EPA sup HAt o - AtH < Cart
v.e, T 4[0,T

for some Ca depending on Hg>\”037 ”X”C'z) T and d(CE,y), where A; = (lgt] ) (lot] ) 0’
(15515, (164] )g\) or [(DFy4)(|Uo]*,w)] 1. Using Lemma 5.11, this can be be reduced to
the cases that A; = |}, |U¢]* or [D|Fo]*(|Uo]*, w)] =, which were shown as above.

Let C’ be a bound of |[dVol* o "F/dVol*(y)| for r € [—rg, r]. By using (5.69), we obtain

_ 2 2
< 20| E. 7 ) 1| + Eﬁx X
dPy vat | dVol

(y) —1

ya:T

—: O’ ("(VI) + "(VII)).

Clearly, "(VII) — 0 as » — 0. For the second property in (5.90), it remains to show
"(VI) - 0 as r — 0. Following the proof of Proposition 5.20, we obtain

dP?;Pg I _ (-3 08P, aBe )+ S5 I8P OIR a7} _ v o).

and

CEr(w)). = "Er(w (— f (g Y (w). dBy(w)) + - f g, " ) dt)
_. TET( ) rgT

The usual argument using Lemma 4.16 and Burkholder’s inequality shows that for every
q=1, Eg ‘TST(W)’q is locally uniformly bounded in r. Hence "(VI) — 0 as r — 0.
y,z, T

Altogether, we have shown the map Y — Ei(Y) is a C! locally bounded functional on

C* vector fields Y on M. Hence there exists some C* vector field z%’l on M such that

A
= Y (y). 27" (v)),-
This shows zi"l(y) = z%l( ). Thus {z?l(y)} forms a C! vector field on M as claimed. [

Lemma 5.35. Let A € (—1,1) — ¢g* € M3(M) be a C3 curve. Let z € M, T € R.. For

any smooth bounded vector field V. on M, let s, V%’,v,s; ?T,V,s be as above, then
(5.91)

V' ) = E (Vv Dr(lur)y () + Dr((ur) @) E ry,s(w)| e w) = v)
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As a consequence,

Div'z) (y)

_E (tr (V > Vv e Dr(fur) ) (Dr(lurM§Y, %[uT]A JO Ts’(T—T)dE>A

«—

T
+<DW<[HT]/\)&1)7;J s(T—T)[uT]A([uT]/\)J(Ricf‘uT]AyldBT%\
0

per A (w) = y) .

Proof. Let Y be a C* bounded vector field on M. By Lemma 5.34,

(5.92) 3,(Y)(y) = Y ()25 W),
where all the variables 6/1\ (Y),Y, Z%’l are C! in y. Hence
(5.93) V@ ())() = (VY (). 227 (1), + Y (1), V2 (1)),

Let F* be the flow map generated by a smooth vector field V. Then

/

V@) = (B0 (Fy))

0
It was shown in Lemma 5.34 that

(B)FD), = E (T gy ¥ DL, + Y (er ), Ty o Dr(lur 1),

(5.94) (1), Dr ()W), Erve| Ixrl ) = ) -

Applying (5.92) for the C¥~! vector field VMY (instead of V) gives
1 A
E ({3 ey ¥ Dl ), | e Y (w) = y) = (VY (), 723 )
Report this in (5.94) and then compare it with (5.93). We obtain

Y (), V7 (),
= B (< (o), Vi o Dr(lur 1))+ Y (Ber ), Dr(lan M)y, E | berl (w) = )

= (Y(¥), E(ViyoDr(lur) P (w) + Dr(lur) () Erv.o(w)| lxrl @) =) ) -

This implies (5.91) since Y is arbitrary.

The divergence (Div)‘z%’l(y)) is just the trace of the mapping V(y) — VV( )zél( ). Put

v = - f<s ) V(). 4B,
s f (Rich ([, P (Lur 1) s(T =)V (1), d B .
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Then
(Div*2y" (1) = E (tr (V = Vi y Dr(lur M) (w)) +

2

St (Vo Drlur ) () E o)

i=1

[xrM(w) = y) :
Take V1,---,V,, to be orthogonal at y in the metric §*. We obtain

tr (Vo Dr(lur]) (@) E gy o)) = Z<Dw ur Y (), Vi), - E gy, o(w)

1 T
= (Dn(lar (@), ~jur | o/(T-n)dB,),,
0
Note that |u,]*(|uz]*)~! is the backward parallel transportation along [x]f‘T 71 (w) which

preserves the inner-product. Using (4.12), we obtain

Frve = [ Vs sl loc ) Ric B,
and

tr (V > Dr(|ur]) ) (w )?QTV s(w )>
- 2§”=1<Dw<tuT1A>§” (), Vi) €y, o (w)
= (Dr(lur)y (w), 3 {5 s(T=7)lur*([u 1Y)~ Ricy 1 d B,
]

Proof of Theorem 5.1 (k=3). Let = € M and T € R,. Let ([ 1, [us]*)ier, be the sto-
chastic process pair which defines the Brownian motion on (M g ) starting from z. By
Lemma 4.18 and Proposition 4.28, it is true that for any f e C(M ),

(J F)p\T, z,y) dVolM(y ) J (Vo fy),zp' () - oM (T, 2,y)), dVol* (y).

Since {ZT’ (y)} is a C* vector field on M by Lemma 5.34, the classical integration by parts
argument in Section 5.1 shows that

(f F()p T, z,y) dVol*(y )>(1)

A
= —jﬁf(y) D1V>\ M) - pNT ) +<z y), VoNT, z,y >)\) dVol* ()

= Jﬁf(y)qﬁi(’f Lz, y)pN(T, 2, y) dVol*(y).
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The function ¢} (T, z,y) is continuous in y, uniformly in A (see Lemma 5.34). Hence its
continuity in A follows from the continuity in A of (S]TI f)pMT, x,y) dVol* (y))(;) for any
fe CSO(M), which is true by (5.10) and the convergence in A of |x7|*(w) and |uz]*(w) in
the L%-norm for every ¢ > 1. So the first part argument in the proof of Lemma 5.5 works,
which shows that \ — p(T,z,-) is C?, the differential (p)‘)g\l)(T,x,y) is continuous in y
and

1 1

NS (T,2,9) - 0 () + 2N (T2, y) - (0 () = 63T, 2, 9)pN (T2, 9)p* ()

This gives (5.1) since p* is non-zero for V, small.

Next, we show (5.2) with [ = 0. For this, it suffices to show the same type of bound

holds for the L9-norm of ¢} (7, z,y). Note that, by Lemma 5.34, zi_\pl( ) is such that
<zg‘p’1(y),v/\lnp/\(T,m,y)>>\ = E(<D7T(11T] )( )( ), v lnp (T, z, XT >)\’ [XT = ) .
Using this and the formula of Div)‘z%’1 in Lemma 5.35, we obtain

(5.95) AT, 2,9) = E (34T, w)| [xr 1 (w) = y)

where

T
ON(T, z,w) = —tr(V > Vi y Dr(lurM) + (Dr(lur™), %[uTV‘ L s'(T—7)dB ),

T
(5.96) —<D7r([uT])‘)g\1),% fo (T =) lur ([, ) Ricr! . d B,

—(Dr(lur), Vi pN (T2, [xr1)),
=: (I)(T,z,w) + (ID)(T, z,w) + (II)(T, z,w) + AV)(T, z,w).
So,

ATl = [ [EONTzw)lrPw) = )] #(T.) aVo )

< JME(H@(T,MJ)!"Hxﬂ*(w) — )P (T, 2, y) dVol(y)
<47 (E[M)7+ E|AD)[7 + E| (D] + EJ(IV)]7) .

Hence we will obtain (5.2) with [ = 0 if (I), (II), (III) and (IV) all have the same type of
L? bounds. This actually follows from Proposition 4.8 and Proposition 4.28. For (IV), it

is true by (4.49) and (4.37) since
_ _ 2 _ 2
E10V)))* < (| B[V np T, )|

Using Hélder’s inequality, we obtain

(E|(n)9)* < EH(luT]A);”\Qq-EH;LTS(T—T)luTP(luT] )~'Ricy,!
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Using Proposition 4.28 and Lemma 4.7, it is easy to show that E |(IIT)|? has the same
bound type in (5.2) with [ = 0. The term (II) can be handled in the same way. For (I),

it suffices to estimate the L%-norm of (([u%]’\)f\l)(w))g for V with norm 1. Split the Ito

integral of ((0, w)([usT])‘)g\l)(w))g in Corollary 5.33 with infinitesimal increments dB; and
dr, respectively, as

M= (=) ([N ()

Then it is standard to use Burkholder’s inequality and Holder’s inequality to deduce that

LT ) 3

T

| PIF (P )]t ) dr
0

Using Corollary 5.33 and (4.48), we can continue to estimate E |(I);[*?, E [|(I)2*? as in

Proposition 5.29 and show they have same bound type in (5.2) with [ = 0.

T —_—
- fo [DIF 2 (a1 )] (D17, w)dBs + (Ds(r, w)dr).

2
dr

7 [ < (E (DU (L )] ()

q

+E

To complete the proof of i), we apply Lemma 5.5. It remains to show (p’\)g\l)(T, x,y) is

continuous in the (7, y)-coordinate, locally uniformly in A, which is true if we have

1) the continuity of y — (p’\)g\l)(T, x,y), locally uniformly in 7" and A, and

2) the continuity of T' +— (p’\)g\l)(T, x,y) for every x,y fixed, locally uniformly in .

