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Abstract

Disease progression modeling (DPM) of Alzheimer’s disease (AD) aims at re-

vealing long term pathological trajectories from short term clinical data. Along

with the ability of providing a data-driven description of the natural evolution of

the pathology, DPM has the potential of representing a valuable clinical instru-

ment for automatic diagnosis, by explicitly describing the biomarker transition

from normal to pathological stages along the disease time axis. In this work

we reformulated DPM within a probabilistic setting to quantify the diagnostic

uncertainty of individual disease severity in an hypothetical clinical scenario,

with respect to missing measurements, biomarkers, and follow-up information.

∗Corresponding author
∗∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing of ADNI investiga-
tors can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

Email addresses: marco.lorenzi@inria.fr (Marco Lorenzi ),
maurizio.filippone@eurecom.fr (Maurizio Filippone), Giovanni.Frisoni@unige.ch
(Giovanni B. Frisoni), d.alexander@ucl.ac.uk (Daniel C. Alexander),
s.ourselin@ucl.ac.uk (Sebastien Ourselin)

Preprint submitted to Elsevier September 1, 2017

adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


We show that the staging provided by the model on 582 amyloid positive testing

individuals has high face validity with respect to the clinical diagnosis. Using

follow-up measurements largely reduces the prediction uncertainties, while the

transition from normal to pathological stages is mostly associated with the in-

crease of brain hypo-metabolism, temporal atrophy, and worsening of clinical

scores. The proposed formulation of DPM provides a statistical reference for

the accurate probabilistic assessment of the pathological stage of de-novo indi-

viduals, and represents a valuable instrument for quantifying the variability and

the diagnostic value of biomarkers across disease stages.

Keywords: Alzheimer’s disease, Diagnosis, Disease progression modeling,

Gaussian process, Clinical trials
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1. Introduction

Neurodegenerative disorders (NDDs), such as Alzheimer’s disease (AD), are

characterised by the progressive pathological alteration of the brain’s biochemi-

cal processes and morphology, and ultimately lead to the irreversible impairment

of cognitive functions [1]. The correct understanding of the relationship between5

the different pathological features is of paramount importance for improving the

identification of pathological changes in patients, and for better treatment [2].

To this end, ongoing research efforts aim at developing precise models al-

lowing optimal sets of measurements (and combinations of them) to uniquely

identify pathological traits in patients. This problem requires the definition of10

optimal ways to integrate and jointly analyze the heterogeneous multi-modal

information available to clinicians [3, 4, 5]. By consistently analyzing multi-

ple biomarkers that to date have mostly been considered separately, we aim

at providing a richer description of the pathological mechanisms and a better

understanding of individual disease progressions.15

Disease progression modeling (DPM) is a relatively new research direction

for the study of NDD data [6, 7, 8, 9, 10, 11, 12, 13]. The main goal of DPM

consists in revealing the natural history of a disorder from collections of imag-

ing and clinical data by: 1) quantifying the dynamics of NDDs along with

the related temporal relationship between different biomarkers, and 2) staging20

patients based on individual observations for diagnostic and interventional pur-

poses. Therefore, this research domain is closely related to the exploitation

of advanced statistical/machine-learning approaches for the joint modelling of

the heterogeneous and information available to clinicians: imaging, biochemical,

and clinical biomarkers. Differently from the several predictive machine-learning25

approaches proposed in the past in NDD research, disease progression models

aim at explicitly estimating the temporal progression of the biomarkers from
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normal to pathological stages, to provide a better interpretation and under-

standing of the natural evolution of the pathology. For this reason it represents

a very appealing modeling approach in clinical settings.30

The main challenge addressed by DPM consists in the general lack a well-

defined temporal reference in longitudinal clinical dataset of NDDs. Indeed, age

or visit date information are biased time references for the individual longitudi-

nal measurements, since the onset of the pathology may vary across individuals

according to genetic and environmental factors [14]. This is a very specific35

methodological issue requiring the extension and generalization of the analysis

approaches classically used in time-series analysis.

To tackle this problem, it is usually assumed that individual biomarkers are

measured relatively to an underlying disease trajectory defined with respect to

an absolute time axis describing the natural history of the pathology [7]. Each40

individual is thus characterized by a specific observation time that needs to

be estimated in order to assess the individual pathological stage. According

to this statistical setting, we therefore aim at estimating a group-wise disease

model defined with respect to an absolute time scale, along with individual

time re-parameterisation relative to the group-wise progression. This modeling45

paradigm has been implemented in a number of approaches proposed in the

recent years, either by assuming continuous temporal trajectories of the bio-

markers [7, 8, 9, 10, 11, 12, 13], or by modeling the disease progression as a

sequence of discrete events [6, 15].

For example, in [8] the authors proposed to model the temporal biomarker50

trajectories through random effect regression, building on the theory of self-

modeling regression [16], while the authors of [11] re-frame the random effect

regression model in a geometrical setting, based on the assumption of a logistic

curve shape for the average biomarker trajectories.
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Continuous progression models have been recently extended to the modelling55

of brain images based on the time-reparameterization of voxel/mesh-based mea-

sures [9, 10, 13].

