
HAL Id: hal-01619318
https://hal.science/hal-01619318

Submitted on 15 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning probabilistic relational models with (partially
structured) graph databases

Marwa El Abri, Philippe Leray, Nadia Essoussi

To cite this version:
Marwa El Abri, Philippe Leray, Nadia Essoussi. Learning probabilistic relational models with (par-
tially structured) graph databases. 14th ACS/IEEE International Conference on Computer Sys-
tems and Applications (AICCSA 2017), 2017, Hammamet, Tunisia. �10.1109/AICCSA.2017.39�. �hal-
01619318�

https://hal.science/hal-01619318
https://hal.archives-ouvertes.fr

1

Learning Probabilistic Relational Models with
(partially structured) Graph Databases

Marwa El abri∗†, Philippe Leray†, Nadia Essoussi∗
∗LARODEC Laboratory, ISG, Université de Tunis, Tunisia

Email: marwa.el-abri@etu.univ-nantes.fr, nadia.essoussi@isg.rnu.tn
†LS2N UMR 6004, DUKe research group, University of Nantes, France

Email: philippe.leray@univ-nantes.fr

Abstract—Probabilistic Relational Models (PRMs) such as Di-
rected Acyclic Probabilistic Entity Relationship (DAPER) models
are probabilistic models dealing with knowledge representation
and relational data. Existing literature dealing with PRM and
DAPER relies on well structured relational databases. In contrast,
a large portion of real-world data is stored in Nosql databases
specially graph databases that do not depend on a rigid schema.
This paper builds on the recent work on DAPER models, and
describes how to learn them from partially structured graph
databases. Our contribution is twofold. First, we present how
to extract the underlying ER model from a partially structured
graph database. Then, we describe a method to compute sufficient
statistics based on graph traversal techniques. Our objective is
also twofold: we want to learn DAPERs with less structured
data, and we want to accelerate the learning process by querying
graph databases. Our experiments show that both objectives are
completed, transforming the structure learning process into a
more feasible task even when data are less structured than an
usual relational database.

Keywords—Probabilistic Relational Models, Entity Relationship
Models, DAPER models, graph database, structure learning.

I. INTRODUCTION

With the rise of the Internet, data increase both in volume
and interconnections. This fact produces collection of large
and complex data sets which are difficult to process using
traditional database management tools and applications. With
the emergence of Big data, need for more flexible databases
is evident. According to [1], Big data consists of the major
four V’s namely "Volume" which means simply lots of data
gathered by a company. "Variety" refers to the type of data
that Big Data can comprise, data can be structured as well as
unstructured. "Velocity" refers to speed of data generation and
the time in which Data Stream can be processed. "Veracity"
deals with the uncertainty of data.

Probabilistic Graphical Models (PGM) [2] are one of the
most used models to handle uncertainty in real world applica-
tions. PGMs such as Bayesian networks are restricted to deal
with flat data with homogeneous set of attributes stored in a
single table. Extensions have been proposed in literature to deal

with structured relational data, such as Probabilistic Relational
Models (PRM) [3], [4], Directed Acyclic Probabilistic Entity-
Relationships models (DAPER) [5] or Markov Logic Networks
(MLN) [6].

PRMs deal with the problem of learning and inference from
well structured relational data using SQL language for data
querying. The learning part usually consists in generalizing
algorithms proposed for Bayesian networks, by adding another
dimension in the search space, i.e. traversing the relational
schema in order to discover a probabilistic dependency be-
tween one attribute and another one from another class. This
step requires that the underlying relational schema is already
identified, which is simple with a relational database.

A fundamental operation required for PRM learning is
counting sufficient statistics for probability estimation and
probabilistic dependencies identification. Existing methods [4]
compute sufficient statistics using only SQL joins from re-
lational database. However, SQL joins have an exponential
cost in term of time consuming specially with complex and
highly connected data. This is explained by the fact that large
increase of connected data led to a consequent growth of the
number joins which impacted negatively on performances of
the relational databases.

