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Abstract

This article describes a method for quickly computing the solution to the regularized op-
timal transport problem. It generalizes and improves upon the widely-used iterative Breg-
man projections algorithm (or Sinkhorn–Knopp algorithm). The idea is to overrelax the
Bregman projection operators, allowing for faster convergence. In practice this corresponds
to elevating the diagonal scaling factors to a given power, at each step of the algorithm. We
propose a simple method for establishing global convergence by ensuring the decrease of
a Lyapunov function at each step. An adaptive choice of overrelaxation parameter based
on the Lyapunov function is constructed. We also suggest a heuristic to choose a suitable
asymptotic overrelaxation parameter, based on a local convergence analysis. Our numerical
experiments show a gain in convergence speed by an order of magnitude in certain regimes.

1 Introduction
Optimal Transport is an efficient and flexible tool to compare two probability distributions which
has been popularized in the computer vision community in the context of discrete histograms [Rub-
ner et al., 2000]. The introduction of entropic regularization in [Cuturi, 2013] has made possible
the use of the fast Sinkhorn–Knopp algorithm [Sinkhorn, 1964] scaling with high dimensional data.
Regularized optimal transport have thus been intensively used in Machine Learning with applica-
tions such as Geodesic PCA [Seguy and Cuturi, 2015], domain adaptation [Courty et al., 2015], data
fitting [Frogner et al., 2015], training of Boltzmann Machine [Montavon et al., 2016] or dictionary
learning [Rolet et al., 2016, Schmitz et al., 2017].

The computation of optimal transport between two data relies on the estimation of an optimal
transport matrix, the entries of which represent the quantity of mass transported between data loca-
tions. Regularization of optimal transport with strictly convex regularization [Cuturi, 2013, Dessein
et al., 2016] nevertheless involves a spreading of the mass. Hence, for particular purposes such as
color interpolation [Rabin and Papadakis, 2014] or gradient flow [Chizat et al., 2016], it is neces-
sary to consider very small regularization of the problem. In this setting, the regularized transport
problem can be ill-conditioned and the Sinkhorn–Knopp algorithm converges slowly. This is the
issue we want to tackle here. Before going into further details, we now briefly introduce the main
notations and concepts used all along this article.

1



1.1 Discrete optimal transport
We consider two discrete probability measures µk ∈ Rnk

+∗. Let us define the two following linear
operators

A1 :

{
Rn1n2 → Rn1

(A1x)i =
∑
j xi,j

A2 :

{
Rn1n2 → Rn2

(A2x)j =
∑
i xi,j ,

as well as the affine constraint sets

Ck =
{
γ ∈ Rn1n2 | Akγ = µk

}
.

Given a cost matrix c, where cij represents the cost of moving mass µ1
i to µ2

j , the optimal transport
problem corresponds to the estimation of an optimal transport matrix γ solution of:

min
γ∈C1 ∩C2 ∩Rn1n2

+

〈c, γ〉 :=
∑
i,j

ci,jγi,j .

This is a linear programming problem whose resolution becomes intractable for large problems.

1.2 Regularized optimal transport
In [Cuturi, 2013], it has been proposed to regularize this problem by adding a strictly convex entropy
regularization:

min
γ∈C1 ∩C2 ∩Rn1n2

+

Kε(γ) := 〈c, γ〉+ εKL(γ,1), (1)

with ε > 0, 1 is the matrix of size n1 × n2 full of ones and the Kullback-Leibler divergence is

KL(γ, ξ) =
∑
i,j

γi,j

(
log

(
γi,j
ξi,j

)
− 1

)
+
∑
i,j

ξi,j (2)

with the convention 0 log 0 = 0. It was shown in [Benamou et al., 2015] that the regularized optimal
transport matrix γ∗, which is the unique minimizer of problem (1), is the Bregman projection of
γ0 = e−c/ε (here and in the sequel, exponentiation is meant entry-wise) onto C1 ∩C2:

γ∗ = argmin
C1 ∩C2

Kε(γ) = PC1 ∩C2(e−c/ε), (3)

where PC is the Bregman projection onto C defined as

PC(ξ) := argmin
γ∈C

KL(γ, ξ).