The use of disease progression models for diagnostic purposes is instead less

investigated. Predictive models of patient staging were proposed within the

setting of the Event Based Model [6], or still through random effect modeling60

[12]. However, the Event Based Model relies on the coarse binary discretization

of the biomarker changes, and does not account for longitudinal observations,

while the predictive models proposed in [12] and [17] require cohorts with known

disease onset, and therefore lack flexibility while being prone to bias due to mis-

diagnosis and uncertainty of the conversion time.65

Furthermore, these methods are generally not formulated in a probabilis-

tic setting, which makes it difficult to account for uncertainties in biomarker

progressions and diagnostic predictions. Indeed, the quantification of the vari-

ability associated with the biomarkers trajectories, as well as the assessment

of the diagnostic uncertainty in de-novo patients, are crucial requirements for70

decision making in clinical practice [18].

Nonetheless, the ensemble of this research offers a sight of the potential of

these approaches in representing a novel and powerful diagnostic instrument: in

this study we thus aim at assessing the ability of DPM in providing a statistical

reference for the transition from normal to pathological stages, for probabilistic75

diagnosis in the clinical scenario. To this end, we reformulate classical DPM

within a Bayesian setting in order to allow the probabilistic estimate of the

biomarker trajectories and the quantification of the uncertainty of predictions

of the individual pathological stage. The resulting probabilistic framework is

exploited in an hypothetical clinical scenario, for the estimation of the patholog-80

ical stage in a de-novo cohort of testing individuals, by assessing the influence
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of missing observations, biomarkers, and follow-up information.

The manuscript is structured as follows. Section 2.1 formulates DPM based

on Bayesian Gaussian Process regression [19], while Section 2.2 illustrates the

validation of our model on clinical and multivariate imaging measurements from85

a cohort of 782 amyloid positive individuals extracted from the ADNI database.

2. Methods

2.1. Statistical setting

This section highlights the statistical framework employed in this study,

based on the reformulation of self-modeling regression withing a Bayesian set-90

ting. This achieved by 1) defining a random effect Gaussian process regression

model to account for individual correlated time series (section 2.1); 2) modeling

individual time transformations encoding the information on the latent patho-

logical stage (section 2.1.2); and 3) introducing a monotonicity information in

order to impose a regular behaviour on the biomarkers trajectories (section95

2.1.3). We finally illustrate in section 2.1.4 how the proposed framework leads

to a probabilistic model of disease staging in de-novo individuals, naturally ac-

counting for missing information. Further details on model specification and

inference are provided in the Supplementary Section AppendixA.1, while the

experimental validation on synthetic data is reported in Supplementary Section100

AppendixA.2.

2.1.1. Gaussian process-based random effect modeling of longitudinal progres-

sions

In what follows, longitudinal measurements of Nb biomarkers {b1, . . . , bNb
}

over time are given for N individuals.105

We represent the longitudinal biomarker’s measures associated with each

individual j as a multidimensional array (yj(t1),yj(t2), . . . ,yj(tkj ))> sampled
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at kj multiple time points t = {t1, t2, . . . , tkj}. Although different biomarkers

may be in reality sampled at different time-points, for the sake of notation

simplicity in what follows we will assume, without loss of generality, that the110

sampling time is common among them. The observations for individual j at

a single time point t are thus a random sample from the following generative

model:

yj(t) =
(
yjb1(t), yjb2(t), . . . , yjbNb

(t)
)>

(1)

= f(t) + νj(t) + ε, (2)

where f(t) = (fb1(t), fb2(t) . . . , fbNb
(t))> is the fixed effect function modelling

the biomarker’s longitudinal evolution, νj(t) = (νjb1(t), νjb2(t), . . . , νjbNb
(t))> is115

the individual random effect, and ε = (εb1 , εb2 , . . . , εbNb
)> is time-independent

observational noise. The group-wise evolution is modelled as a GP, f ∼ GP(0,ΣG),

the individual random effects are assumed to be correlated perturbations νj ∼

N (0,ΣS), while the observational noise is assumed to be a Gaussian heteroskedas-

tic term ε ∼ N (0,Σε), where Σε is a diagonal matrix diag[σ2
b1,σ

2
b2, . . . ,σ

2
bNb

].120

Fixed Effect Process

The covariance function ΣG describes the biomarkers temporal variabil-

ity, and is represented as a block-diagonal matrix ΣG(f , f) = diag[Σb1(fb1 ,

fb1),Σb2(fb2 , fb2), . . . ,ΣbNb
(fbNb

, fbNb
)], where each block represents the within-

biomarker temporal covariance expressed as a negative squared exponential125

function Σb(fb(t1), fb(t2)) = ηb exp
(
− (t1−t2)2

2 l2b

)
, and where the parameters ηb

and lb are the marginal variance and length-scale of the biomarker’s temporal

evolution, respectively.
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Individual Random Effects

The random covariance function ΣS models the individual deviation from130

the fixed effect, and is represented as a block-diagonal matrix ΣS(νj ,νj) =

diag[ Σjb1(νjb1 , νjb1),Σjb2(νjb2 ,ν
j
b2

), . . . ,ΣbjNb

(νjbNb
,νjbNb

)], where each block Σjb

corresponds to the covariance function associated with the individual process

νjb(t). Thanks to the flexibility of the proposed generative model, any form of

the random effect covariance ΣS can be easily specified in order to model the135

subject-specific biomarkers’ progression. In what follows we will use a linear

covariance form Σjb(ν
j
b(t1),νjb(t2)) = (σjb)

2
(
(t1 − t)(t2 − t)

)
, where t is the av-

erage observational time for individual j, when more than 4 measurements are

available, and i.i.d. Gaussian covariance form Σjb(ν
j
b(t1),νjb(t2)) = (σjb)

2 when

2 or 3 measurements are available, while assigning it to 0 otherwise (thus by140

accounting only for the observational noise σ2
b). This choice is motivated by

stability concerns, in order to keep the model complexity compatible with the

generally limited number of measurements available for each individual.