This reason expedited the movement NOSQL(not only SQL)
which are often used for non relational databases as a category
of data storage and processing which provide more scalability
[7]. NoSQL includes four major types of databases: key/value,
oriented document, oriented column, and graph databases. Re-
cently there has been an increasing interest in graph databases
to model objects and interactions. In contrast to relational
databases, where join-intensive query performance deteriorates
as the dataset gets bigger, a graph database depends less on
a rigid schema and its performance tends to remain relatively
constant, even as the dataset grows. This is because queries
are localized to a portion of the graph.

Therefore, we propose in this paper to learn PRM such
as Directed Acyclic Probabilistic Entity-Relationships models
(DAPER) from partially structured Graph Databases.

Our contribution is twofold. We first present how to extract

2

Fig. 1. Example of an ER diagram (inspired from [8]).

the underlying ER model from a partially structured graph
database. We then describe a method to compute sufficient
statistics based on graph traversal techniques.

Our objective is also twofold: we want to learn DAPERs
with less structured data, and we want to accelerate the
learning process by querying graph databases. Our experiments
will show that both objectives are completed.

The organization of this paper is as follows: some recalls
about ER models are presented in Sec. II-A. Sect. II-B presents
DAPER models (where data come from well structured rela-
tional databases). Sect. II-C describes graph database where we
consider that the data is partially structured). We will show
in Sect. III-A how to identify an ER model for a partially
structured graph database. Then, given this ER model and the
graph database, we will focus in Sect. III-B on the computation
of the sufficient statistics by querying this graph database. Sect.
IV presents experiments that we have performed to evaluate
the efficiency of the proposed method. Finally, Sect. V presents
conclusion and future work.

II. BACKGROUND

A. ER model

The Entity-Relationship (ER) model is a higher-level con-
ceptual model developed by [9] used as an abstract repre-
sentation of database structures. An ER model is defined
by three basic concepts: entity classes, relationship classes,
and attribute classes. Formally, the ER model is defined as
ER = {E ,R,A} where E = {E1, ..., Em} is a set of entity
classes,R = {R1, ..., Rn} is a set of relationship classes which
correspond to specific interactions between entity classes, and
A (X) are attribute classes for each X ∈ (E ∪ R) which
correspond to variables describing some properties of an entity
or relationship. Each attribute x.A has a domain Dom (x.A).

The basic definition of an ER model can be extended by
adding other properties such as relationship types or cardinal-
ity. Relationship type can be one-to-one, one-to many, many-
to-many. Relationship cardinality can be binary, ternary or even

more. However, it is often possible to replace higher-order
relationships by a collection of binary relationships linking
pairs of the original entity types.

The visualization of an ER model is made via an ER
diagram, graphical representation of entities and their rela-
tionships to each other. In an ER diagram, the entities classes
are shown as rectangular nodes, the relationship classes are
shown as diamond-shaped nodes, and the attribute classes are
represented using ellipses.

Figure 1 illustrates an example of ER diagram designed for
a university model (inspired from [8]) which holds information
relating to students,courses that they take, and professors that
give these courses. In this example we distinguish between :
- E = {student, course, professor},
- R = {takes, gives},
- A(student) = {student.intelligence, student.ranking},
- A(course) = {course.difficulty},
- A(professor) = {professor.teaching_ability},
- A(takes) = {takes.grade}.
σE (resp. σR) is a specification of the entity classes E (resp.

relationship classes R) with a particular database. A skeleton
σER is defined by σE ∪ σR. An instance of an ER model,
IERA, is defined by a skeleton σER and an assignment to
a valid value in Dom (X.A) for every attribute x.A where
x ∈ σER and A ∈ A (X).

B. DAPER model
A DAPER [5] is a probabilistic extension of an ER model

where all attributes A(X) (with X ∈ (E ∪ R)) are random
variables that can depend on each other. Generally, the prob-
abilistic graphical structure is defined by a set of parents
pa(X.A) for each attribute object X.A, associated to a local
distribution corresponding to this set of variables.