1.3 Sinkhorn–Knopp algorithm
Iterative Bregman projections onto C1 and C2 converge to a point in the intersection C1 ∩C2 [Breg-
man, 1967]. Hence, the so-called Sinkhorn–Knopp algorithm (SK) [Sinkhorn, 1964] that performs
alternate Bregman projections, can be considered to compute the regularized transport matrix:

γ0 = e−c/ε γ`+1 = PC2(PC1(γ`)),

and we have liml→+∞ γ` = PC1 ∩C2(γ0) = γ∗. In the discrete setting, these projections correspond
to diagonal scalings of the input:

PC1(γ) = diag(a)γ with a = µ1 �A1γ (4)

PC2(γ) = γ diag(b) with b = µ2 �A2γ

where � is the pointwise division. To compute numerically the solution one simply has to store
(a`, b`) ∈ Rn1 ×Rn2 and to iterate

a`+1 = µ1 � γ0b` b`+1 = µ2 � tγ0a`+1.
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We then have γ` = diag(a`)γ0 diag(b`).
Another way to interpret the SK algorithm is as an alternate maximization algorithm on the dual

of the regularized optimal transport problem. The dual problem of (1) is

max
α∈Rn

β∈Rm

E(α, β) := 〈α, µ1〉+ 〈β, µ2〉 − ε
∑
i,j

e(αi+βj−ci,j)/ε. (5)

The function E is concave, continuously differentiable and admits a maximizer, so alternate max-
imization converges and we recover SK algorithm by posing for ai = eαi/ε, bj = eβj/ε and
γ0i,j = e−ci,j/ε.

Efficient parallel computations can be considered [Cuturi, 2013] and one can almost reach real-
time computation for large scale problem for certain class of cost matrices c allowing the use of
seprable convolutions [Solomon et al., 2015]. For small values of the parameter ε, numerical issues
can arise and a stabilization of the algorithm is necessary [Chizat et al., 2016]. The convergence of
the process can nevertheless be very slow when ε is small.

1.4 Overview and contributions
In this paper, we consider an overrelaxation scheme designed to accelerate the Sinkhorn–Knopp
algorithm. We first present and show the convergence of our algorithm in Section 2. In Section
3, we analyze the local convergence rate of the algorithm to justify the acceleration. We finally
demonstrate numerically in Section 4 the good behavior of our method, where larger accelerations
are observed for decreasing values of ε.

1.5 Related works
The introduction of relaxation variables through heavy ball approaches [Polyak, 1964] has recently
gained in popularity to speed up the convergence of algorithms optimizing convex [Ghadimi et al.,
2014] or non convex [Zavriev and Kostyuk, 1993, Ochs, 2016] problems. Our specific approach
is very much related to the SOR algorithm [Young, 2014], which is a classical way to solve linear
systems. Similar schemes have been empirically considered to accelerate the SK algorithm in [Peyré
et al., 2016, Schmitz et al., 2017]. The convergence of these algorithms has nevertheless not been
studied yet in the context of regularized optimal transport.

2 Overrelaxed Sinkhorn–Knopp algorithm
As illustrated in Figure 1 (a-b), SK algorithm, that performs alternate Bregman projections onto the
affine sets C1 and C2, can be very slow when ε→ 0. The idea developed in this paper is to perform
overrelaxed projections in order to accelerate the process, as displayed in Figure 1 (c).

γ0

γ∗

C1C2

(a)

γ0

γ∗

C1C2

(b)

γ0

γ∗

C1C2

(c)

Figure 1: The trajectory of γ` given by the SK algorithm is illustrated for decreasing values of ε in
(a) and (b). Overrelaxed projections (c) typically accelerate the convergence rate.
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2.1 Overrelaxed projections
We define the ω-overrelaxed projection operator PωCk as

logPωCk(γ) = (1− ω) log γ + ω logPCk(γ), (6)

where the logarithm is taken coordinate-wise. Note that P 0
Ck is the identity, P 1

Ck = PCk is the stan-
dard Bregman projection and P 2

Ck is an involution (in particular because Ck is an affine subspace).
A naive algorithm would then consist in iteratively applying PωC2 ◦P

ω
C1 for some choice of ω. While

it often behaves well in practice, this algorithm may sometimes not converge even for reasonable
values of ω. Our goal in this section is to modify this algorithm to make it robust and to guarantee
convergence.