For 1), it holds if the continuity of y — (lnp)‘)g\l)(T, x,y) is locally uniform in 7" and A,

where the latter is true if y — (Ei(Y)(FSy))g is continuous, locally uniformly in 7" and .
Since all the bounds in Lemmas 5.26-5.28 are locally uniform in (y,7") and A, the limits

for continuity of y — (Ei(Y)(F y))p in proof of Lemma 5.34 are all locally uniform in 7'
and A.

We proceed to show 2). Simply denote by (x*,u*) the stochastic pair which defines the

Brownian motion starting from x. Then for any smooth function f on M with support
contained in a small neighborhood of ¥,

~

T T '
F03) = f(o)+ | AN dt+ | B ) () dB
0 0
Taking expectations on both sides shows
T
B(f(h) = | B(aM) dr

Hence for 7" > T,
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Differentiating both sides in A gives
jw 1) (YT 2,2) = @Y1, 2)) Vol (2)
M
- | 1@ (P2 - P T 2)) ) Vo) + |
M

T
T/

H @@ s ) avor o),
T M

where, as 77 — T, the first term tends to zero since pA(T ,x,z) is continuous at T > 0,

locally uniformly in z, the second term tends to zero since E((A)‘ f)E\l)(xi‘)) is uniformly

bounded for ¢ in a small neighborhood of T" and the last term goes to zero as well by using
that the bound in (5.2) with [ = 0 is locally uniform in ¢. In summary, we have

Tl,imTf f(z ( X, 2) — (p’\)g\l)(T,:U,z)> dVol (z) = 0.
Since z — (p’\)E\l)(T , &, z) is continuous, locally uniformly in 7" and A, and f is arbitrary,

we must have limT/_,T(p)‘)E\l)(T’, z,y) = (p)‘)g\l)(T, x,y), locally uniformly in A. This shows
2).

Finally, we show iii). By symmetry, the mapping = — (p )( )(T x,y) is continuous
for all Ty, locally uniformly in y. Therefore iii) holds for any bounded function with
compact support. Fix ¢ > 1. Any uniformly continuous and bounded f € C’(M ) can be

approximated by a sequence { fn}neN of continuous functions on M with compact support
in such a way that

(5.97) lim | 7(y) = Julw)| =0,
n— q
locally uniformly in z. Property iii) follows by using (5.97) and (5.2) with [ = 0. O

Proof of Theorem 5.1 (k> 3). By Theorem 5.1 i) of the kK = 3 case and Lemma 5.5, we
deduce Theorem 5.1 i). Hence V() (lnp)‘)f\l)(T, z,-), | <k — 3, are well-defined. By taking
the gradients of the identity (5.1), we obtain that V(Z)QS}\(T,JU, ), I < k — 3, exist as well.
For (5.2), it suffices to show the same type of L?-norm bounds hold for V(l)dﬁ\(T,:r, s
I < k-3

The | = 0 case was treated in the previous proof of Theorem 5.1 with k = 3. We proceed

to consider the [ = 1 case. Let W be a smooth bounded vector field on M and let "F' be
the flow it generates. Then

d
r=0
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We will look for a conditional expectation expression of Vf,‘v(y)qb}\(T ,x,-) and use it to
estimate |V} (T, z,-)|. For this, we adopt the idea we used in analyzing the regularity of

6}\()/) (see Section 5.1). Let f be an arbitrary bounded measurable function on M. By
the definition of the conditional expectation and the change of variable formula under "F,

E (AT, 2,0)f ([ (@) = E (B( 35T, w)| [xr 1 (w) = 9) £ ()
= f AT, 2, y) f (y)p (T, z, y)dVol* (y)
~ [ GAT . PP T2 ) aVol ().

Let |"F]* be the extension of "F to Cy([0,T], M) constructed in the previous subsections.
By Proposition 5.23, all probabilities @; o |"F]* are absolutely continuous with respect to

P/E\. Hence, using the change of variable formula under |"F]*, we obtain

~ _ [~ 7>‘o rEA
E (3} f(ixrl) = E <¢i o['FP - fo B M)

P
=\
—(~ dP), o |"F]?
- JE<¢§OLF1A-[A |
dP

[xr]* = )f ("F())p\(T, 2, y)dVol* (y).

T

Since f is arbitrary, a comparison of the two expressions of E(@ - f(Ix7]")) shows

—A
» APy o|"F
P

p)\ (Tv Z, y) dVOI)\ ( )

AT, F(y)) = E((Ei oL berl” = y) T2 F(y) dvolr ot F

So differentiating both sides in r at r = 0 gives

/

Vi Oh(T2.) = BX(T.a,y) (np (T2 Fy)g + (I CF )y )
i>\ r !
" (E(&‘;orw-dp”l P o = )) .
0

dP)
It was shown in Proposition 5.23 that d@i o|"F* /dIP’A is differentiable in r with

x

(dP) o |"F)/dP,). =& - (dB) o |"F|}/dP))

T

and both "€ and (d@i o [TF])‘/dP)U‘) conditioned on xy = y are LY (¢ > 1) integrable,
locally uniformly in the r parameter. Using Holder’s inequality, if we can further show

*) gz?io[’"F])‘ is also differentiable in r with both gz?io[’“F])‘ and (ggio[TF])‘);, conditioned
on xp = y are L? integrable, locally uniformly in the r parameter,
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we are allowed to take the differentiation under the expectation sign:

- 7)\0 rR1A ! o - 7/\0 TR !
<E<¢iorw-dpx LR = )) =E(<¢iorFV~dPx LF] ) thV:y)
0 dpx 0

dP
=B (3o 'R, + 34 Fr] el = ).

T

Altogether, we will have
Vv OA (T 2,) = AA(T,2,y) (Vi) I (T, 2,)) + Ty, (I pY))
(5.98) +E (350 I'FIY)g + 8% - 1| ber 1 = )
and we can use it to show that a L%-norm bound as in (5.2) is valid for VA¢} (T, z, ).

We show ) first. Consider the processes
6 = (O o "B, [DI Fra MU0 w)] = [DIE N6, w)]

Lo [TF]/\.

They are well-defined by Theorem 5.17 and the corresponding estimations in Lemmas 5.26-
5.28 (for |"F]*) are valid. Note that DW([UT])‘)E\I), V%7V7SDW([uT]A)&1) can be expressed
by stochastic integrals using |U5,]* and |F]* (see Proposition 5.29 and Proposition 5.32).
Their images under |"F]* can be defined by applying |"F]* to each components in the

integrals. So ggi o |"F]* is well-defined. By using Lemma 4.14, Proposition 4.28 ii) and
(5.96), it is easy to obtain

= A2 1 1 2 c(1+d.x (z,))
E@Z;T’%\ o|"FIM < ¢ ((ng)\ (x,y) + ﬁ) + 1) e gy

for some constants ¢ (depending on s, 7o, [¢*|cs and [X*|o2) and ¢ (depending on T, Tp
and |g*|cs). By Propositions 4.15, 5.20 and 5.23, we may also assume ¢, ¢ are such that

(Eppe ["E2)2 < W (y) e ).
.Y,

To justify (5.98), it remains to check the differentiability of r ~— A o |"F]*, for A =
(I), (II), (II), (IV) in (5.96) and show the differentials (A o |"F|*)’ are L? integrable, uni-

formly in the r parameter. We begin with A = (IV). By Proposition 5.30, (Dﬂ([uﬂ’\)g\l)) o
|"F]* is differentiable in r. Let r € [—7g,70]. As usual, we write

/
IxP i= [ o PEP, [l = [ul o ["FP, ViR Dr(lur)) = ((Dr(|murl)S))
Then (IV) o |"F]* is differentiable in  with differential
(V) o I'FY), = = (Vv Dr(lur M, VA pNT "),

= (DR Vg VI T [P )
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By Proposition 4.28, we can obtain some ¢’ (depending on s, rg, |¢*|cs and [X*|o1) and
¢’ (depending on T, Ty and |g*|¢s) such that

<Ew [D(["url) ||> < W (y)le'e” @i ),
z,y, T

By Proposition 5.29, we can obtain some ¢” (depending on s, 79, |¢*]cs and |X?|c2) and
" (depending on T, Ty and ||g*|cs) such that

1
E T 2 < ~
<EP;2:TWT’fvv,sDTrﬂuﬂ*)&”} ) < [W(y)le"es" @),

Using (4.37), we further obtain

<EPA,* (V) o [TF]A)HQ) i

z,y,T

s (EP** HVTWSD7r ur |t H >2 HV’\ np (T, [TF]A(?/))H

1
_ 2
+ (EPQ:;JDﬂ([’”uT]’\)g\l)’F) IVy e rp )V e (T, " F1A ()|

2
/// ]. )
W /// c 1+d~/\(:p,y d~ A n z’
< [W(yle E: Az, ["F1 () fﬁT)
nm

where ¢” (depending on s, g, ||g*| s and |X*||o2) and ¢” (depending on T, Ty and ||g*|| )
and this bound is finite and is uniform in r. For A = (II), (III), the same argument shows
the C! regularity of r +— A o |"F]* and

n

1

2

<E ve (Ao V"FP)HQ) < [W(y)lee™ o )
z y, T

for some ¢, (depending on s,7g, |g*|cs and |X*|c1) and ca (depending on T,Ty and

HQ’\HCS) It remains to analyze (I) o |"F]*. Recall that for any smooth bounded vector field

