Learning probabilistic relational models with (partially structured) graph databases - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Learning probabilistic relational models with (partially structured) graph databases

Résumé

Probabilistic Relational Models (PRMs) such as Directed Acyclic Probabilistic Entity Relationship (DAPER) models are probabilistic models dealing with knowledge representation and relational data. Existing literature dealing with PRM and DAPER relies on well structured relational databases. In contrast, a large portion of real-world data is stored in Nosql databases specially graph databases that do not depend on a rigid schema. This paper builds on the recent work on DAPER models, and describes how to learn them from partially structured graph databases. Our contribution is twofold. First, we present how to extract the underlying ER model from a partially structured graph database. Then, we describe a method to compute sufficient statistics based on graph traversal techniques. Our objective is also twofold: we want to learn DAPERs with less structured data, and we want to accelerate the learning process by querying graph databases. Our experiments show that both objectives are completed, transforming the structure learning process into a more feasible task even when data are less structured than an usual relational database.
Fichier principal
Vignette du fichier
IEEE_Conference.pdf (445.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01619318 , version 1 (15-04-2020)

Identifiants

Citer

Marwa El Abri, Philippe Leray, Nadia Essoussi. Learning probabilistic relational models with (partially structured) graph databases. 14th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2017), 2017, Hammamet, Tunisia. ⟨10.1109/AICCSA.2017.39⟩. ⟨hal-01619318⟩
160 Consultations
115 Téléchargements

Altmetric

Partager

More