2.1.2. Individual time transformation

The generative model (1) is based on the key assumption that the longitu-145

dinal observations across different individuals are defined with respect to the

same temporal reference. This assumption may be invalid when the temporal

alignment of the individual observations with respect to the common group-wise

model is unknown, for instance in the typical scenario of a clinical trial in AD

where the patients’ observational time is relative to the common baseline, and150

where the disease onset is a latent event (past or future) which is not directly

measurable. This modeling aspect is integrated by assuming that each individ-

ual measurement is made with respect to an absolute time-frame τ through a

time-warping function t = φj(τ) that models the time-reparameterization with

respect to the common group-wise evolution. Model (1) can thus be reparame-155
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terized as

yj(φj(τ)) = f(φj(τ)) + νj(φj(τ)) + ε. (3)

The present formulation allows the specification of any kind of time transfor-

mation, and in what follows we shall focus on the modelling of a linear reparam-

eterization of the observational time φj(τ) = τ + dj . This modeling assumption

is mostly motivated by the choice of working with a reasonably limited number160

of parameters, compatibly with the generally short follow-up time available per

individual (cfr. Table 2). Within this setting, the time-shift dj encodes the

disease stage associated with the individual relatively to the group-wise model.

2.1.3. Monotonic constraint in random-effect multimodal GP regression

Due to the non-parametric nature of Gaussian process regression, we need an165

additional constraint on model (3) in order to identify a unique solution for the

time transformation. By assuming a steady temporal evolution of biomarkers

from normal to pathological values, we shall assume that the biomarker trajec-

tories described by (3) follow a (quasi) monotonic behaviour. This requirement

can be implemented by imposing a prior positivity constraint on the derivatives170

of the GP function. Inspired by [20], we impose a monotonicity constraint by

assuming a probit-likelihood for the derivative measurements m(t) associated

with the derivative process ḟ(t) = df(t)
dt at time t:

p(m(t)|ḟ(t)) = Φ

(
1

λ
ḟ(t)

)
, (4)

with Φ(z) =
∫ z
−∞N (x|0, 1) dx. The quantity λ > 0 is an additional model

parameter controlling the degree of positivity enforced on the derivative process,175
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with values approaching zero for stronger monotonicity constraint. In what

follows, the monotonicity of each biomarker is controlled by placing 10 derivative

points equally spaced on the observation domain, and by fixing the Nb derivative

parameters {λbk}
Nb

k=1 to the value of 1e-6. The position of the derivative points

was updated at each iteration, according to the changes of the GP domain.180

By following a similar construction, we could equally enforce a monotonic

behavior to the random effects associated with the individual trajectories. This

additional constraint would however come with a cumbersome increase of the

model complexity, since it would introduce an additional layer of virtual deriva-

tive parameters (with associated location) per individual. Moreover, while we185

are interested in modeling a globally monotonic biomarker trajectory on the

fixed parameters, we relax this constraint at the individual level, since some

subjects may be characterised by non strictly monotonic time-series due to spe-

cific clinical conditions.

Model likelihood and parameters190

Given the sets of individual biomarker measurements y = {(yj(ti))k
j

i=1}Nj=1,

and of D control derivatives m = {mbk(t′l)}Dl=1 at points t′ = {t′l}Dl=1 for the

progression of each biomarker bk, the random effect GP model posterior is:

p
(
f , ḟ ,νj |y,m

)
=

1

Z
p(f , ḟ |t, t′)p(ν|t)p(y|f ,ν)p(m|ḟ)

= p(f , ḟ |t, t′)p(ν|t)p(y|f ,ν)∏
k

∏
l

Φ

(
1

λ
ḟbk(t′l)

)
, (5)

where ν = {νj}Nj=1. Due to the non-Gaussianity of the derivative term Φ, the

direct inference on the posterior is not possible due to its analytically intractable195

form. For this reason, we employ an approximate inference scheme based on
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classical approaches to Gaussian process with binary activation functions [21]

(AppendixA.1).

Overall, model (3) is identified by (Nj + 3)Nb +Nj parameters, represented

by the fixed effects and noise θG = {ηbk , lbk , εbk}
Nb

k=1, by the individual random200

effects parameters θjG = {σjbk}
Nb

k=1 and by the time-shifts dj .

In what follows, the optimal parameters are obtained by maximising the ap-

proximated log-marginal likelihood derived from the posterior (5) through conju-

gate gradient descent, via alternate optimization between the hyper-parameters

θG and θjG, and the individuals’ time-shifts dj . Regularization is also enforced205

by introducing Gaussian priors for the parameters θG and θjG.