In [10], these local distributions are defined for each attribute
X.A ∈ A (E ∪ R) by the conditional probability distribution
denoted P (X.A|pa(X.A)). Figure 2 shows a DAPER model
related to the ER model in Figure 1 where a student’s grade
for one course depends both on the student’s intelligence and
on the difficulty of the course. In this figure, the probabilistic
dependencies between attributes are represented by red solid
arcs.

Parents pa(X.A) of a given attribute can be defined by using
paths (also named slot chains) in the ER model [11], [4] or
more general constraints [5]. Formally, a slot chain is a set of
slots ρ1, ρ2, ..., ρn where ρ is a (inverse) reference slot which
relates objects of a class X ∈ (E ∪ R) to objects of a class Y .
takes.student is the student associated to the corresponding
registration. student.student−1 is an inverse reference slot
corresponding to all the registrations of a given student. As
an example of slot chain, student.student−1.course will
correspond to all the courses taken by a particular student.

Another important concept in DAPER is the notion of
aggregator that comes into play when there is dependency

3

Fig. 2. Example of a DAPER model (inspired from [8]).

between the objects that have one-to-many or many-to-
many relations. In the figure 2, student.ranking depends
on student.student−1.grade. As a student can take more
than one course, student.ranking will depend on grades of
more than one takes object and this number will not be the
same for all students. So, in order to get a summary of such
dependencies, aggregators (such as MODE, MEDIAN, MIN,
...) are introduced.

The structure learning task for DAPER models aims at
identifying the probabilistic dependencies between attributes
(and the corresponding conditional probability distributions)
given an ER model and its instantiation IERA. The algorithms
proposed in order to solve this task are inspired from the
classical approaches used to learn Bayesian Networks. RGS
(Relational Greedy Search) [11], [4] is the main score-based
approximate approach proposed to learn Probabilistic Rela-
tional Models structure. [12] adapts an exact learning algorithm
based on A∗ algorithm. Constraint-based approaches (based
on statistical tests) have been developed in [13], [14] and
hybrid approaches have been proposed by [15], [16]. When the
implementations of these algorithms exist, they all rely on a
relational database in order to obtain (1) the relational schema
or the ER model, and (2) the instance (i.e. the data) needed
in order to estimate the sufficient statistics N(X.A, pa(X.A))
mandatory to estimate some scoring functions or independence
measurements.

C. Graph database

Graph databases are becoming increasingly popular as an
alternative to relational databases for managing complex,
increasingly inter-connected, unstructured data [17]. Where
relational database management systems use the relational data
model, with relations, attributes, and tuples, graph databases
use a graph data model, in its simplest form, with the notion of

Fig. 3. Example of a graph database.

vertices and edges, familiar from graph theory. Semantically,
the graph data model is richer than the relational data model,
because in a relational model relationships between entities
have to be inferred through out primary and foreign keys, while
they are modelled explicitly in a graph database.

A graph database is represented by a set of nodes V =
{vi} and a set of edges (relationships) Ev = {ek =< vi, vj >}
which connect nodes of V .

As described in Figure 3 with a simple example of a graph
database, each node vi (resp. each edge ek) can also contain
a list of properties called also attributes A(vi) (resp. A(ek)).
Each attribute is stored in the form of a {key:value} pair.

We also consider that each node vi (resp. each edge ek) is
typed, i.e. associated to one label type(vi) (resp. type(ek)).
Finally, we define the signature of one edge as the triplet
defined by the types of the two vertices connected by this
edge and the type of the edge:
signature(ek) =< type(vi), type(ek), type(vj) > with
ek =< vi, vj >.

[17] and [7] illustrated the limitations of relational database
when modeling interconnected data especially many-to-many
relationships in large data sets because it requires multiple
joins. In the opposite, with graph databases there are no tables
and columns nor "select" and "join" commands, but only graph
traversing operations. This flexibility makes graph databases
best suited for huge scale applications.