Duality gives another point of view on the iterative overrelaxed Bregman projections: they in-
deed correspond to a successive overrelaxation (SOR) algorithm on the dual objective E. This is a
procedure which, starting from (α0, β0) = (0,0), defines for ` ∈ N∗,

α`+1 = (1− ω)α` + ω arg max
α

E(α, β`) (7)

β`+1 = (1− ω)β` + ω arg max
β

E(α`+1, β). (8)

This can be seen by using the relationships given after equation (5).

2.2 Lyapunov function
Convergence of the successive overrelaxed projections is not guaranteed in general. In order to
derive a robust algorithm with provable convergence, we introduce the Lyapunov function

F (γ) = KL(γ∗, γ), (9)

where γ∗ denotes the solution of the regularized OT problem. We will use this function to enforce
the strict descent criterion F (γ`+1) < F (γ`) as long as the process has not converged.

The choice of (9) as a Lyapunov function is of course related to the fact that Bregman projections
are used throughout the algorithm. Further, we will show (Lemma 1) that its decrease is very easy
to compute and this descent criterion still allows enough freedom in the choice of the overrelaxation
parameter.

Crucial properties of this Lyapunov function are gathered in the next lemma.

Lemma 1. For any M ∈ R∗+, the sublevel set {γ | F (γ) ≤M} is compact. Moreover, for any γ in
Rmn+∗ , the decrease of the Lyapunov function after an overrelaxed projection can be computed as

F (γ)− F (PωCk(γ)) =
〈
µk, ϕω

(
(Akγ)� µk

)〉
, (10)

where
ϕω(x) = x(1− x−ω)− ω log x (11)

is a real function, applied coordinate-wise.

Proof. The fact that the Kullback-Leibler divergence is jointly lower semicontinuous implies in par-
ticular that K is closed. Moreover, K ⊂ Rn1×n2

+ is bounded because F is the sum of nonnegative,
coercive functions of each component of its argument γ.

Formula (10) comes from the expressionF (γ1)−F (γ2) =
∑
i,j

(
γ∗i,j log(γ2i,j/γ

1
i,j) + γ1i,j − γ2i,j

)
and the relations (6) and (4).

It follows from Lemma 1 that the decrease of F for an overrelaxed projection is very cheap to
estimate, since its computational cost is linear with respect to the dimension of data µk. In Figure 2,
we display the function ϕω(x). Notice that for the Sinkhorn–Knopp algorithm, which corresponds
to ω = 1, the function ϕω is always nonnegative. For other values 1 ≤ ω < 2, it is nonnegative for
x close to 1.
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Figure 2: Value of ϕω(x). The function is positive above the red line, negative below. For any
relaxation parameter ω smaller than 2, there exists a neighborhood of 1 on which ϕω(·) is positive.

2.3 Proposed algorithm
We first give a general convergence result that later serves as a basis to design an explicit algorithm.

Theorem 1. Let θ1 and θ2 be two continuous functions of γ such that

∀γ ∈ Rn1n2
+∗ , F (P

θk(γ)
Ck (γ)) ≤ F (γ), (12)

where the inequality is strict whenever γ /∈ Ck. Consider the sequence defined by γ0 = e−c/ε and

γ̃`+1 = P
θ1(γ

`)
C1 (γ`)

γ`+1 = P
θ2(γ̃

`+1)
C2 (γ̃`+1).

Then the sequence (γ`) converges to γ∗.

Lemma 2. Let us take γ0 in Rn1n2
+∗ , and denote

S =
{

diag(a)γ0 diag(b), (a, b) ∈ Rn1+n2
+∗

}
the set of matrices that are diagonally similar to γ0. Then the set S ∩ C1 ∩C2 contains exactly one
element γ∗ = PC1 ∩C2(γ0).