2.1.4. Prediction of observations and individual staging

Gaussian processes naturally allow for probabilistic predictions given the

observed data. At any given time point t∗, the posterior biomarker distribution

has the Gaussian form p(f∗|t∗,y, t,m, t′) ∼ N (f∗|µ∗,Σ∗):210

µ∗ = ΣG(f(t∗), f(t))(Σjoint + Σ̃joint)
−1µ̃joint (6)

Σ∗ = ΣG(f(t∗), f(t∗))− ΣG(f(t∗), f(t))

(Σjoint + Σ̃joint)
−1ΣG(f(t), f(t∗)), (7)

where the matrix
(

Σjoint + Σ̃joint

)
is the joint covariance resulting from the

inference scheme detailed in Supplementary Section AppendixA.1 [20].

We also derive a probabilistic model for the individual temporal staging

given a set of biomarker observations y∗, thanks to the Bayes formula:
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p(t∗|y∗,y, t,m, t′) = p(y∗|t∗,y, t,m, t′)

p(t∗)/p(y∗|y, t,m, t′), (8)

which we compute by assuming an uniform distribution on t∗, and by noting215

that p(y∗|t∗,y, t,m, t′) ∼ N (µ∗,Σ∗ + Σε). In particular, the covariance form

ΣG(f(t∗), f(t∗)) can be specified in order to account for incomplete data, and

thus generalizes the GP model for predictions in presence of missing biomarker

observations. The posterior distribution (8) quantifies the confidence of the

model about the individual disease staging, and thus is a valuable information220

about the precision of the diagnosis. We will also compute the expectation of

the distribution p(t∗|y∗,y, t,m, t′), which provides a scalar value that can be

used in subsequent classification methods.

2.2. Meterials and Methods

2.2.1. Study Participants225

Data used in the preparation of this article were obtained from the ADNI

database (http://adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial magnetic res-

onance imaging, positron emission tomography, other biological markers, and230

clinical and neuropsychological assessment can be combined to measure the pro-

gression of MCI and early AD. For up-to-date information, see www.adni-info.

org.

2.2.2. Data Processing

We collected longitudinal measurements for the ADNI individuals with base-235

line values of cerebrospinal fluid (CSF) Aβ amyloid lower than the nominal val-
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Group NL NL converted MCI stable MCI converted AD
Training data

N 67 5 0 53 75
Age 73 (6) 81.4 (5.2) / 72 (7.7) 73 (8.5)

Sex (% females) 61 0 / 43 45
Education (yrs) 16.2 (2) 17.2 (3) / 15.8 (2.6) 16 (2.4)

ADAS13 8.8 (4.5) 13.8 (2.4) / 22.6 (6.7) 31.3 (8.5)
FAQ 0.2 (0.6) 0.4 (0.5) / 5.2 (4.5) 12.9 (7)

RAVLT learning 5.6 (2.6) 2.2 (1.9) / 3.2 (2.5) 1.8 (1.7)
Entorhinal (cm3) 3.9 (0.6) 3.7 (0.5) / 3.2 (0.7) 2.9 (0.6)

Hippocampus (cm3) 7.5 (0.9) 6.7 (0.7) / 6.2 (0.9) 6 (9.3)
Ventricles (cm3) 36 (20) 57 (26) / 42 (21) 47 (22)

Whole brain (cm3) 1057 (105) 1106 (116) / 1040 (107) 1013 (113)
FDG 6.6 (0.5) 6.1 (0.65) / 5.7 (0.6) 5.2 (0.64)
AV45 1.2 (0.2) 1.3 (0.09) / 1.4 (0.2) 1.4 (0.2)

Testing data
N 74 17 243 106 145
Age 75.3 (5.9) 76.5 (4) 73.3 (7) 73.6 (7.3) 75 (7.9)

Sex (% females) 55 41 39 40 39
Education (yrs) 16 (2.9) 16.2 (2.6) 16 (2.8) 16 (3) 15.3 (3.1)

ADAS13 9.8 (4) 11.7 (3.4) 15.7 (6) 21 (6.1) 29.4 (8.2)
FAQ 0.5 (1.3) 0.6 (1.6) 2.7 (3.5) 5.1 (4.7) 12.9 (6.8)

RAVLT learning 5.6 (2.2) 5.6 (2.7) 4.3 (2.5) 2.8 (2.2) 1.8 (1.9)
Entorhinal (cm3) 3.8 (0.4) 3.6 (0.7) 3.6 (0.7) 3.1 (0.7) 2.7 (0.7)

Hippocampus (cm3) 7.2 (0.7) 7.2 (0.8) 6.9 (1) 6 (0.8) 5.7 (0.1)
Ventricles (cm3) 33 (15) 44 (21) 39 (23) 41 (23) 49 (24)

Whole brain (cm3) 1019 (102) 1055 (93) 1056 (100) 992 (110) 972 (124)
FDG 6.5 (0.62) 6.4 (0.7) 6.3 (0.7) 5.9 (0.6) 5.4 (0.7)
AV45 1.21 (0.19) 1.4 (0.2) 1.3 (0.19) 1.4 (0.2) 1.4 (0.2)

Table 1: Baseline sociodemographic and clinical information for training and testing study
cohort. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s patients.
ADAS13: Alzheimer’s Disease Assessment Scale-cognitive subscale, 13 items; FAQ: Functional
Assessment Questionnaire; RAVLT learning: Rey Auditory Verbal Learning Test, learning
item; FDG: (18)F-fluorodeoxyglucose positron emission tomography (PET) imaging; AV45:
(18)F-florbetapir Amyvid PET imaging.