V on M

Vv Dr(lur)Y = Dr((ug M) (w))s,

where (([ufp])‘)f\l)(w))g was formulated in (5.87). Hence the regularity of 7 + (I)o|"F]* can
be reduced to the regularity of each component of (5.87) under |"F]*. Applying Theorem
5.17 to |"F]* shows r — |"U; |, [D|"F-]M|"0,]*, w)| ™ are C'. Lemmas 5.26-5.28 also
hold true for |"F]*. Using these properties and the fact that A — ¢* is C*¥ in M*(M) with
k > 4, we can deduce the regularity of the components of (5.87) under |"F|*. Moreover,
by a routine computation using Lemmas 5.26-5.28, we can obtain some ¢; (depending on
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5,70, [|¢*|ca and ||X*|¢s) and ¢; (depending on T, Ty and ||g*|¢s) such that

1
N
)2 < W (y) | ee™H o 7w,

(D l'FP),

Eox
( Palyr

Altogether, we have the differentiability of A — ggio["F]A and also obtain some ¢ (depending
on s, 79, ¢} ca and [X*|os) and ¢ (depending on T, Ty and [¢*|cs) such that

1
_ ~ 2\ 2 . o 1
(EP;’:T!(cbiorFP)é ) < [W (y)lee 4 =) <<ngx<x,y>+>2+1>'

Now (5.98) holds true. Using Holder’s inequality, it is easy to deduce

)
L24q

4la Hvév(y)ﬁb}\(Tv L, )Hqu < Héb}\(Ta L, ')”quq ( ‘Vév(y) (hlp)\(Tv €, ‘))HqLQq'f‘ HVI)/\V(y) (In P)\)
+ (B|GA*)? (£]°€]™)* +E| (84 o ')
=: D1(q) + D2(q) + Ds(q).

By (4.37), (4.35), we see that, for the i-th covariant derivative V¥ Inp?(t, z, ) (i < k—2),
there is ¢(i) (depending on ¢, Ty and [g*|ci+2) and ¢(i) (depending on |g||s) such that

(5.99) PO T,)| < i) DT,

La

Using this and the L? estimation of qﬁ}\(T,:c, -) in the proof of Theorem 5.1 for the k = 3
case, we obtain D1(q) < ¢, (q), where ¢, (q) depends on ¢, T, T, |g*|cs and |X||c2. With
the L% estimations of 5}\(T, z,-) and Y& for Theorem 5.1 with k& = 3, we can also conclude
that Da(q) has the same type of bound as Di(q). For Ds(gq), we check the L%-norms of

(Ao [’"F]A)g for A = (I), (IT), (I1I) or (IV) in (5.96), respectively. Using Holder’s inequality,
(5.99) and Proposition 4.28, it suffices to estimate the L?-norms of

/

() (sPporer)

This, by using Lemma 5.31 and Proposition 5.32, can be eventually reduced to a mul-
tiple of a constant depending on ¢, Ty, T, |¢*|cs and |X*|es with a combination of
some LY norm estimations (with ¢ > 1 depending on q) of SUPg<t<T H([ut]A)E\l)H and

SUPg<t<f<T I [D[f’)ﬁ])‘([uip, w)]|. Hence, by Proposition 4.28, we conclude that D3(g) has
the same type of bound as D1 (q) with ¢, (¢) depending on ¢, T, T, |¢*|cs and |X*]cs.
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For the Li-norm estimation of V2 ¢! (T, z,-), we continue to differentiate (5.98). Let
W5 be another smooth bounded vector field on M. Then

Vivo ) Viv i O3 (T2, ) =65 (T, 2, ) (V%(y)vﬁv(y) (npN(T, ;) + Vipy ) Viv (In pA))
+ Vi@ (1.) (Vi) (T2, ) + Vi, (npY))
+ Vi (B (B UFPY,+ 34 2] Lert* =v))
=:(a)y + (b)y + (c)y-

Using the previous estimations of qﬁi, Vf}vqﬁ%\, (5.99) and Holder’s inequality, we obtain

[@)y] o [®)y] Lo < IW2() W () capearT

where ¢, }, depends on g, g™, | XA s and cap depends on g, T, Ty and ||gcs. For (c)y,
we can follow the above argument for Vé‘v(y)qb}\(T,:c, -) to ‘exchange’ the differentiation

VI)/‘VQ ) with the conditional expectation sign and obtain

+E(((BLo "), + 34 "r) 2l

(((5&\ o [TF])\)E) + 5}\ . 05) ° laFWZ])\>

e = )

per ] = y)

where |2FW2]*, OE}V 2 are the corresponding objects |?F]*,%&r for Wy. In addition to the
terms involving a single differentiation of |*F"2]* or ["FW1]*, we have the differentiation
of (¢} o [TF]’\)E) under |*F"2]*) which involves Va,z(y)va,(y)v)‘lnp’\(T,x, -) and multi-
stochastic integrals using the tangent maps [D|F-;]*(|0-]}, w)] and geometric terms with

bounds determined by ||g*| s and |X*| 4. So, a routine calculation as above using Propo-
sition 4.28 gives

[(©)y]l L0 < IW2()[IW (1) lcce”,

where ¢, depends on ¢, ||g*|¢s, | X4 and ¢. depends on ¢, T, Ty and |g|¢cs.

Continuing this argument, we can obtain the estimations in (5.2) for all [ < k — 3. We
stop at | = k — 3 step since V(l)¢}\(T,x, -) involves V(l“)(lnp’\)(T,x, -) and the bound
estimation in (4.37) is only valid for VW (Inp*)(T, z,-), I < k — 2, in general. O

In proving (1.3), we also obtain the following coarse estimation, which will be used in
the inductive argument in the next section.
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Corollary 5.36. For alll, 0 <1< k-3, there is c, (1), depending on 1M cres,s | XM ez,
and MUY | depending on 1, q, T, Ty and | g*|cs, such that

VO (T,a,y)|, [V

OA(T, 2, y)

— 1 1 I+1 C>"<l71) N

6. HIGHER ORDER REGULARITY OF THE HEAT KERNELS IN METRICS

To conclude Theorem 1.3 for all 7, 2 < i < k — 2, we use an inductive argument based
on the proof of Theorem 5.1 to identify the differentials (p)‘)f\l) (T,z,-), 2 <i<k—2, using
the SDE theory in Section 4. The estimations in (1.3) and (1.4) will be obtained using

the conditional stochastic expressions of {(In p’\)f\i) (T, z,-)}. In the following, we first pick

out the properties of (p’\)g\i) (T, x,-) necessary for an inductive argument, then verify these
properties for the ¢ = 2 case and the i > 2 case, respectively.

6.1. A sketch of the proof for Theorem 1.3 with ¢ > 2
Lemma 6.1. Thei) of Theorem 1.3 holds true if there are locally absolutely integrable func-
tions {¢ (T, )} et TeRr, i<k—2 OT M which are continuous in the \-parameter and are

continuous in the (T,y)-parameter, locally uniformly in X, such that for any f € 020(1\7),

(2) ‘
(6.1) (f )P Ty, y) dVol(y) )A - [ S @ 0 0) aVor )

Proof. Assume (6.1) holds true. We show the differentials (p)‘)f\i) (Tyx,"),i=1,--+ k=2,

exist as continuous functions on M and satisfy

(62 2 () T, 2,9) (M) () = G4 2, )P (T2, )W), G =1,k —2.

The j = 1 case was handled in Lemma 5.5 and we know that (p)‘)g\l)(T, x,-) is a continuous
function on R, x M. Assume (pA)g\l) (T,z,), i < jo <k — 2, exist, are continuous, and
satisfy (6.2) for j < jo. Using this, a comparison of (6.1) for ¢ = jy and jo + 1 gives

JM (652, )0\ (T, 2 9) M) = (T2, (T2, ) (1) ) () AV’ (y)

A R . N
- ([ e @ @ et k) 1) avor (). w7 e ()
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Since both sides are continuous functions in y-variable, we must have

ST, 2, y)pN (T, 2, 9)p () — G (T, 2, y)p° (T, 2, y)p" ()

- . .
- L ST 2, y)p (T2, y)p (y)d

Consequently,
Jjo /. @) '
(Z (sz))( MO, ) (M) ”<y>> = G (T 2y (T 2.0 ),
i=0 A
which implies that (p )(]OH)(T ,x,y) exists for every y and satisfies (6.2). Then we can
conclude from this and the inductive assumption on the continuity of (p)‘)g\z) (T,x,-), i =

1,---,jo, that (p )OOH) (T, z,-) is also a continuous function on Ry x M.

Now, the differentials (p’\)g\l) (Tyx,),i=1,--- ,k — 2, exist as continuous functions on

R, x M and hence their weak derivatives in (T, y) of any order are well-defined. Taking the
differential of the heat equations L*p* = 0 in \ gives the following identities in distribution:

LAY (p) Z() @M T oz, ) =0, i=1,-- k=2,

where (L*)U)% is the weak derivative of the j-th differential operator (L)‘)(Aj). We can

use Lemma 5.4 and Lemma 5.2 inductively to improve the regularity of (p)‘)E\i) (T, z,-).
Shrinking the neighborhood V, of g if necessary, we may assume there is ¢+ > 0 such that

p* € C¥* for all \. Since it is a local problem, for (T,y) € R, x ]\7, we can also restrict
ourselves to a bounded domain D containing (7,y). By Lemma 5.5, there is some domain

Dy < D such that p’\(T,x,-),(p’\)g\l)(T,:c,-) e CF*(Dy). Assume for all i < jo < k — 2
there are domains D; containing (7, y) such that ](pA)E\Z)(T,x,-)|072+L < o on D; and
()3 (T.,-) € CM(Dy). Then

jo+1 ,.
N +1 Now o (Go+1—j
AP (T ) = - (JO. )(LW (NI, )

I
Jotl jo+1 ) 1

©3) -3 (P arene I,
j=1

Shrinking Dj, to Dj,+1 if necessary, we can deduce from |(p)‘)f\i) (T, x,")|0,2+, < o0 on D; that
|IMD NPT, 2, )], s finite for all j < jo + 1 on Dyy4y. Since (p*) (T, , )
is continuous, Lemma 5.4 shows that (6.3) holds in the usual sense. Then we can apply
Lemma 5.3 to conclude that |(p?) JOH)(T, x,-)|0,24. < 00 on Dj 41 and apply Lemma 5.2 to
conclude (p )(]OH)(T z,-) € Ck4(Dj,41). Accordingly, the continuity of A — (p/\)f\l)(T, x,-)
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inC (]\7 ) can be improved to be the continuity in Ck’L(M ) by using the parabolic differential
equation (6.3), Lemma 5.2 and Lemma 5.3. O

The ¢} A satlsfymg (6.1) was identified in Theorem 5.1. We continue to pick up a candidate
¢3 for (6.1). Let QS/\(T x,-) be as in (5.96) such that (5.95) holds. Then, for any f € C* (M )

(1)

60 ([ s avorw) =B (fla @)d @ ).