Proof. We refer to [Cuturi, 2013] for a proof of this lemma.

Proof of the theorem. First of all, notice that the operators P θCk apply a scaling to lines or columns
of matrices. All (γ`) are thus diagonally similar to γ0:

∀` ≥ 0, γ` ∈ S

By construction of the functions θk, the sequence of values of the Lyapunov function (F (γ`)) is
non-increasing. Hence (γ`) is precompact. If ξ is a cluster point of (γ`), let us define

ξ̃ = P
θ1(ξ)
C1 (ξ)

ξ′ = P
θ2(ξ̃)
C2 (ξ̃).

Then by continuity of the applications, F (ξ) = F (ξ̃) = F (ξ′). From the hypothesis made on θ1 and
θ2, it can be deduced that ξ is in C1 and that ξ̃ is in C2. Therefore ξ′ = ξ̃ = ξ is in the intersection
C1 ∩C2. By Lemma 2, ξ = γ∗, and the whole sequence (γ`) converges to the solution.
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We can construct explicitly functions θk as needed in Theorem 1 using the following lemma.

Lemma 3. Let 1 ≤ θ < ω. Then, for any γ ∈ Rn1n2
+∗ , one has

F (P θCk(γ)) ≤ F (PωCk(γ)). (13)

Moreover, equality occurs if and only if γ ∈ Ck.

Proof. Thanks to Lemma 1, one knows that

F (P θCk(γ))− F (PωCk(γ)) =

〈
µk, (ϕω − ϕθ)

(
Akγ

µk

)〉
.

The function that maps t ∈ [1,∞) to ϕt(x) is non-increasing since ∂tϕt(x) = (x1−t−1) log x. For
x 6= 1, it is even strictly decreasing. Thus inequality (13) is valid, with equality iff Akγ = µk.

We now argue that a good choice for the functions θk may be constructed as follows. Pick a
target parameter θ0 ∈ [1; 2) and a small security distance δ > 0. Define the functions Θ∗ and Θ as

Θ∗(u) = sup {ω ∈ [1; 2] | ϕω (minu) ≥ 0} , (14)
Θ(u) = min(max(1,Θ∗(u)− δ), θ0), (15)

where minu denotes the smallest coordinate of the vector u.

Proposition 1. The function
θk(γ) = Θ

(
(Akγ)� µk

)
(16)

is continuous and verifies the descent condition (12).

Proof. Looking at Figure 2 can help understand this proof. Since the partial derivative of ∂ωϕω(x)
is nonzero for any x < 1, the implicit function theorem proves the continuity of Θ∗. The function
Θ∗
(
(Akγ)� µk)

)
is such that every term in relation (10) is non-negative. Therefore, by Lemma 3,

using this parameter minus δ ensures the strong decrease (12) of the Lyapunov function. Constrain-
ing the parameter to [1, θ0] preserves this property.

This construction, which is often an excellent choice in practice, has several advantages:

• it allows to choose arbitrarily the parameter θ0 that will be used eventually when the algorithm
is close to convergence (we motivate what are good choices for θ0 in Section 3);

• it is also an easy approach to having an adaptive method, as the approximation of Θ∗ has a
negligible cost (it only requires to solve a one dimensional problem that depends on the smallest
value of (Akγ)� µk, which can be done in a few iterations of Newton’s method).

The resulting algorithm, which is proved to be convergent by Theorem 1, is written in pseudo-
code in Algorithm 1. It uses the function Θ defined implicitly in (15), which in practice is ap-
proximated with a few iterations of Newton’s method on the function ω 7→ ϕω(minu) which is
decreasing is as can be seen on Figure 2. With the choice θ0 = 1, one recovers exactly the original
SK algorithm.is

3 Acceleration of local convergence rate
In order to justify the acceleration of convergence that is observed in practice, we now study the
local convergence rate of the overrelaxed algorithm, which follows from the classical convergence
analysis of the linear SOR method. Our result involves the second largest eigenvalue of the matrix