ues of 192 pg/ml. The information was extracted from the ADNIMERGE1 R

package[22] (MEDIAN field of the upennbiomk_master table). This prelim-

inary selection is aimed to validate the model on a clinical population likely to

represent the whole disease time-span.240

The model was trained on a group of 200 randomly selected individuals in-

cluding healthy volunteers, mild cognitive impairment subjects converted to AD

(MCI conv), and AD patients having at least one measurement for each of the

1adni.bitbucket.io/adnimerge.html
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following biomarkers: volumetric measures (hippocampal, ventricular, entorhi-

nal, and whole brain volumes), glucose metabolism (average normalized FDG245

uptake in prefrontal cortex, anterior cingulate, precuneus and parietal cortex),

brain amyloidosys (average normalized AV45 uptake in frontal cortex, anterior

cingulate, precuneus and parietal cortex), and functional, neuropsychological

and cognitive function measured by common scores (ADAS13, RAVLT learn-

ing, and FAQ)2. The testing set was composed of the remaining 582 subjects,250

including a subgroup of MCI non converted to AD during the observational

time (MCI stable). The image-derived measures used in the study (volumet-

ric MRI and average uptake values for AV45- and FDG-PET) were the scalar

estimates reported in the ADNIMERGE package (adnimerge table). The vol-

umetric measures were scaled by the individual total intracranial volume, and255

all the biomarkers measurements were converted into quantile scores (0 to 1 for

normal to abnormal values), with respect to the biomarkers distribution of the

training set. This latter modeling precaution is aimed to avoid spurious corre-

lation between training and testing data due to the combined normalization of

the values.260

The modeling results were evaluated with respect to the baseline diagnostic

information reported in the ADNI database, assessed according to the WMS and

NINCDS/ADRDA AD criteria [23]. Conversion to MCI or AD was established

according to the last follow-up information. Moreover, the MCI group was

composed by 138 individuals with baseline diagnosis of early MCI, assessed265

through the Wechsler Memory Scale Logical Memory II. Among these subjects,

14 of them were in the training group (26% of the total MCI training set size),

2ADAS13: Alzheimer’s Disease Assessment Scale-cognitive subscale, 13 items; FAQ: Func-
tional Assessment Questionnaire; RAVLT learning: Rey Auditory Verbal Learning Test,
learning item; FDG: (18)F-fluorodeoxyglucose positron emission tomography (PET) imag-
ing; AV45: (18)F-florbetapir Amyvid PET imaging.
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while the remaining 124 were in the testing set (35% of the total MCI testing

set size).

Table 1 shows baseline clinical and sociodemographic information of the270

individuals used respectively in training and testing set, while in Table 2 we

report the average follow-up time and the ratio of missing data of the pooled

sample. Supplementary Section AppendixA.2.6 reports the R code used for data

pre-processing.

2.3. Longitudinal modelling of Alzheimer’s disease progression275

2.3.1. Model training

The model was applied in order to estimate the temporal biomarker evolution

and the disease stage associated with each individual in the training set. The

plausibility of the model was assessed by group-wise comparison of the predicted

time-shift, and by correlation with respect to the time to AD diagnosis for the280

MCI individuals subsequently converted to AD. For sake of comparison we also

correlated the progression modelled with our approach with respect to the one

estimated with the method proposed in [8]. The method was applied to the

training data by using the standard parameters defined in the R package grace3

(see Supplementary Material AppendixA.2.2 for further details).285

3https://mdonohue.bitbucket.io/grace/

Ventr Hippo Ent Whole Brain ADAS13 FAQ RAVLT AV45 FDG
Training data

2.3 (0) 2.3 (0) 2.3 (0) 2.3 (0) 3 (0) 3.3 (0) 3.3 (0) 1.9 (0) 1.6 (0)
Testing data

3.4 (11) 3.4 (11) 3.4 (11) 3.4 (11) 3.9 (0) 3.9 (0) 3.9 (0) 3.8 (43) 3 (19)

Table 2: Average follow-up years and percentage of individuals with missing data (in paren-
thesis).
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Figure 1: A) Modelled biomarker progression in the training set of 200 Aβ amyloid positive
individuals (solid/dashed lines: mean ± sd). B) Posterior prediction for the individual time
shift in training data (top: individual time-shift distribution; bottom: group-wise boxplot of
the expected time-shift). Healthy individuals are generally displaced at the early stages of
the pathology, while the predictions for MCI and AD patients are associated with respec-
tively intermediate and late progression stages. NL: normal individuals, MCI: mild cognitive
impairment, AD: Alzheimer’s patients.

2.3.2. Model testing on de-novo individuals

The estimated probabilistic disease progression model provides a valuable

clinical reference, as it can be used to predict an individual pathological stage,
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as well as to quantify the biomarkers predictive value, or the influence of missing

data. To this end, we estimated the predictive performance of the model in290

assessing the individual pathological stage with respect to follow-up assessments

and missing biomarkers. This was done by estimating the predictive accuracy

of the group-wise separation obtained via increasing thresholds of the estimated

temporal progression.