Graph databases are unstructured data stores which are
possibly schema-free. Edges between nodes can have varying
signatures, when it had to be constant for an ER model. For
instance, in Figure 3, Jule(student)−gives−Math(course)
does not correspond to the ER model we would like, but can
be depicted without any problem in the graph database.

III. DAPER MODEL LEARNING FROM GRAPH DATABASES

As we show in Sect. II-B the existing works about
PRMs learning consider that the ER model is known
(given by the relational database) and the sufficient statistics

4

N(X.A, pa(X.A)) (used by the learning algorithm) are ex-
tracted from a relational database instance.

When dealing with a graph database, we have to solve two
main steps. The first one corresponds to the identification of
the ER model. The second one corresponds to the computation
of the sufficient statistics in this graph database.

A. ER model identification

We consider here that the data stored in a graph database
is at least partially structured, i.e. there exist an underlying
ER model, even if some exceptions are not derived from this
model. Our objective here is the identification of this ER
model.

We propose to define E , set of entity classes in the ER
model, as the set of unique types of the vertices in the graph
databases. E = unique({type(vi),∀vi ∈ V})

The definition of the relationship classes is more complex.
In an usual ER model, a relationship class is defined for one
unique pair of entity classes. In our graph database, a same
typed relationship could be used to connect pairs of vertices
with different pairs of classes. For instance, for 10 instances
of the relation takes, our graph database could contain 9
instances with signature student − takes − courses and 1
instance with signature professor − takes− course.

By inspiring ourselves from simple application of Inductive
Logic Programming principles [18], we propose to define a
relationship class in R for each relationship label and each
corresponding signature s that is enough represented for this
label in the database, i.e. N(type(vi)−type(ek)−type(vj)) >
λN(type(ek)) where N(.) is the number of occurrences in the
graph database, and λ ∈ [0, 1] is a user-defined threshold.

For instance, with N(takes) = 10, N(student − takes −
course) = 9, N(professor − takes − course) = 1 and
λ = .3, we create one only takes relationship in R. With
N(takes) = 10, N(student − takes − course) = 6,
N(professor − takes − course) = 4 and λ = .3, we create
two relationships takessc and takespc in R, one for each
signature.

Finally, A (X), attribute classes for each entity (or relation-
ship) class, will be defined as the set of all the different at-
tributes we met for each node (resp. edge) of the corresponding
class.

Each step in this process can be solved by an unique graph
traversal.

B. Sufficient statistics computation

All the algorithms proposed for DAPER structure learning
relies on scoring function or independence measurement based
on the estimation of sufficient statistics (or contingency tables)
N(X.A, pa(X.A)), where each parent in pa(X.A) have gen-
eral form of γ(X.K.B) when referencing an attribute B related

to the starting class X with a slot chain K, and a possible
aggregation function γ.

As an example, estimating the conditional
probability distribution P (takes.grade |
takes.student.intelligence, takes.course.difficulty)
requires the computation of the contingency table
N(takes.grade, takes.student.intelligence, takes.course.difficulty).

For a relational database, the computation of this table can
be done by executing SQL joins of the database tables [4].
SELECT grade, intelligence, difficulty, count(*)
FROM takes, student, course
JOIN takes ON student.id = takes.student-id
JOIN course ON takes.course-id=course.id
GROUP BY grade, intelligence, difficulty

However, a table join is not feasible for a long length of
slot chains and large collection of relationship classes. In fact,
queries become more complex because we have to join large
number of entities to specify the mapping between a foreign
key in one table and the associated primary key.

For a graph database, the same computation can be seen
as an exploration of the graph database, where we count
occurences of subgraphs patterns corresponding to the vari-
ables we want to count, without performing complex grouping
operations on the entire data set. In Neo4J graph database
and using Cypher language the previous query will be written
simpler as follow:
MATCH (a:student)-[b:takes] --> (c:course)
RETURN b.grade, a.intelligence, c.difficulty,
count(*)