A

If we can show \ — 5}\ is differentiable and both 5}\ and the differential (QNS%\)S) are L4
integrable for some ¢ > 1, we are allowed to differentiate under the expectation sign of the
right hand side term of (6.4). This will give

U F)pN(T, z,y) dVol* (y )>(2)

A
j FOE (@)Y, 2, w)|lxr] (w) = y) p (T 2,) dVol(y)
(6.5) +E(<vaT]A(w)f<th1A<w>>, AT, w) - Dr(lur M) (w)), )

We can deal with the last expectation term in (6.5) as we did for (ﬁi in Section 5. Define
PR(Y,w) = (Y (jxr]M(w)), GA(T,2,w) - Dr(| (w)),,

where Y is any C* bounded vector field on M , and consider the linear functional

.. Y —E (@i(y,wn lx]M(w) = y) .

If we can show 6?\ is such that 5§(Y) is C'! in y variable, we can conclude that

(6.6) E (8(T,a,w) - Dr(lur])S ()| [xr 1 (w) = y) = 4°(v)
is a C! vector field on M and satisfies
BAVN) = (Vo 1) 277 W)
Using the classical integration by parts formula, we obtain
E (Vi w)f per (), B3 (T ,w) - D) (w)), )
- | @A T i Vo)

J fly DIV)\ )‘2 +<Z y), VA In pMN(T, z,v) >/\) (T, z,y) dVol*(y).



134 FRANCOIS LEDRAPPIER AND LIN SHU
Therefore, a candidate of ¢3 (T, ,) for (6.1) is
A(T,2,y) = E (BN (T, w)|[xr 1 (w) = )

(6.7) — (DiVAzg‘FQ(y) + <Z%’2(y), v lnpA(T, x, y)>/\) .

Once we show ¢3 (T, z, y) fulfills the continuity requirement of Lemma 6.1, we can conclude
the second order differentiability of A\ — p*(T, z,) in C*¥* for some ¢ > 0. It follows that

(Inp )T, 2,y) = (T, 2,y) — (G)A(T,,y) — (In )P (y).

Note that the gradients estimations of qb}\ were already handled in Theorem 5.1. Hence
the gradients estimations of (In p’\)g\2) can be reduced to that of gi)i, which can be analyzed

following the proof of Theorem 5.1, if we can find some controllable $§(T ,x,-) such that
A(T,2,9) =B (ST, w)| [xr(w) = ).

We will follow this steam line of discussion to find all the candidates ¢} for (6.1). Put
M (T, z,w) =1 and let ¢} (T, z,w) be as in (5.96). For i, 2 < i < k — 2, define

68)  FA(T,a,w) = (YT, 2,w) ) —(V F T, 2, w), Dr(lur] M) (w))
+ o U (T, 2, w0) ) (T 7, w),

where the ‘path-wise gradient’ Va\ﬂvs%\_l(T, x,w) will be specified later. We will show each

(6.9) AT, 2,y) i= E (\(T,2,0)| [x71 (w) = y)

fulfills all the requirements in Lemma 6.1. The stochastic expression (6.9) will be used for
two purposes: one is for the gradient estimations of ¢ (7T, z,-) and (In p)‘)gf) (T,x,-); the
other is for obtaining ¢} (T, z,y) as we exposed above for ¢2 (T, z,y) (see (6.7)).

Let us highlight the necessary steps to undergo an inductive argument for Theorem 1.3.
Assume for all i < j < k — 2, the ¢ defined in (6.9) are such that Lemma 6.1 holds true,
(p)‘)g\z) (T,z, ) € Ck7L(M), is continuous in A and (1.3) holds for (lnp)‘)g\z) (T, z,-). We also
assume the following coarse pointwise estimation holds true for all 7 < j.

0) For all [, 0 <1 < k—2—1, there is ¢, ;) depending on lgMlisive, XA cirier and

M) depending on (1,4), ¢, T, Tp and |g*|¢s such that

VOup(T.2,)| . |VOG(To2.y)

)

; 1 1 i Ml Az
(6.10) < (pA(Tax’y))_zQA,(M) ((ng,\ (z,y) + ﬁ)H + 1) e G0 Aty W),
()

For the existence of (p*)y’(T, z,-), the very first step is find some measurable candidate
satisfying (6.1), which can be done once we show the following.
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i) The function ¢ (T, w) is differentiable in A for almost all w € O, and both
qzﬁj YT, z,w) and (qu 1) (T, z,w) are L7 integrable in w for all ¢ > 1.
ii) For any C* bounded vector field Y on M, let

(Y, w) = (Y (per P (w). 64Ty, w) Dar([ur ) (w))
Then the linear functional
B0 Y~ E (@ (vw)| Ixrl (w) = )
is bounded with 6§ (Y)(y) varying C! in the y-coordinate.
Claim 6.2. Assume i), ii) are true. Then (6.1) hold with some ¢,(T,z,-) fori = j.

Proof. By the inductive assumption,
(G-1)

610 ([T o) = B (fx3 (T w).

A
If i) is true, we can differentiate under the expectation sign of (6.11). This gives
A W 1,(1) = (i
(f F )P (T, 2,y) dVol (y >) = B (f(er (@)@ (T 2,w0)) +E (94T, w))

A
The property ii) implies
o~ 1
(6.12) 37 ) = B (37 (T,w,w0) - Dr(lur™) ()| [l (w) = y)
is a C1 vector field on M such that

y) =Y (1), 22" (1)),

In particular, we have
2 (94(V.0) = [T T (), dVor()

__Jﬂf( ) (D (9) +(23 (), VI pA (T, 2, ), )T, 2, ) dVOP\(y).
This means a measurable candidate gb{\ for (6.1) at i =j is
(T a,y) =B (30 (T, w)| e (w) = )
(6.13) (DlvA > —|—<Z J(y), V¥ Inp\T, 2,y >/\>
U

We will show ¢, (T, x,-) given in Claim 6.2 coincides with ¢§\(T,:U, -) defined by (6.9).
For any smooth bounded vector field V on M , let F'* be the flow it generates. As we did
for 5; in Section 5 (see Lemma 5.34), we will prove the following in verifying ii).
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iii) For any y € M, s — 5{\(Y)(FS ) is differentiable at s = 0 and the differential
(B (Y)(F*y)) varies continuously in y. Moreover,

@) (F*9))
= BUVIY)() + E (Y (el (@), Vi o (37 (T2, w) Dr(lur )P () ),
+ Y (M), (337 (T, w) D (fur ) (), € rvie )| Lxr 1 (w) = )
(1)

where the path-wise differential vé\“,\/,s (czf\*l(T .2, w)Dr(|ur|?);’ (w)) will be clar-
ified later and it satisfies

Vi (65 (T2, w) Dr(lur )y (w) = (Vv e (T2 w)) - D) (w)
+ (Zf\_l(Tv T, w) ) (v%,V,SDW(luT]A)g\l)(U})).

Claim 6.3. Assume i)-iii) are true. Then ¢,(T,z,-) = gbi(T,x, ).