3. Results295

3.1. Model plausibility

The estimated biomarker progression (Figure 1-A) shows a biologically plau-

sible description of the pathological evolution, compatible with previous findings

in longitudinal studies in familial AD [24], and with the hypothetical models of

AD progression [2, 25]. The progression is defined on a time scale spanning300

roughly 20 years, and is characterized at the initial stages by high-levels of

AV45, followed by the abnormality of ventricles volume, of FDG uptake, and of

the whole brain volume. These latter measures are however heterogeneously dis-

tributed across clinical groups, and with rather large variability. The evolution

is further characterized by increasing abnormality of the volumetric measures305

(especially hippocampal volume), and by the steady worsening of neuropsy-

chological scores such as FAQ. The model thus shows that the transition from

normal to pathological levels is essentially characterized by increase of hypo-

metabolism, followed by the pronounced temporal brain atrophy. Moreover,

the worsening of the neuropsychological and functional scores closely (almost310

linearly) follows the progression in the advanced clinical stages. The joint visual-

ization of the temporal progression of the biomarkers with temporal derivative

of the modelled average trajectories is shown in Supplementary figure A.10.

The illustration confirms that ADAS13 and FAQ are characterised by very sim-
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ilar longitudinal profiles, and show the largest changes in the latest stages of315

the pathology (peak of the derivative at t>0). On the contrary, the change

in hippocampal volume is more strongly associated with the earlier stages of

the pathology. AV45 and ventricles volumes are the least informative and are

associated with the lowest changes.

Figure 1-B (top) shows the posterior time-shift distributions associated with320

the individuals. The distributions denote the confidence of the model in asso-

ciating to each individual a temporal staging with respect to the global patho-

logical progression. The boxplot of Figure 1-B (bottom) reports the group-wise

expectation of the individual time-shifts. Healthy individuals (blue) are associ-

ated with the early stages of the pathology in both training and testing data,325

while MCI (purple) and AD patients (red) are characterized by respectively

intermediate and late predicted progression stages. The group-wise compari-

son between the expected time-shifts was statistically significant between each

group pairs (ANOVA, p <1e-6). Moreover, the time to conversion to AD in the

MCI group was significantly correlated with the disease staging quantified by330

the expectation of the individual time distributions (R2 = −0.4, p = 3.8e− 4).

Finally, when applying [8] to the training data we measured a strong agree-

ment between the resulting progression and the one obtained with our method,

resulting in a correlation between the corresponding individual time-shifts of

0.94 (p <1e-6) (Supplementary Material AppendixA.2.2).335

3.2. Assessing diagnostic uncertainty in testing data: an illustrative example.

This section illustrates the use of the model represented in Figure 1 for

the quantification of diagnostic uncertainty in testing individuals. We consider

the hypothetical scenario where the baseline values for different biomarkers are

measured for a given patient, namely FAQ, hippocampal and ventricle volumes.340

We assume that the biomarkers values correspond to the 20th percentiles with
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Figure 2: Illustrative example: posterior prediction of disease staging for a testing individual
based on baseline (left), and baseline + follow-up (right) information for three biomarkers:
FAQ, hippocampal and ventricles volume. The biomarkes values correspond to the 20th
and 50th percentiles of the training-group distribution for respectively baseline and follow-up
measures. Adding the follow-up information leads to increased estimates of the disease staging
and to generally lower prediction uncertainty. Although the distributions associated with
different biomarkers generally lead to similar expectations, FAQ and hippocampal volume lead
to the lowest diagnostic uncertainty. Vertical lines: expectation for each posterior distribution.

respect to the biomarkers distribution of the training set (i.e. FAQ = 1, nor-

malized Hippo = 5e-3, normalized Ventr = 1.7e-2). Figure 2 (left) shows the

disease staging prediction obtained with formula (8) based on the value of each

biomarker. We note that FAQ and hippocampal volume lead to similar poste-345

rior Gaussian distributions of disease staging, with expectation of respectively

tFAQ=-6 and thippo=-5.6 (indicated by the vertical lines in the figure), and stan-

dard deviation of sdFAQ=6.3 and sdhippo=5.9. The prediction associated with

ventricles volume is wider and associated with higher uncertainty, with mean

and standard deviation of respectively tventr=-3.8 and sdventr=6.1.350

We now suppose that for the same patient we acquire a follow-up measure-
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ment for each biomarker at year 1, with values corresponding to the 50th per-

centiles of the distribution of the training set (i.e. FAQ = 5, normalized Hippo

= 4.3e-3, normalized Ventr = 2.7e-2). The right hand side of Figure 2 shows

the new prediction based on the joint baseline+follow-up information. For each355

biomarker the posterior distributions indicate an increase of the predicted dis-

ease stage with respect to the baseline scenario, while the prediction uncertainty

is generally lower. Although the expectation for the 3 biomarkers is very simi-

lar (tFAQ=-2.5, thippo=-3.5, and tV entr=-3.2), we notice that FAQ leads to the

highest diagnostic confidence (sdFAQ=2.6), followed by hippocampal volume360

(sdHippo=3.8), and finally by ventricles volume (sdV entr=5.7). Further assess-

ment of the relationship between biomarker variability and model prediction is

provided in supplementary Section AppendixA.2.3.

This illustrative example shows that the proposed probabilistic framework

represents a valuable instrument for the assessment of the diagnostic value and365

uncertainty associated with different biomarkers, and can faithfully track the

pathological progression of testing individuals along the modeled trajectories,

from normal to pathological levels.