As another more complex example, estimating the
conditional probability distribution P (student.ranking |
MODE(student.student−1.grade), student.student−1.
course.course−1.professor.teach_ability) requires the
computation of the contingency table
N(student.ranking,MODE(student.student−1.grade),
student.student−1.course.course−1.professor.teach_ability).
For Neo4j graph database, the computation of this table can
be done by executing the following Cypher query:
MATCH (a:student)-[b:takes] --> (c:course)
OPTIONAL MATCH (a:student)-[d:takes] --> (e:course)
OPTIONAL MATCH (e:course)<--[f:gives]-(g:professor)
RETURN a.ranking, MODE(b.grade),g.teaching_ability
count(*)

However for relational database, this same query is done by
executing the following SQL joins:
SELECT ranking, MODE(grade), teaching_ability, count(*)
FROM takes, student, course, gives, professor
JOIN takes ON student.id = takes.student-id
JOIN course ON takes.course-id=course.id
JOIN gives ON gives.course-id=course.id
JOIN professor ON professor.id=gives.professor.id
GROUP BY ranking, MODE(grade), teaching_ability

IV. EXPERIMENTS AND RESULTS

A. Networks and Datasets

Unlike standard Bayesian networks, where several bench-
marks or golden networks are available to perform exper-

5

| E | | R | | A | | V | | K |
DAPER1 2 1 8 (2-3) 2-3 1 : 2-1
DAPER2 5 4 16(2-5) 2-3 1 : 9-4
DAPER3 8 7 32 (1-5) 2-4 4 : 0-4-12-5-6

TABLE I. CHARACTERISTICS OF DAPER NETWORKS USED FOR

DATASET GENERATION. VALUES IN PARENTHESIS ARE MIN/MAX VALUES

PER CLASS. VALUES IN THE LAST COLUMN CORRESPOND TO THE NUMBER

OF DEPENDENCIES FOR EACH SLOT CHAIN LENGTH (FROM 0 TO kmax).

Fig. 4. The ER schema of DAPER2 network.

Fig. 5. The ER schema of DAPER3 network.

iments, there is no such models defined in the context of
DAPER. In the other side, we have to compare DAPER
learned from relational databases and DAPER learned from
graph databases. Consequently, we have used the generating
process defined by [19] to first generate theoretical DAPER
(ER models and probabilistic dependencies) and then to sample
relational database instances from these probabilistic models.
We have randomly generated 3 DAPER whose characteristics
are described in table I. These DAPERs contain binary rela-
tionship classes and attributes of type integer. As an example,
the ER schema of DAPER2 and DAPER3 are given in Figures
4 and 5 respectively.

We have then sampled relational databases with 500, 1000,

3000 and 5000 instances. This sampling process is repeated 10
times for each DAPER. Our relational databases are managed
with PostgreSQL 9.3 and transformed into graph databases
managed with Neo4J 3.1.0.

DAPER3 has also be used to generate some additional graph
databases. Some exceptions (as described at the end of section
II-C) have been added in the 10 databases of size 3000 in
order to perturb the underlying ER model. The signature of
relationship instances has been replaced by another signature
not conform with the underlying ER model. The percentage
of exceptions α is varied as 5%, 10%, 30% and 50%. Finally,
we generated one large database from DAPER3 with 500.000
instances.

B. Algorithms and implementation

We consider the problem of structure learning by applying
the reference algorithm, Relational Greedy Search (RGS),
already implemented in PILGRIM Relational C++ Library1.
RGS uses as an input a relational schema (directly imported
from SQL database, or identified from our graph database
as described in section III-A). The parameters used for this
process are :
- λ : identification threshold for ER identification, which is
fixed to 10%. We have chosen a low value of λ to see the
impact of exceptions by easily accepting creation of relation-
ships.
- kmax : maximum possible slot chain length during greedy
search (set to 1 for experiments with databases generated from
DAPER1 and DAPER2, set to 1 then 4 for DAPER3). This
parameter controls the complexity of the algorithm by defining
"how far" (in the relational schema) can be some dependent
attributes. Here, we simply choose the same horizon than the
one used for generating the DAPERs, except for DAPER3,
where we use a simple value (1) and an longer one (4) to
illustrate the impact of this parameter on both the running
time and the quality of reconstruction.