M1 = diag(1� µ1) γ∗ diag(1� µ2) tγ∗ (17)

where γ∗ is the solution to the regularized OT problem (the largest eigenvalue is 1, associated to the
eigenvector 1). We denote the second largest eigenvalue by 1− η, it satisfies η > 0 [Knight, 2008].
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Algorithm 1 Overrelaxed SK algorithm

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set a = 1n1
, b = 1n2

, γ0 = e−c/ε, θ0 ∈ [1; 2) and η > 0
while ||a⊗ γ0b− µ1|| > η do
ã = µ1 � (γ0b),
ω = Θ(a� ã)
a = a1−ω ⊗ ãω
b̃ = µ2 � (tγ0a)
ω = Θ(b� b̃)
b = b1−ω ⊗ b̃ω

end while
return γ = diag(a)γ0 diag(b)

Proposition 2. The SK algorithm converges locally at a linear rate 1− η. For the optimal choice of
extrapolation parameter θ∗ = 2/(1 +

√
η), the overrelaxed projection algorithm converges locally

linearly at a rate (1 − √η)/(1 +
√
η). The local convergence of the overrelaxed algorithm is

guaranteed for θ ∈ ]0, 2[ and the linear rate is given on Figure 3 as a function of 1− η and θ.

Proof. In this proof, we focus on the dual problem and we recall the relationship γ` = eα
`/εγ0eβ

`/ε

between the iterates of the overrelaxed projection algorithm γ` and the iterates (α`, β`) of the SOR
algorithm on the dual problem (7), initialized with (α0, β0) = (0, 0). The dual problem (5) is in-
variant by translations of the form (α, β) 7→ (α− k, β + k), k ∈ R, but is otherwise strictly convex
on any subspace which does not contain the line R(1,−1). In order to deal with this invariance
(which cancels in the corresponding primal iterates), consider the subspace S of pairs of dual vari-
ables (α, β) that satisfy α1 = 0, let πS be the (non orthogonal) projection on S of kernel (1,−1)
and let (α∗, β∗) ∈ S be a dual maximizer.

Since one SOR iteration is a smooth map, the local convergence properties of the SOR algorithm
are characterized by the local convergence of its linearization, which here corresponds to the SOR
method applied to the maximization of the quadratic Taylor expansion of the dual objective E at
(α∗, β∗). This defines an affine map Mθ : (α`, β`) 7→ (α`+1, β`+1) whose spectral properties are
well known [Ciarlet, 1982, Young, 2014] (see also [Chizat, 2017, chapter 4] for the specific case
of convex minimization). For the case θ = 1, this corresponds to the matrix M1 defined in (17).
Specifically, in the non strictly concave case [Hadjidimos, 1985], we have that the operator πS ◦M `

1

converges at the linear rate 1 − η towards the projector on (α∗, β∗) and that the convergence of
πS ◦M `

θ is guaranteed for θ ∈]0, 2[, with the rate

f(θ, η) =

{
θ − 1 if θ > θ∗

1
2θ

2(1− η)− (θ − 1) + 1
2

√
(1− η)θ2(θ2(1− η)− 4(θ − 1)) otherwise,

where θ∗ := 2/(1 +
√
η) is the optimal parameter, for which f(θ∗, η) = (1−√η)/(1 +

√
η). The

function f is plotted in Figure 3.
To switch from these dual convergence results to primal convergence results, remark that γ` →

γ∗ implies KL(γ`, γ0) → KL(γ∗, γ0) which in turn implies E(α`, β`) → maxE so invoking the
partial strict concavity of E, πS(α`, β`) → (α∗, β∗). The converse implication is direct so it holds
[πS(α`, β`) → (α∗, β∗)] ⇔ [γ` → γ∗]. We conclude by noting the fact that πS(α`, β`) converges
at a linear rate implies the same rate on γ`, thanks to the relationship between the iterates.

Corollary 1. The previous local convergence analysis applies to Algorithm 1 and the local conver-
gence rate is governed by the choice of the target extrapolation parameter θ0.