3.3. DPM for probabilistic diagnosis in ADNI.

We now assess the predictive results of the model when applied to the testing370

ADNI cohort. Figure 3 shows the individual posterior predictive distributions

associated with the testing individuals, and the boxplot of the expected time-

shift when using the model as statistical reference through formula (Figure 8).

The figure reports the two different modeling scenarios based on baseline infor-

mation only (Figure 3-1), and on the complete set of baseline and longitudinal375

measurements (Figure 3-2). We first note that the group-wise differences be-

tween the expected time-shifts are compatible for both scenarios, as shown by

the similar boxplot distributions across groups (Figure 3-1b vs 3-2b). The con-
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Figure 3: Posterior prediction for the individual time shift in testing data by using i) only the
baseline information (1a-b), and ii) the baseline + follow-up information available for each
testing subject (2a-b). Healthy individuals are generally displaced at the early stages of the
pathology, while the predictions for MCI and AD patients are associated with respectively
intermediate and late progression stages. The results are similar for both scenarios, although
by adding the follow-up information we largely reduce the uncertainty in the prediction of
the individual’s pathological stage (subfigure 1a vs 2a). NL: normal individuals, MCI: mild
cognitive impairment, AD: Alzheimer’s patients.
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sistency of the predictions is further illustrated in Figure A.9, where it is shown

that the group-wise distribution and ordering of the predicted time-shifts in the380

testing data are compatible with those estimated in the training one.

However, the joint use of baseline and follow-up information largely reduces

the uncertainty of the predictions (Figures 3-1a vs 3-2a). Indeed, the time distri-

butions predicted when using baseline and follow-up information are narrower

as compared to the wider confidence margins obtained by using the baseline385

information only. Therefore, adding follow-up measurements importantly im-

proves the confidence of the model in determining the individual pathological

stage.

As with the training case, for both scenarios the group-wise distribution

of the expected time-shift shows a significant separation between the clinical390

groups according to the increase of the pathological stage (ANOVA, p <1e-4).

Interestingly, the temporal positioning of the non converting MCI lies between

controls and MCI converters, and is on average lower than the one of healthy

individuals subsequently converted to cognitive impairment.

Figure 4 reports the classification results based on the baseline information395

only, and on increasing thresholds of the progression time course. Although

the model is not optimized to explicitly classify the clinical groups, the simple

thresholding based on the model predictions generally shows high face validity

with respect to the clinical diagnosis. For all the considered scenarios, the

highest accuracy is reached in a time window around the point t = 0, while the400

area under the ROC curve is .99, .88 and .83 for NL vs AD, MCI converters vs

MCI stable, and NL converters vs NL stable, respectively.

We further tested the model in presence of missing information, by com-

puting the predictions when only one baseline biomarker is available (Figure

5). The predictive outcomes show important variations depending on the con-405
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Figure 4: Predictive accuracy of the model when considering the joint set of available bio-
markers measurements. The vertical bar indicates the reference threshold value of t = 1.65,
corresponding to the 15th percentile of the time distribution of the training AD group. MCI:
individuals with mild cognitive impairment, AD: Alzheimer’s patients.
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sidered biomarker, while the confidence bounds for the predictions are usually

large, to denote increased uncertainty. We also note that FAQ, ADAS13, and

hippocampal volume are the biomarkers leading to the largest group-wise sepa-

ration, along with the lowest prediction uncertainty. This aspect is quantified in

Table 3, reporting the discrimination results with respect to the nominal cut-off410

point of t = 1.65, corresponding to the 15th percentile of the distribution of

the expected time-shift in the training AD group, as well as the area under the

receiving operating characteristic curve (AUC). Although the highest discrimi-

native results are consistently obtained when the biomarkers are used jointly, we

note that the neuropsychological tests generally lead to the best predictive per-415

formance in identifying AD patients with respect to healthy individuals, followed

by brain hypo-metabolism (FDG-PET), and temporal atrophy (Entorhinal and

Hippocampal volume). This is related to the lower uncertainty of the modelled

progressions, which leads to a more accurate identification of the individual

staging along the pathological trajectory. The scenario sensibly changes in the420

other comparison scenarios (MCI conv vs stable and NL conv vs stable), where

the sensitivity of the neuropsychological scores shows an important drop, while

the other biomarkers (especially hippocampal and entorhinal volumes) provide

comparable or even better discriminative performances.

These figures were similar when considering the single biomarkers within the425

longitudinal setting, where the neuropsychological tests still outperformed the

other biomarkers in discriminating the clinical groups (Supplementary Figure

A.11).

For the sake of comparison we finally benchmarked the predictive results

provided by the disease progression model with respect those obtained by the430

classification analysis performed with standard statistical tools, such as a ran-

dom forest classifier. We note that the comparison of the classification perfor-
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mance obtained on the heterogeneous data considered in this work is generally

challenging, since the proposed DPM 1) accounts for missing data and non-

fixed number of time points per individuals, and 2) is formulated in order to435

consistently handle both longitudinal and cross sectional measurements, either

for training and prediction. To date there is not a consensus on the optimal

approach to adopt to tackle these important modelling constraints, while the

comparison between the classification performance obtained with complex ma-

chine learning methods is currently matter of scientific debate and investigation440

[26].