Proof. By ii), both 6§(Y)(y) and z%’j(y) vary C! in y. Hence
@V)E W)y = VHEW)W) = (TY W) 257 W), + Y (W), Tz’ (),
Comparing this with the expression of (63\ (Y)(F*y )) in iii) gives
V2’ @) = B (Vv (@412 w) - Dr(lur ) (w))

(6.14) +(H7 (T2, w) - Dr(lur ) () € rv,e(w)| e (w) = )
Following the argument in the proof of Lemma 5.35 and then using (5.96), we obtain

Div)‘zg’j(y)

—E (tr(V > Vv (8T 2,w) - Dr(lur) Y (w)))

~; T «—
+ T w) - (Dl (w), 5 fo s(T—7)[ur M (ur ") " Ric,! dB o),

. T
+ (T w) <D7r<tuT1A><;> (w), féluﬂk [ #-ndBo, [t - )

— B (V3.0 (T2, w), Dr(lur ) (w)))] e (w) = )
—E (7T, 2,w) (AT 2, w) +<Dw )Y, VA AT 2, 52 1), )| e () = )
Note that
7 (), VA pN (T, 2, )
= E (87 (@, w)(Dr(lur ) (w), VA p (T, 2, e ())), | Ixr 1M w) = )
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Reporting these two expressions in (6.13), we obtain

(T, 2,y) = E (37 (T, 0)) ) = (93,08 (T, 2, w), Dr(ur ) (w)y
+ (T, w) (T, w)| [xr P (w) = y)
= ¢&(T7 T, y)

To study the continuity of gbi(T, x,y) in (T, y), we first show the following.
iv) For all z € ]\7.7, TeRy,
— /o~
v~ E (@O0 2 0)| b w) = y)

is continuous, locally uniformly in 7" and A. Moreover, there exist ¢, ; (depending
on g cirz2, |X*|ci+1) and & depending on j, T, Ty and ||g*||cs such that

E,

z,y,T

(@O0 aw)

P (14dya (2.9))

< (p)\(Tax7y))_jQ)\,j <(;.,d§)\ (x,y) + \/1T)] + 1> .e

v) For all = € ]\7, T € R,, the mappings y Z%’j(y),y — Div)‘z;’j(y) are con-
tinuous, locally uniformly in 7" and A. Moreover, there are ¢ j (depending on
lgMlciv2, | XM ci+1) and @ depending on j, T, Ty and |g*|cs such that

27 ()], [Div*2 (y)]

. 1 1 . ey N
< (p(T,z,y)) 7 c) <(Td§x(x,y) + =)+ 1> L& (L (2)

VT

vi) There is ¢, (9 ;y(¢) depending on j, g, T', Tp, lg* |2 and [ X?]i+1 such that
(615) Hd)Z\(T’ €z, ')HL‘Z < Q)\,(O,j) (Q), vq = 1.

Claim 6.4. Assume i)-vi). For every x € ]\7, (T,y) — ¢§\(T,x,y) is continuous, locally
uniformly in A.

Proof. To conclude the continuity of ¢§ (T,z,y) in (T,y), we verify
1) For all x € M, T € Ry, y — ¢ (T,z,y) is continuous, locally uniformly in 7" and .
2) For each z,y fixed, T — ¢} (T, z,y) is continuous, locally uniformly in .
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By the inductive assumption, all (p)‘)(i) (T,z,y), i < j, exist, are continuous in (7, y)
and satisfy the bound estimation (1.3). By i)-iii),

A(T,2,y) = E (30 (T, w)| [xr P (w) = )

(6.16) <D1V)\ /\’]( )+ <ZT’J (y), VA lnpA(T,a:,y)»\)

satisfies (6.1). By iv) and v), for each x € ]\7, we have that the mapping y — qﬁg\(T, z,y)
is continuous, locally uniformly in 7T'.

For 2), we follow the proof of Theorem 5.1 for the k = 3 case. Simply denote by (x*, u*)

the stochastic pair which defines the Brownian motion on (]\7 , ) starting from x. Then,
for any f € C(M) with support contained in a small neighborhood of y and T > T,

.
E(f(h) — E(f() = f E(AM () dt.

T

Take the j-th differential in A of both sides and use (6.1). We obtain
| 10 (A@2.2) = (T.0.9) 0T 2,2) Vo2
M
= | ST (P02 = (Ta2) Vo)

f J Z;)<> m( (tﬂ?’Z)pA(z))f_i) dVol°(2) dt.

Using (6.15), we deduce that

T —>T

lim fﬂf(z) (qﬁg\(T/,x, z) — qﬁg\(T,:):, z)) p)‘(T/,iL', 2) dVolA(z) =0.

Since qﬁ‘i(T, x, z) is continuous in z and A, locally uniformly in 7, and f is arbitrary, we

must have limg/_p ¢§\(T’,x,y) = qﬁg\(T,x,y), locally uniformly in A. This shows 2) and
finishes the proof of Claim 6.4. O

Claim 6.5. Assume i)-vi). Then for anyxz € M, T € R, X\ — p (T, z,-) is C? in C**(M)
for some v > 0. The differential (pA)g\])(T,L y) satisfies the equation
(6.17)

N9 (T, 2,) = ¢(T, 2, )0 (T, 2, 9) 2 ( ) (T2, () ().

Consequently, gbg\(T, x,-) € C”“(]\,\f) as well.



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 139

Proof. The function qbg\(T,:c,y) is continuous in y, uniformly in A by using iv), v) and
(6.16). So, it is continuous in A if for any f € C®(M), we have the continuity of

(@)
(6.18) A <J F)pN(T,z,y) dVol*(y )> = A;(\, T, z).

A
Note that

AT ) = E ((Thqa(F o M) ([P (@), ([ur ) @) ) ).
Differentiating Aq(\, T, x) in A for j — 1 times, we get a similar expression A;(\, T, z) of
a combination of inner products involving {V® f};<;, {(|xr]*)@}ic; and {(|u )( )}Z<]

7]
Following Proposition 4.28 i), we can derive the L7 (¢ > 1) convergence of (|x7]*)® and
([uT]/\)g\z) in A\. As a consequence, we obtain the continuity of A\ — A;(\, T, x).

Now, by vi), the continuity of qﬁ& (T,z,y) in XA and (T,y) and the induction assumption,
we can apply Lemma 6.1 to conclude that X\ — p*(T,z,-) is C7 in C* L( ) for some ¢ > 0.
The equation (6.17) holds by comparison and hence ¢ (T, z,-) € C**(M ) O

With i)-vi), the gradients {V® (Inp )( )(T z,Y) }1<i<k—2—; are well-defined. To conclude
Theorem 1.3 ii) by induction, it remains to show (1.3) for ¢ = j. With the identity (6.17)
and vi), it remains to show the following.

vii) For all [, 1 <1< k—2—j, ¢ > 1, there is ¢, ;;(¢) which depends on (I, j), ¢
T, Tpy, Hg>\|‘cl+j+2 and HX>\|‘CL+J'+1 such that

(6.19) VO (T2 | < erupa)

For (6.19), we will use (6.9) to formulate VOV, 1y, . v, @) (for any smooth bounded vec-
tor fields Wy, Wa, - - -, W;) as some conditional expectation and use it for evaluations as in

the proof of Theorem 5.1. For this, we need the bounds control on gi)j (T, z,y) from iv), v).
Note that in showing iv), v), we need a bound control of {|V® (Inp )( )(T z, )| h<i<j—i-

So, to continue the inductive argument, we also need to verify 0) at ¢ = j, which can be
obtained in showing vi) and vii).

Theorem 1.3 iii) will follow from ii). Indeed, for i = 1, (1.4) is true by Theorem 5.1 for
the k = 3 case. For i > 2, by (6.17),

(p)\)(i)(Tax7y) i A -1 © <Z> (p)‘)(j)(T,.%,y) A\ (i—j

WD) (T, y) — M (1) Er P (o) ).
p)\(T’ x, y) ¢A( y) (P (y)) = J p)‘(T, T, y) (p ) (y)

So an inductive argument using (6.19) and (1.3) will conclude (1.4) for all i < k — 2.

Finally, consider Theorem 1.3 iv). By symmetry, the mapping = — (p*)®(T,z,y) is
continuous for all 7', y, locally uniformly in y. We conclude using (5.97) and (1.4) as in the
proof of Theorem 5.1 iii).
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In summary, to carry out the above inductive argument for Theorem 1.3, all we need
to do is to verify the properties i)-vii) at each step. We first consider i), followed by iv)
and then check ii), iii), v), vi) and vii). The ideas to show these properties at each step
are similar. So we only check them for the j = 2 case in details and indicate the necessary
modifications to make them work for the general case.

6.2. Proofs of the properties concerning qﬁj Let A e (—1,1) — g* € ./\/lk( ) be a
Cck curve (k = 4). Assume all the properties i)-vii) in Section 1. 3 hold true for d) ¢% and
(p)‘)f\z), 1 < j < k—2. We continue to verify the conclusions for ¢ qﬁ] and (p )g\])

Proof of properties i) and iv) in Section 6.1. We first show i) and the estimation in iv).
We begin with the case j = 2. For i), it suffices to consider the differentiability and L?
integrability of each term in (5.96). We add an upper-script A to (I), (II), (III) and (IV) in
(5.96) to indicate their dependence on A.

For (IV)}, it is differentiable in A by Lemma 4.18 and Theorem 5.1 for the k& = 3 case.
Denote the differential by ((IV)*) Y. Then

(
A

(VMY = = (D)), VP I p\ T, [xr1),

— (Dr(lurMV vA(lnp W@z, [x71M),

= (Dn(lur)D Vo Vg Tz xr]),

=: (IV)} (IV)2+(IV)

By an abuse of notation, we use c(q) to denote a constant depending on T, Ty, q, |g*| 4
and [|X||c3, which may vary from line to line. Using i) of Proposition 4.28 and Lemma
4.14, we obtain ¢(q) such that

EIOVR[)* < E|(lurh)R - B[ (T, [xr 1) < o).
Similarly, by i) of Proposition 4.28 and Lemma 4.14, we can derive that
E[@V)3[)* < E(luar)[* - E[VM mp T, x| < o).
Using i) of Proposition 4.28 and (5.2), we obtain
E[@V)[")” <E[(ur[* - B[V tnph) (@ e, s )™ < elo).
As for the conditional expectations, by ii) of Proposition 4.28 and Lemma 4.14, we obtain

Epys )} ‘+EPA* vy < Epre [(lur)P] - [V np (T2, 9)|

+Egry [larP] 190 10 (2]

1 1 . i
c <(ngx(x,y) + ﬁ)Q " 1) ccldya (2.)
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By Corollary 5.36, for some different ¢, c,

1 1 1 2 4 ~A T,
PNT.x.9) [V p) (T, )| <c((Td§A<x,y>+ﬁ) +1)e<”dg“ W,

Using this and ii) of Proposition 4.28, we conclude that the same type of bound is valid
for the term p*(T, x, Y)Epa |(IV)3]-
z,y,T
By Lemma 4.18, A — (III)* is also differentiable in A. Its differential is given by

T
(@MY = (o (ur) % L s(T—)[ur* ([, 1) " Ricp, . d B,

T
T {(Dr(ur)Y, ;L S(T =) (lur P (01 " RierL ) VB,

T
# Drur), 5 [ ST -rlarP ) Ricg! B
0

—: (IID)} + (II1)) + (III)3,
where the last term denotes the differential of the inner product. Then it is standard to

estimate the expectation of ((III)A)S)

and i) of Proposition 4.28, which gives

(BRI ) < e+ (B e )2 P+ B + Bl ur 1) < elo)

using Holder’s inequality, Burkholder’s inequality

For the corresponding conditional expectation estimation, we use (4.43), Holder’s inequality
and Burkholder’s inequality as before. It is easy to deduce that

— 2 - o B
(B YO < (Bor [P + B (e + By (e ])

(T—l—IEPA yf 29 I p(T — 7, |5, y |d¢\>

z,y,T
So by ii) of Proposition 4.28 and Proposition 4.15, we have

EJP’Q;;T’((HI ) \<066(1+d§k(x7y)).

