Positivity of valuations on convex bodies and invariant valuations by linear actions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Positivity of valuations on convex bodies and invariant valuations by linear actions

Nguyen-Bac Dang
  • Fonction : Auteur
  • PersonId : 999131
Jian Xiao
  • Fonction : Auteur
  • PersonId : 1011283

Résumé

We define a notion of positivity on continuous and translation invariant valuations on convex bodies on a finite dimensional real vector space. We endow the valuation space generated by mixed volumes with a norm induced by the positive cone. This enables us to construct a continuous extension of the convolution operator on smooth valuations to the closure of that space. As an application, we prove a variant of Minkowski's existence theorem. Furthermore, given a linear map, we generalize a theorem of Favre-Wulcan and Lin by proving that the eigenvalues of the linear map is related to the spectral radius of the induced linear operator on the space of valuations. Finally, given a linear action and under a natural strict log-concavity assumption on certain spectral radius of the induced linear operators on valuations, we study the positivity properties of the space of invariant valuations corresponding to the spectral radius of the operator.
Fichier principal
Vignette du fichier
PositivityConvexValuations_submitted_gafa_version (1).pdf (467.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01619574 , version 1 (23-10-2017)

Identifiants

Citer

Nguyen-Bac Dang, Jian Xiao. Positivity of valuations on convex bodies and invariant valuations by linear actions. 2017. ⟨hal-01619574⟩
357 Consultations
270 Téléchargements

Altmetric

Partager

More