Let us denote RGS_postgres the usual RGS algorithm,
working with postgreSQL databases (without exceptions), and
RGS_neo4j the same algorithm, working with Neo4J graph
databases (with or without exceptions) with an initial ER
identification.

This C++ libray uses DTL library2 in order to access to
the PostgreSQL database, and Casablanca C++ REST SDK3

in order to acces Neo4J via its REST API.

C. Evaluation metrics

We have compared the algorithms in term of quality of
reconstruction and in term of running time.

1http://pilgrim.univ-nantes.fr
2http://dtemplatelib.sourceforge.net
3https://github.com/Microsoft/cpprestsdk

6

Data size 500 1000 3000 5000
Precision 0.22±0.11 0.28±0.1 0.35±0.11 0.49±0.09

Recall 0.29±0.13 0.38±0.1 0.40±0.05 0.56±0.07
F-score 0.27±0.11 0.30±0.08 0.37±0.13 0.51±0.07

Data size 500 1000 3000 5000
Precision 0.42±0.08 0.49±0.1 0.76±0.06 0.84±0.05

Recall 0.36±0.1 0.43±0.09 0.61±0.04 0.71±0.06
F-score 0.38±0.1 0.45±0.07 0.70±0.06 0.81±0.08

TABLE II. AVERAGE ± STANDARD DEVIATION OF RECONSTRUCTION

METRICS (PRECISION, RECALL AND F-SCORE) WHEN EXECUTING RGS
WITH Kmax=1 FOR DATABASES GENERATED FROM DAPER1 (TOP) AND

DAPER2 (BOTTOM).

When the graph databases include exceptions, we estimate
the quality of the ER schema identification by computing
PrecisionER and RecallER between the identified ER schema
and the theoretical one.

PrecisionER =
Relevant NRLearned in ERLearned

NRLearned in ERLearned

RecallER =
Relevant FERLearned in ERLearned

FERLearned in ERTrue

The quality of reconstruction of the probabilistic dependencies
is measured using Precision, Recall and F-score, as defined in
[20].

Precision =
Nr
Nl

Recall =
Nr
Nt

F_score =
2 ∗ Precision ∗Recall
Precision+Recall

where STrue is the dependency structure of the theoretical
DAPER (and Nt the number of dependencies in STrue),
SLearned is the dependency structure of the learned one (and
Nl the number of dependencies in SLearned), and Nr is the
number of relevant dependencies retrieved in SLearned.

D. Results and interpretation

We first successfully checked that RGS_postgres and
RGS_neo4j converged to the same learned ER schema and
probabilistic dependency structure (for databases without ex-
ceptions). This is logical because both compute the same
sufficient statistics from the same data, but stored in two
different ways.

Table II depicts the quality reconstruction (identical for
RGS_postgres and RGS_neo4j) for our 2 first DAPERs, when
executing RGS with kmax=1. We can observe that increasing
the number of instances of datasets improves the quality of
reconstruction of our structures.

Figure 6 represents running time in the same context. With a
very small model such as DAPER1, the running time is almost
divided by 2 when accessing the graph database. With a small

Data size 500 1000 3000 5000
Precision 0.39±0.11 0.36±0.10 0.47±0.08 0.52±0.10

Recall 0.44±0.08 0.42±0.06 0.62±0.09 0.63±0.08
F-score 0.40±0.05 0.39±0.12 0.57±0.10 0.60±0.08

Data size 500 1000 3000 5000 500000
Precision 0.45±0.05 0.47±0.07 0.56±0.10 0.66±0.08 0.68±0.05

Recall 0.48±0.11 0.53±0.07 0.64±0.07 0.68±0.06 0.71±0.04
F-score 0.46±0.12 0.50±0.10 0.58±0.06 0.66±0.09 0.69±0.05

TABLE III. AVERAGE ± STANDARD DEVIATION OF RECONSTRUCTION

METRICS FOR EACH SAMPLE SIZE WHEN EXECUTING RGS WITH

Kmax = 1 (TOP) AND Kmax=4 (BOTTOM) FOR DATABASES GENERATED

FROM DAPER3.

model such as DAPER2, the running time is almost divided
by 10.