For (II)*, the same argument gives

B3] < c(@), Bpre [((DYY] < e,

For (I)*, we can check the differentiability of VTV SDW([uT])‘)E\l) term-by-term using its
expression in Corollary 5.33. The estimation can be done as above using Proposition 4.28.

By the inductive construction, qwﬁg\_l(T ,x,w) involves the mixed differentials of order j
in A and in V%s of |ur]* and can be expressed by a multi-stochastic integral involving

a mixture of differential processes {([ut]’\)y/)}j/gj,l, {(DW|F, tt—lA(luE—lA,w)]E\i)}igj72 and
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(VMO (Inp )()(T o, |x7|") }isicj-1.i<j—2- So, by Lemma 4.18 and Proposition 4.28, we
have the differentiability of A — ¢ 1(T x ,w) and the derivative (¢} 1) Y(T, 2, w) involves

(M) Yy A[DDLE, M (e, w)]) iy and (9O @ ph) (T, o) iyt
The estimations in i) and iv) will follow from a repeated application of Proposition 4.28
to the multiple stochastic integral as in the j = 2 case. The bound estimation in iv) con-

tains (T‘ldy (x,y) + (\/T)_l)j since the formula of (ggj;l)g\l)(T, x,w) contains the terms
VMO 1 pMT, 2, xr ), VIID (W p) (T, 2, [x]Y).

As to the continuity and its uniformity in 7" and A of the map
y - wiy) = (GO0, 0)| b w) = y)

we compare ¥/ (y) with ¥J("F(y)), where "F is the flow map generated by a bounded

smooth vector field W on M. Let |"F]* be the flow as in Section 5 which extends "F to
the g*-Brownian paths. Then, as in the proof of Theorem 5.1, we obtain

A T 0>\
leV—y)- ?(T’ y) | dVol (y)-

7>\ r
TF])\ . dPx © [ F-lA

(TP (y)) —E((q?&“l)&” °l = T2, F(y) Vol o F

In the proof of Lemma 5.34, we obtained the local uniform boundedness in (T, y) and A of
E, |dP, o ['F]/dB, |
z,y,T
and the local uniformity in (7,y) and A of the convergence of
— _ __ 2
E. Hde o |"F}dP, — 1” 0, as  — 0.
Pz,y,T

Following the estimation for iv), we obtain the local uniform boundedness in (T, y) and A
of

B @0 (@ ww) o [FP

y,T

So for iv), it remains to show the local uniform convergence in (7,y) and A of

@D @ w0 P~ GO Tz )| 0, a0

This, by using ii) of Proposition 4.28, can be reduced to showing the local uniformity in
(T,y) and X of the convergence of

‘Ao 7"F AH — 0, asr — 0,

zyT’

for elements |u]?, {([ut])‘)f\j )}jlgj’ {[D(l)[Fﬁ])‘([uﬂ’\, w)])\Z }i<j—1 that appear in the ex-
(1)

pression of (ch\_l) \ > Which is true since they can be further reduced to the A appearing
in Lemma 5.34 by the construction of |"F]*. O
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Proof of properties ii), iii) and v) in Section 6.1. Using (4.50) and the inductive assump-
tion on the boundedness of E@i , Hqsg\*l (T, x,w) Hq, we deduce that &3 : Y — &} (Y), where

L)) = E (Y (s @), & (T, w) - Dl (), | Ixrl () = )
is a locally bounded functional on C* bounded vector fields Y on M.

To show 6&(}/) is C1, we follow the argument in the proof of Lemma 5.34. Let F* be

generated by a smooth bounded vector field V on M Let |F*]* be constructed as in Section
5.5, which extends F® to Brownian paths starting from x up to time T using the auxiliary
function s. Then the change of variable comparison in Section 5.1 gives

; : P o [F1N\ pMT. 2 o
B (V)(F*y) = B, (éi(Y,w)OLFﬂ”dP” lF])pp((T’ Y _dvel” )

Poyr d@i A t,z, F5y) dVol* o F's

where ‘ ‘
& (V,w) = (Y (|xr (), & (T, 2,w) - Dr([ur]M) (w)),
The process <I>g\(Y, w) o [FS]’\ is differentiable in s with
(@ 0 [F1N) = (Fyua) Y (15510, 84" o B Dr([us )5,
+<Y XT )7( TVS¢J 1) [FS]ADW( (1)>)\
+ VG, 67" o [FPVEY Dr(lur ),

and this differential is L? integrable conditioned on x7 = y, uniformly in s, for all ¢ > 1.

Using this and Proposition 5.20, we can conclude that ®3(Y)(F®y) is differentiable in s.
Following the proof of Lemma 5.34 (see (5.89)), we obtain

@EOE D) =Ep (v odh - Dl (),
+ Y (xr). Vi o (637 - Dr(lur ) (w)),
(6.20) + (Y (), 8 Dl )Y ), T
(W)

To show y — (Ei(Y)(FSy))E) is continuous, we compare (6.20) with its value at nearby

points. Choose another smooth bounded vector field W on M and let "F be the flow it
generates and let |"F]* be its extension to §*-Brownian paths starting from z up to time
T. A change of variable argument in Section 5.1 for |"F]* shows that for z = "F(y),

\ d]P”\o[TF]A> PMT,z,y) dVol®

W (Y,V)o|"F] - —=
T( AV T T o AT a2 v o
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We can show the local uniform convergence (in (y,7") and A) the convergence of ) of
(RL(Y)(F22))) to (BA(Y)(F®y))h as r — 0 exactly as we did in the previous proofs of
properties i) and iv).

As to the estimations in v), |z:)}’j (y)’ can be estimated using the conditional L? expecta-
tions of QNSj_l(T x,w), ([uT])‘)E\l)( ), respectively. By (6.20), we have the formula in iii). By
Claim 6.3, we obtain the formula of szi‘ (y) in (6.14). We can use them and Proposition
4.28 to give the desired estimation of Div zi"] (y). O

Proof of properties vi) and vii) in Section 6.1. The j = 1 case was considered in Theorem
5.1. When j = 2, since we have (6.1) for i = 1,2, so, for all fe CP(M),

(1)

| 1@ ) vl ) = ([ 1ok ) avo))

This implies
AT, 2,9) = @)V (T, 2,9) + 64T, ,y) - (W@NT, 2,10 (w))
= GD)\(T,y) + (BT, 2, ).

A

(1)
A

Hence,

(Inp)P(T, 2, y) = (T, 2,y) — (61)*(T,2,y) — (n p)P(y)

and
V(npY) (T, 2,y) = VO3 (T, 2,y) — 265(T, 2, y)VoL(T, 2, ) — V(In p") P ().

This, together with vi), vii) in j = 1 case, shows the estimation for |V (In p* )5\2) (T, z,y)|
in (6.10) holds true if the same type of estimation is valid for |V(Z)¢§\(T,x,y)|. By i)-v),
Claims 6.2-6.3 apply. We have

(6.21) A(Tx,y) = E (BT 2. w)| xr]'(w) = v).
where
BT, z,w) =(33) AT, 2, w) — (V3 0XT, 2, w), Dr([ur) ) () + AT, &, w) (T, 2, w).

We can use (6.21) to derive the conditional expectation expressions of V@2 (T, z,y) as
in the proof of Theorem 5.1. Using this and Proposition 4.28, we can derive the desired
estimations of V(@2 (T, z,y) and its L%-norm.

For j > 3, with i)-v), we have the identity
VO )Y (T, 2. )

| j=1 | . |
(6.22) = VO (T, 2,) > VO (64 - 61) VT 2, y) 9O (10 o) P ().
=1
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By Theorem 5.1 i),

AT 2.0) = (W T2 (T 0)) = ()P (T) + (0 p) D).

By (6.1), for all 4, i < j, and all f € C*(M),

i FWSAT, 2, y)p (T, z,y) dVol*(y (J F )T 2o (0 ) VOl )><1)

Since f is arbitrary, we must have
AT, z,y) = (63 OV (T,z,y) + 63 (T 2,y) -

= (T, y) + ST y) -

Using this relationship inductively, we obtain

A

In(pM(T, z, y)pM(T, 2, y)))(;)

MT, 3, y).