Proof. What we need to show is that eventually one always has Θ(γ`) = θ0. This can be seen from
the quadratic Taylor expansion ϕθ0(1 + z) = z2(θ0 − θ20/2) + o(z2), which shows that for any
choice of θ0 ∈ ]1, 2[, there is a neighborhood of 1 on which ϕθ0(·) is nonnegative.
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Figure 3: Local linear rate of convergence of the overrelaxed algorithm as a function of 1 − η, the
local convergence rate of SK algorithm and θ the overrelaxation parameter. (plain curve) the original
rate is recovered for θ = 1. (dashed curve) optimal overrelaxation parameter θ∗.

(a) Quadratic cost, random marginals (b) Random cost, uniform marginals

Figure 4: Speed ratio of SK algorithm and its accelerated version Algorithm 1 w.r.t parameter ε.

4 Experimental results
We compare Algorithm 1 to SK algorithm on two very different optimal transport settings. In setting
(a) we consider the domain [0, 1] discretized into 100 samples and the squared Euclidean transport
cost on this domain. The marginals are densities made of the sum of a base plateau of height 0.1
and another plateau of height and boundaries chosen uniformly in [0, 1], subsequently normalized.
In setting (b) the cost is a 100× 100 random matrix with entries uniform in [0, 1] and the marginals
are uniform.

Given an estimation of 1 − η, the local convergence rate of SK algorithm, we define θ0 as the
optimal parameter as given in Proposition 2. For estimating η, we follow two strategies. For strategy
“estimated” (in blue on Figure 4), η is measured by looking at the local convergence rate of SK run
on another random problem of the same setting and for the same value of ε. For strategy “measured”
(in orange on Figure 4) the parameter is set using the local convergence rate of SK run on the same
problem. Of course, the latter is an unrealistic strategy but it is interesting to see in our experiments
that the “estimated” strategy performs almost as well as the “measured” one, as shown on 4.

Figure 4 displays the ratio of the number of iterations required to reach a precision of 10−6 on
the dual variable α for SK algorithm and Algorithm 1. It is is worth noting that the complexity per
iteration of these algorithms is the same modulo negligible terms, so this ratio is also the runtime
ratio (our algorithm can also be parallelized on GPUs just as SK algorithm). In both experimental
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settings, for low values of the regularization parameter ε, the acceleration ratio is above 20 with
Algorithm 1.

5 Conclusion and perspectives
The SK algorithm is widely used to solve entropy regularized OT. The use of overrelaxed projec-
tions turns out to be a natural and simple idea to accelerate convergence while keeping many nice
properties of this algorithm (first order, parallelizable, simple). We have proposed an algorithm
that adaptively chooses the overrelaxation parameter so as to guarantee global convergence. The
acceleration of the convergence speed is numerically impressive, in particular in low regularization
regimes. It is theoretically supported in the local regime by the standard analysis of SOR iterations.

This idea of overrelaxation can be generalized to solve more general problems such as multi-
marginal OT, barycenters, gradient flows, unbalanced OT [Chizat, 2017, chap. 4] but there is no
systematic way to derive globally convergent algorithms. Our work is a step in the direction of
building and understanding the properties of robust first order algorithms for solving OT. More
understanding is needed regarding SOR itself (global convergence speed, choice of θ0), but also its
relation to other acceleration methods [Scieur et al., 2016, Altschuler et al., 2017].
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D., Cuturi, M., Peyré, G., and Starck, J.-L. (2017). Wasserstein Dictionary Learning: Optimal
Transport-based unsupervised non-linear dictionary learning. ArXiv e-prints, arXiv:1708.01955.

[Scieur et al., 2016] Scieur, D., d’Aspremont, A., and Bach, F. (2016). Regularized Nonlinear Ac-
celeration. ArXiv e-prints, arXiv:1606.04133.

[Seguy and Cuturi, 2015] Seguy, V. and Cuturi, M. (2015). Principal geodesic analysis for probabil-
ity measures under the optimal transport metric. In Advances in Neural Information Processing
Systems, pages 3312–3320.

[Sinkhorn, 1964] Sinkhorn, R. (1964). A relationship between arbitrary positive matrices and dou-
bly stochastic matrices. The annals of mathematical statistics, 35(2):876–879.

[Solomon et al., 2015] Solomon, J., de Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A.,
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