Table III depicts the quality reconstruction (identical for
RGS_postgres and RGS_neo4j) for DAPER3, when executing
RGS with kmax=1 and with a bigger search space (kmax=4).
Figures 7 represents running time in the same context, in
log scale. We can observe that increasing the slot chain
length improves the quality of reconstruction, but increases
the running time. The deeper we go, the better results we get
in term of Precision, Recall and F-score. By increasing the
search space, we increase the number of times the data is
accessed, and Figure 7 shows us again the interest of using
a graph database instead of a relational one, with a running
time divided by a factor greater than 10. This is even more
impressive in Figure 7(right) with 500.000 instances, where
the running time drops drastically. transforming the structure
learning process into a feasible task.

Table IV depicts the quality reconstruction (RGS_neo4j)
for DAPER3 when dealing with partially structured data. We
can notice that increasing the percentage of exceptions in the
relationship instances do not impact the quality reconstruction
of the DAPER model with small α. The relationship signatures
are not enough perturbed so the recall is perfect, and the excep-
tions added in the database are not sufficient to be identify as
new (and false) relationships, so the precision is also perfect.
In this context, precision, recall and F-score corresponding to
the reconstruction of the dependency structure remain constant.

By increasing α, some existing relationships are not suffi-
ciently represented in the database and are no more discovered
and the recall decreases. The number of perturbed relationships
for one given signature is yet not sufficient to generate false
relationships so the precision is yet perfect. When existing
relationships in the DAPER are no more discovered, some
probabilistic dependencies can’t be discovered because the
corresponding attributes (and classes) are no more related in
the ER model. For this reason the corresponding reconstruction
metrics progressively decrease.

7

Fig. 6. Boxplot of running time (in seconds) for each sample size, when executing RGS_postgres and RGS_neo4j with kmax=1 and databases generated from
DAPER1 (left) and DAPER2 (right).

Fig. 7. Boxplot of running time (in seconds and log scale) for each sample size, when executing RGS with kmax=1 (left) and kmax=4 (right) and databases
generated from DAPER3

α 0% 5% 10% 30% 50%
PrecER 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
RecER 1.00±0.00 1.00±0.00 1.00±0.00 0.97±0.05 0.87±0.05

Prec 0.47±0.08 0.47±0.08 0.47±0.08 0.44±0.05 0.41±0.06
Rec 0.62±0.09 0.62±0.09 0.62±0.09 0.59±0.08 0.57±0.07

F-score 0.57±0.10 0.57±0.10 0.57±0.10 0.55±0.04 0.49±0.09

TABLE IV. AVERAGE ± STANDARD DEVIATION OF RECONSTRUCTION

METRICS FOR DAPER3 FOR A PARTICULAR SIZE (3000 INSTANCES) WITH

A PERCENTAGE α OF EXCEPTIONS IN THE RELATIONSHIP INSTANCES.

V. CONCLUSION AND FUTURE WORKS

We are interested in learning probabilistic relational models
such as DAPER with partially structured data stored in graph

databases, i.e. there exist an underlying ER model, even if
some exceptions are not derived from this model. We proposed
one solution to identify this ER model, and a way to estimate,
from this graph database, the sufficient statistics that are
computed in any learning algorithm.

We have implemented these two contributions in PILGRIM,
a software platform dealing with probabilistic relational mod-
els. By executing a standard DAPER structure learning algo-
rithm (RGS) in several contexts, we have shown that even
with structured data, using graph databases can effectively
speed up the learning process. This is even more impressive

8

with a high number of instances, where the running time
drops drastically. transforming the structure learning process
into a feasible task. We have also demonstrated that we are
able to learn the underlying ER model and the probabilistic
dependency structure even with partially structured data.