%/—\

. . i1 .
GAT,2,y) = (AT, )+ D) (04 00) Y (Thay),
=1

which implies

j—1
()T, 2, y) = (T, y) — Y (64 - 80) V(T 2, y) — (0 p") V().
1

.
I

A differentiation of this equation gives (6.22). By induction, we see that the differentials
(0%, ) (T x,y) for r < j—i—1 only consist of (In p* )(S) (T, z,y), (In p)‘)(s) (y) up to order s =
i+r < j—1. By the inductive assumption on the gradient estimations of (Inp )( )(T x,y),
s < j — 1, to obtain vii) for |V (Inp )( )(T T,y | it suffices to give the estimation for
\V(l)qbg\(T,:r,y)L By i)-v), Claims 6.2-6.3 apply and we have

A(T.2,) = E (ST o, w)| [xr 1 w) = y).

where gi(T,:E, w) is defined inductively using (6.8). As in the proof of Theorem 5.1, we
can further obtain qNSf\’(l)(T, x,w) such that

VOR (T 2,y) = E (40 (T, w)| e (w) = y).

The term qu\’(l)(T,x,w) involves the derivatives of qzi(T,x,w) under flow "F up tq,the J-
th order and can be formulated as a stochastic integral using s, s’, [u]*, {([ut]’\)g\] )}jlgj,
{[DOF (el w)] P Yiss 1 and (V3O pN) (T, 2, [x71) hisizji<j1- So we can use
this and ii) of Proposition 4.28 to derive the desired bound of [V()¢4 (T, z, y)| as in Theorem

5.1. As to vi), it is equivalent to estimate E(ng)‘\’(l) (T, z,w)||?), which can be handled using
i) of Proposition 4.28 and the inductive assumption on (1.3) for i < j. O
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7. REGULARITY OF THE ENTROPY

The analog of formula (1.1) for the entropy involves the Martin kernel of the Brownian
motion on (M, §") for g* € R¥(M). Recall that the Green function on (M,g?) is given by

o0
Gz, y) = f Mt z,y) dt, for x,y e M,
0

and it can be associated with a “Green metric” on M ([LS1]) by letting
— A if d~
dg (z,y) = { In(coG*(z,y)), if dgx(l‘,y) > 1,

—Incg, otherwise,
where cg can be chosen to be independent of A for ¢g* in a small neighborhood of ¢°. By
Anderson and Schoen [AS] (see also [Anc]), the Martin kernel for (M, ") is defined by

G)\
(7.1) K (z,y,€) == ll—l}‘lg kA (z,y, ), where kM (z,y,2) := G}\Ei:g
Hence, the logarithm of the Martin kernel is an analog of the Busemann function using the
Green metric since

Ink*z,y,&) = lirré (dgr(z,2) — dgr(y, 2)), for z,ye M, €€ oM.
Moreover, it is known that the entropy satisfies the following formula ([K1])

W= [ A uP | | dmdee.
y=x
For z,y € M fixed, the function k*(x, 5, £) is a continuous version of the Radon-Nikodyn
derivative (dm,/dm,)(€); the gradient Vyk*(z,y,&)]y=e is a G-equivariant stable vector

field that depends Holder continuously on ¢ with the Holder exponent uniformly in X for ¢*
in a small neighborhood of ¢° ([AS], see also [Ha]). Furthermore, we have the following.

Lemma 7.1. Let M be a closed connected smooth manifold. For each g e RF(M) (k= 3),
there exist a neighborhood Vy of g in RF(M) and b”, b” > 0, such that for any C* curve
Ae(—1,1)—gte Vg with g% = g, the second order differentials of k™ (z,y,€) iny aty =
are Holder continuous in & with exponent b”; for b < b”s, where » is as in (3.1), we have

(7.2) Ak (z,y. )|, (ADAIMK (2,9, 6)] _, € Hy.

=z’

Proof. The second part follows from [AS, Theorem 6.2] and the first part. We show the
first part by following the proof of [Ha, Lemma 3.2].

Let z € M and let B(x, ) be a small neighborhood around z with a positive radius 4.
For v = (2/,¢) € SMy with 2’ € B(x,20)\B(z,0) and p,0 < p < 7/2, let

~ A LA
CN(v, p) = {z eM: £, (v, (0) < p}, C(v, p) := C°(v, p)
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be the open cone of vertex x/, axis v and angle p, where Lg?(-, -) is the §* angle function
in Sxfj\f\f and f'ygf .(0) is the initial tangent vector of the ¢ unit speed geodesic ’yg,A , from
2’ to z.

There exists a neighborhood V, of g in ®*(M) such that if ¢* € V,, then for all
v,C(v,m/6) < CMv,n/4) < C(v,7/3) and for all x € M,B(x,5/4) < By (7,6/2) <
B(x,0).3 Let {Zs,t}|s|,jt)<1, With zoo = =, be any C? two parameter family of points in
B(z,0/4). For C(v,7/2) apart from B(z,d) and z € C(v,7/2), let

1
s t(2) 1= o (k:)‘(a:, Tst,2) — K (, Zot, ) — k"\(x,x&o, z) + k"\(az,a:o’o, z)) .

To conclude the first part of Lemma 7.1, it suffices to show for V, small, there is some C,
C > 0, independent of s,t,z,z and ¢* such that

(73) paalz)] < C.
This is because (7.3) implies that, for z € C* (v, 7/4),

L (GMwsy, 2) — GMzoy, 2) — GMNas0, 2) + G0, 2)) + CG(z, 2)
_ st S,ty B $,U0s 0y )
Pl O G, 2)

is the quotient of two positive harmonic functions in C*(v, 7/4) which vanish at the infinity
boundary dM. Hence, by using [AS, Theorem 6.2}, for V, small, we obtain two positive
numbers C’,b”, independent of s,t, 2 and g*, such that

(7.4) |(<,057t(z) +C) — (psa(2) + C)| < C"e_b””(ﬂzl);, Vz, 2 e C)\(V, 7/4).
Let &,n € oM be points lying in the closure of C(v,7/6). Letting z — £, 2’ — n and then
letting s, — 0 in (7.4), the first part statement of Lemma 7.1 follows by using (7.1).

It remains to show (7.3), or, equivalently,
1
(7.5) ‘t (GA(xs,t,z) — G0y, 2) — G50, 2) + GMzo0, z))‘ < OGNz, 2).
s

Since G*(-, z) is harmonic in Byx(x,6/2), by the Harnack inequality ([AS]) and the infini-
tesimal Harnack inequality of Cheng-Yau ([CY]), for V, small, there is some C”, C” > 0,
independent of s,t,z, z and ¢* such that

Gy, 2), V)G (y,2)|.n < C"GMNx,2), Yy € Bp(x,0/2), z€ CN(v,7/4).

g

3There is a neighborhood V, of g in R*(M) and a number 7 such that for §,§ € V,,7 > 7,
25,5 AL s ) <4860 A, )+ w100,
)

g’ g
'Yz () Tae(r) 22 ey Vae(r)

It suffices then to control the angles on B(z,r + 29).
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To continue, we consider LW’yG)‘(y, z), where W is any smooth bounded vector field on

M , Lw‘y is the Lie derivative in W evaluated at y. Then, in the distribution sense,
MLy | Gy, 2) = Lw| A Gy, 2) + [Lw, AN Gy, 2) = [Lw, A GA(y, 2),
where the last commutator term is a linear combination of the contractions R*+ VAGA(-, ),

VAR « G*(-, 2) evaluated at W e Ty]\7. Since LW|yG’\(y, z) is C! in y, it must be a real
solution function f to the equation

AN (y) = [Lw, A Gy, 2).

Hence the classical estimation property of elliptic equation (cf. [Fr]) shows that there is
some positive C” depending on the geometry, which can be chosen to be independent of
x, 2, g for V, small, such that

A A A A
|VoLw|, Gy, 2)[ ;< C””(yesBlzgé) V3G (y, 2[5 + y:;gé)ct (y,2))
< 20" C"GHNx, 2).

This shows (7.5) since W can be arbitrary. O

Proof of Theorem 1.6. Let Vg, b” be as in Lemma 7.1. Let b < b, V; and HY be such
that Theorem 1.2 holds true. Let A € (—1,1) — ¢g* € Vg 0V, with g’ = g be a C3 curve.
We omit the index 0 for h?, k0, pY, ZO, A% Div?, VO, (-, -5, Vol and m® at ¢°.
We study the differentiability of h* by writing, as in [LS1],
1 1

SO =) = 02 = 120) (00— ) = (1), + (1D,

where

W0 = [ Ak g)]  dm(w.).

