Overrelaxed Sinkhorn-Knopp Algorithm for Regularized Optimal Transport - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Overrelaxed Sinkhorn-Knopp Algorithm for Regularized Optimal Transport

Résumé

This article describes a method for quickly computing the solution to the regularized optimal transport problem. It generalizes and improves upon the widely-used iterative Bregman projections algorithm (or Sinkhorn-Knopp algorithm). The idea is to overrelax the Bregman projection operators, allowing for faster convergence. In practice this corresponds to elevating the diagonal scaling factors to a given power, at each step of the algorithm. We propose a simple method for establishing global convergence by ensuring the decrease of a Lyapunov function at each step. An adaptive choice of overrelaxation parameter based on the Lyapunov function is constructed. We also suggest a heuristic to choose a suitable asymptotic overrelaxation parameter, based on a local convergence analysis. Our numerical experiments show a gain in convergence speed by an order of magnitude in certain regimes.
Fichier principal
Vignette du fichier
hal.pdf (309.75 Ko) Télécharger le fichier
Vignette du fichier
speedratio_ML.png (37.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Loading...

Dates et versions

hal-01629985 , version 1 (22-07-2019)

Identifiants

Citer

Alexis Thibault, Lenaic Chizat, Charles H Dossal, Nicolas Papadakis. Overrelaxed Sinkhorn-Knopp Algorithm for Regularized Optimal Transport. NIPS Workshop on Optimal Transport & Machine Learning (OTML'17), Dec 2017, Long Beach, United States. ⟨hal-01629985⟩
651 Consultations
363 Téléchargements

Altmetric

Partager

More