We are now interested by other probabilistic and rela-
tional frameworks derived from Logic such as Markov Logic
Networks [6] or ProbLog models [21]. The DAPER models
we use here can only model the probabilistic dependencies
between the instances that are conform with the ER model.
We have the intuition than these other frameworks can help
us to take also into account the exceptions that are dropped
during DAPER learning. With the existing structure learning
algorithms proposed for MLN or ProbLog, we also think that
we could solve in the same time the ER identification step,
and the probabilistic dependency structure learning.

REFERENCES

[1] J. Sun and C. K. Reddy, “Big data analytics for healthcare,” in
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1525–1525.

[2] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The
MIT Press, 2009.

[3] D. Koller and A. Pfeffer, “Probabilistic frame-based systems,” in
Proceedings of the Fifteenth National/Tenth Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, ser. AAAI
’98/IAAI ’98. Menlo Park, CA, USA: American Association for
Artificial Intelligence, 1998, pp. 580–587.

[4] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning proba-
bilistic relational models,” in Relational Data Mining, S. Dzeroski and
N. Lavrac, Eds. Springer-Verlag, 2001.

[5] D. Heckerman and C. Meek, “Probabilistic entity-relationship models,
prms, and plate models,” ICML, pp. 55–60, 2004.

[6] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[7] J. Partner, A. Vukotic, and N. Watt, Neo4j in Action. Manning
Publications Company, 2014.

[8] L. Getoor, “Learning statistical models from relational data,” Ph.D.
dissertation, Stanford, 2001.

[9] P. P.-S. Chen, “The entity-relationship model: Toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, Mar. 1976.

[10] F. Kaelin and D. Precup, “A study of approximate inference in prob-
abilistic relational models,” in Proceedings of 2nd Asian Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
M. Sugiyama and Q. Yang, Eds., vol. 13. Tokyo, Japan: PMLR, 08–10
Nov 2010, pp. 315–330.

[11] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning proba-
bilistic relational models,” In IJCAI, pp. 1300–1309, 1999.

[12] N. Ettouzi, P. Leray, and M. Ben Messaoud, “An exact approach
to learning probabilistic relational model,” in Proceedings of the 8th
International Conference on Probabilistic Graphical Models (PGM
2016), Lugano, Switzerland, September 2016, pp. 171–182.

[13] M. E. Maier, K. Marazopoulou, and D. D. Jensen, “Reasoning about
independence in probabilistic models of relational data,” CoRR, vol.
abs/1302.4381, 2013.

[14] S. Lee and V. Honavar, “On learning causal models from relational
data.” in AAAI, 2016, pp. 3263–3270.

[15] X.-L. Li and X.-D. He, “A hybrid particle swarm optimization method
for structure learning of probabilistic relational models,” Information
Sciences, vol. 283, pp. 258 – 266, 2014, new Trend of Computational
Intelligence in Human-Robot Interaction.

[16] M. Ben Ishak, “Probabilistic relational models: learning and evalua-
tion,” Ph.D. dissertation, Université de Nantes, Ecole Polytechnique ;
Université de Tunis, Institut Supérieur de Gestion de Tunis, Jun. 2015.

[17] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: A
data provenance perspective,” The 48th Annual Southeast Regional
Conference, pp. 421–426, 2010.

[18] S. Muggleton and L. de Raedt, “Inductive logic programming: Theory
and methods,” The Journal of Logic Programming, vol. 19, no. 0, pp.
629 – 679, 1994.

[19] M. Ben Ishak, R. Chulyadyo, and P. Leray, “Probabilistic relational
model benchmark generation,” University of Nantes, ISG Tunis, Tech.
Rep., 2016.

[20] M. E. Maier, K. Marazopoulou, D. T. Arbour, and D. D. Jensen,
“A sound and complete algorithm for learning causal models from
relational data,” CoRR, vol. abs/1309.6843, 2013.

[21] L. D. Raedt, A. Kimmig, and H. Toivonen, “Problog: A probabilistic
prolog and its application in link discovery.” in IJCAI, M. M. Veloso,
Ed., 2007, pp. 2462–2467.