Then, by (7.2) and Theorem 1.2,
lim (I0), = — f (Ao Ink(z, . &), _, dm(z,€) - f Ay Ink(z,y, )| _ dm))(a,9).
Using wup for the function such that

Auy = —AyInk(z,y,€)|, _ —h, (see [LS1, (5.7)]),

Yy=x

we obtain, as in Section 3.3,

K:= lim (1), = f (—;<VtraceX,Z+ Vui) + Div(X(Z + Vul))) dm.
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Clearly, K is linear on X € C*¥(S2T*). When g is locally symmetric, u; = 0 and Z = £X.
Hence,

K= ZJ <;<VtraceX,X> — (X (X, X)) dm,

which vanishes (see Remark 3.12).
We will now show limy_, (I), = 0, which will complete the proof of Theorem 1.6.
Following [LS1, Proposition 2.4], we obtain h*0 = inf3>0{ﬁ)\’0(s)}, where

EA’O(S) := lim —% f(lnp(st,x,y))pA(t,x,y) dVol)‘(y).

t—00

Then, for all A > 0,
1 . 1 pA(t,ZE,y) A A
D)=~ lim —— [ In ———=<p"(¢ dVol
(Dx = 5 sup lim —- J B Gty ? (Lo y) dVoli(y)

1 1 Myt (y) A
— Zgup lim —= | B0 ) oA dvol
3 Sup Jim - f Nty P (t,z,y) dVol*(y)

1 1
< N sup lim n (1 — fp(St,lEy) dVOl(Q)) <0,

>0 t—®©

where the third inequality holds since —Ina < a~! — 1 for all @ > 0. On the other hand,

1 A TA0
M= 5 (B =2")
1. 1 p)\(tal‘vy) A A
= T lim 5 | In =2 (¢ dVol
§ A tfnp(t,x’y)p (¢, 2,y) dVol’(y)

1 . 1 p(n,:E,y) A A
=— lim — Jln pr(n,z,y) dVol*(y).
P, 2, y)p M (y) ( ) W)

To estimate (I)y, consider the stationary Markov chain on the space Q = MN10} with
transition probability p*(1,z,y) dVol* (y) and the process Yp(w) = 1 and, for n > 1,

p(Lwg,wy)  p(lw,wy) p(liw, g, wy)
P, we, wy)pMwy) P wy, we)pMwy) ML, w, g, w,)pMNw,)

Yo(w) =

Observe that

px(ifZ’,zaii(y) = Epy (Ya(w) | wn = y).
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So we may write

(I, = lim —EPA <1HEP)\ (Yn(i) |Qn = y))

neN,n—ow0 N

lim —EPA (InY,(w))

neN,n—o0 N,

H—l )
nel\lllzn—mo n ; ]E]P))\ ( 7) )

1S Vi1 (w)
fim Z Ep (EPA (m V) ))

P >’\>—‘

> =

Set w; = y and let (|y¢]*, [Ut] )i=0 be the stochastic pair in M x ©@7" (M) that defines the
¢ Brownian motion on M starting from y. Then,

Virw)) _p (o Pl )
Eoy, (050 ) =0 (0 o o) B (@)

which is L' integrable in y. Hence the ergodic theorem applied to the g* Brownian motion
on M (see Proposition 2.2) gives that

lim nZl Ep) (EPA (m Y;(lf;;’)» = EpnEq (TT)r ) -

neN,n—o0 N

Since

Eq ((I)y)} = Eq (—np"A(Ly, [y () — (oM 1M (w)))

_py,2) s
+ Eq << vzlnp/\(l,y,Z)pA(z) _ , Dre(|61]7),( )>>’

we conclude that ((I1I) )\,y)/)\ is L' integrable, uniformly in A and y, by using Theorem 1.3
i), Lemma 4.14 and Proposition 4.28 i) for (|y1]*,|01]}). Moreover,

(Bq (1)1} = Bq (—(pM5(1, 111" = (i p)(1x11%) = 0

by taking the differential in A of {p*(1,y, 2) dVol*(z) = 1

[y1]*(w)

Hence,
Jim XEWEQ ((MD)xw,) = Ep (Eq ((I)xw,)), =0,

where the first equality holds since we are integrating a function that depends only on wj,.
Consequently, we obtain limy_,o40 (I), = 0. In the same way, we show limy_,o_o (I), =
Thus, limy_,q (I), = 0. O
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Remark 7.2. Note that for all A, h* < (v*)? by [Gu] and [K1]. As in Corollary 3.10, we
can also use [BCG], [KKPW] and the C! differentiability of A\ + h* for any C? curve
A g* e R3(M) to conclude that (h*)) = 0 at locally symmetric g°.

In proving Theorem 1.6, we obtain the following formula.

Theorem 7.3. Let M be a closed connected smooth manifold and let g € R3(M). For any
C3 curve A€ (—1,1) — g* e R3(M) with ¢° = g and constant volume,

(W) = f <—;<VtraceX,Z + Vup) + Div(X(Z + Vul))> dm.

Acknowledgments — We thank MSRI, ICERM and IML for their partial support.
The second author would like to also thank LPMA and the Department of Mathematics
of the University of Notre Dame for hospitality during her stays.

REFERENCES

[Anc] A. Ancona, Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. Math.
(2) 125 (1987) 495-536.

[AS] M. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature,
Ann. of Math. 121 (1985), 429-461.

[Ano] D. V. Anosov, Tangent fields of transversal foliations in U-systems, Math. Notes Acad. Sci. USSR
2:5 (1967), 818-823.

[Ba] W. Ballmann, Lectures on spaces of nonpositive curvature, With an appendiz by Misha Brin. DMV
Seminar, 25, Birkh&user Verlag, Basel, 1995.

[BGS] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Birkh&auser,
Boston-Basel-Stuttgart, 1985.

[BCG] G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de
courbure strictement négative. GAFA, 5 (1995), 731-799.

[CM1] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann.
of Math. 45 (1944) 386-396.

[CM2] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class of
linear transformations, Trans. Amer. Math. Soc. 58 (1945) 184-219.

[CY] S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric
applications, Commun. Pure Appl. Math. 28 (1975) 333-354.

[Co] G. Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z. 210 (1992),
97-111.

[D] B. K. Driver, A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a
compact Riemannian manifold, Trans. Amer. Math. Soc. 342 (1994), 375-395.

[EO] P. Eberlein and B. O’Neill, Visibility manifolds, Pacific Journal of Mathematics, 46 (1973), 45-109.

[Elw] K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lec-
ture Note Series, 70. Cambridge University Press, Cambridge-New York, 1982.

[Esc] J.-H. Eschenburg, Horospheres and the stable part of the geodesic flow, Math. Z. 153 (1977), no. 3,
237-251.

[Fe] M. X. Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270 (1970),
1698-1699.



152 FRANCOIS LEDRAPPIER AND LIN SHU

[Fr] A.Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J.
1964.

[GHL] S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Third edition, Universitext. Springer-
Verlag, Berlin, 2004.

[Ga] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285-311.

[Gi] L. V. Girsanov, On transforming a class of stochastic processes by absolutely continuous substitution
of measures, Teor. Veroyatnost. i Primenen. 5 (1960) 314-330.

[Go] S. Gouézel Analyticity of the entropy and the escape rate of random walks in hyperbolic groups,
Discrete Anal. 2017, Paper No. 7, 37 pp..

[Gu] Y. Guivarc’h, Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque,
74 (1980), 47-98.

[Ha] U. Hamenstadt, An explicit description of harmonic measure, Math. Z. 205 (1990), 287-299.

[HIH] E. Heintze and H. C. Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977), 481-491.

[Hsl] E.-P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian
manifold, J. Funct. Anal. 134 (1995), 417-450.

[Hs3] E.-P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38. American Math-
ematical Society, Providence, RI, 2002.

[KKPW] A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of the topo-
logical entropy for Anosov and geodesic flows, Invent Math., 98(1989) 581-597.

[K1] V. A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropic
approach, Soviet Math. Dokl. 33 (1986), 812-816.

[K2] V. A. Kaimanovich, Invariant measures for the geodesic flow and measures at infinity on negatively
curved manifolds, Ann. Inst. Henri Poincaré, Physique Théorique 53, no. 4 (1990) 361-393.

[Kat] T. Kato, Perturbation theory for linear operators, Second corrected printing of the second edition,
Springer-Verlag Berlin Heidelberg New York Tokyo 1984.

[Kun2] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge university press, 1990.

[L1] F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively-curve mani-
folds, Bol. Soc. Brasil. Mat. 19 (1988), 115-140.

[L2] F. Ledrappier, Central Limit Theorem in negative curvature, The Annals of Probability 23 (1995),
1219-1233.

[LS1] F. Ledrappier and L. Shu, Differentiating the stochastic entropy for compact negatively curved spaces
under conformal changes, Annales de linstitut Fourier, 67 (2017), 1115-1183.

[LS2] F. Ledrappier and L. Shu, in preparation.

[Li] X.D. Li, Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds,
Stochastic Process. Appl. 126 (2016), 1264-1283.

[LMM] R. de la Llave, J.-M. Marco and R. Moriyén, Canonical perturbation theory of Anosov systems
and regularity results for the Livsic cohomology equation, Ann. of Math. (2) 123 (1986), 537-611.

[M] X. N. Ma and G. Marinescu, Exponential estimate for the asymptotics of Bergman kernels, Math.
Ann. 362 (2015), 1327-1347.

[Ma] P. Malliavin, Stochastic Jacobi fields, Partial differential equations and geometry (Proc. Conf., Park
City, Utah, 1977), 203-235, Lecture Notes in Pure and Appl. Math., 48, Dekker, New York, 1979.

[N] A. A. Novikov, On moment inequalities and identities for stochastic integrals, Proceedings of the
Second Japan-USSR Symposium on Probability Theory (Kyoto, 1972), pp. 333-339 in Lecture Notes
in Math., Vol. 330, Springer, Berlin, 19783.

[RY] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences|, 293. Springer-Verlag, Berlin,
1999.

[Sa] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992),
417-450.



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 153

[SFL] M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems, Springer-Verlag, New
York-Berlin, 1987.

[Sk] A.V. Skorokhod, Notes on Gaussian measures in a Banach space, Teor. Veroj. i Prim. 17 (1966),
167-173.

[Sp] M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish, Inc., Wilmington,
Del., 1979.

FRANQOIS LEDRAPPIER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, IN 46556-
4618, USA AND LPMA, BoiTE COURRIER 188, 4, PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE

E-mail address: fledrapp@nd.edu
Lin SHu, LMAM, SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, PEO-
PLE’S REPUBLIC OF CHINA

E-mail address: 1shu@math.pku.edu.cn



