Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease - Archive ouverte HAL
Article Dans Une Revue NeuroImage Année : 2017

Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease

Résumé

Disease progression modeling (DPM) of Alzheimer's disease (AD) aims at revealing long term pathological trajectories from short term clinical data. Along with the ability of providing a data-driven description of the natural evolution of the pathology, DPM has the potential of representing a valuable clinical instrument for automatic diagnosis, by explicitly describing the biomarker transition from normal to pathological stages along the disease time axis. In this work we reformulated DPM within a probabilistic setting to quantify the diagnostic uncertainty of individual disease severity in an hypothetical clinical scenario, with respect to missing measurements, biomarkers, and follow-up information.
Fichier principal
Vignette du fichier
time_series_journal.pdf (3.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01617750 , version 1 (17-10-2017)

Identifiants

  • HAL Id : hal-01617750 , version 1

Citer

Marco Lorenzi, Maurizio Filippone, Giovanni Frisoni, Daniel C Alexander, Sébastien Ourselin. Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease. NeuroImage, 2017. ⟨hal-01617750⟩
714 Consultations
670 Téléchargements

Partager

More