For this reason we restricted the random forest classification task to a stan-

dard statistical setting, in order to essentially provide a reliable benchmark for

the classification performance of the proposed disease progression. To this end

we trained the random forest on the classification between healthy individuals445

and AD patients based on the baseline measurements of the training group,

while the missing entries in the testing data were imputed via nearest neigh-

bour search, based on the available biomarkers. The classification results are

reported in Supplementary Table A.5.

The performance of the random forest classifier is generally inferior to the450

one obtained with the proposed approach, as witnessed by the consistently lower

AUC obtained for all the comparisons. The difference becomes more evident for

the more challenging classification problems, such as the identification of conver-

sion in MCI and healthy individuals. This result is indicative of the reliability

of the classification results obtained by the proposed disease progression model,455

especially when considering that the random forest classifier is explicitly opti-

mized to maximize the separation between groups, while the accuracy results

reported in Table 3 are based on the empirical choice of a reference threshold

in the training population.
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(a) Ventricles (b) WholeBrain (c) Entorhinal

(d) FDG (e) AV45 (f) RAVLT.learning

(g) FAQ (h) ADAS13 (i) Hippocampus

Figure 5: Posterior prediction on testing data by using a single biomarker and the baseline
information only.
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Biomarker
all Hippo Ventr WholeBr Entor FDG AV45 RAVLT FAQ ADAS13

NL vs AD (145 vs 74)
Accuracy .89 .81 .62 .76 .83 .80 .63 .82 .88 .83
Sensitivity .83 .84 .52 .9 .82 .74 .82 .76 .84 .75
Specificity .98 .76 .80 .46 .83 .89 .46 .94 .97 .98
AUC .99 .87 .69 .7 .89 .87 .73 .91 .98 .98

MCI conv vs MCI stable (106 vs 243)
Accuracy .82 .67 .62 .69 .7 .71 .69 .67 .79 .79
Sensitivity .65 .85 .5 .89 .74 .65 .37 .56 .63 .54
Specificity .90 .59 .68 .60 .68 .73 .75 .71 .86 .9
AUC .88 .79 .61 .78 .76 .74 .61 .66 .81 .82

NL conv vs NL stable (17 vs 74)
Accuracy .83 .70 .71 .54 .77 .76 .73 .83 .82 .83
Sensitivity .18 .47 .41 .82 .52 .29 .27 .35 .17 .17
Specificity .98 .77 .80 .47 .83 .89 .86 .94 .97 .98
AUC .83 .71 .65 .63 .74 .65 .65 .7 .63 .68

Table 3: Classification results by using the reference time threshold of t = 1.65, corresponding
to the 15th percentile of the training AD time distribution .

3.4. DPM staging and chronological age.460

We finally compare the relationship between the predicted disease staging

in training and testing set and the individual chronological age. We first note

that both training and testing clinical groups were matched by age, with the

exception of the 5 training healthy subjects converted to MCI (or AD) that were

slightly older with respect to the reference training healthy population (p=0.02).465

Nevertheless, when comparing the estimated time shift with respect to the

chronological age of each individual we didn’t report any significant correla-

tion between these measures. Interestingly, the same lack of association is also

quantifiable in the testing group (Figure 6). This result, in association with the

strong relationship between time shift and clinical condition reported in Section470

3.3, let us conclude that the model is describing the biomarker’s variation essen-

tially related to the pathological progression, which is orthogonal to the effect

of healthy aging quantified by the chronological age. This result points to the

effectiveness of the proposed approach in capturing significant effects related to

the specific temporal progression of the disease.475
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Figure 6: Chronological age (y-axis) vs model staging (x-axis). The estimated time-shift is
decorrelated from the chronological age in both training and testing data (p>0.05).

4. Discussion

This study explores the use of DPM for probabilistic diagnosis and uncer-

tainty quantification in an hypothetical clinical scenario. The proposed ap-

proach is based on the reformulation of DPM through a novel probabilistic ap-

proach aimed at leveraging on the longitudinal modeling of disease progression480

for prediction and quantification of the diagnostic uncertainty in neurodegen-

eration, by optimally combining the information provided by the several bio-

markers into a biologically plausible and intelligible score quantified by the time

shift. This work thus extends the previous contributions by proposing DPM as a

probabilistic tool for diagnostic purposes, which can be used to quantify staging485

and predictive uncertainty of de-novo individuals in clinical trials. The disease

progression model itself thus can be seen as a novel biomarker of pathological

progression. We also note that the time shift is a relative measure of disease

progression accounting for the biomarker variability observed in the training

population. Thus, the point 0 is generally not associated with the conversion to490
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AD, as it is relative to the data initialization (in this case the study baseline).

We illustrated the use of DPM as benchmarking tool for the statistical com-

parison of biomarkers. The model allows the quantification of the variability

associated with the single biomarkers, by identifying the related uncertainty in

characterizing the progression from normal to pathological levels. The proposed495

model can be thus used as a reference for screening and enrichment purposes in

clinical trials [27, 28, 29].

The modelled progression showed that neuropsychological tests generally

lead to lower uncertainty for identifying the individual clinical stage, and to

the higher separation power between healthy and AD groups. This finding is500

compatible with the results reported by previous disease progression models ap-

plied to ADNI, such as [7] and [15]. In this latter study ADAS13 consistently

appeared among the first events distinguishing the normal disease stages from

the pathological ones. Furthermore, our analysis further showed that volumetric

measures such as hippocampal and entorhinal volumes provide equivalent if not505

superior diagnostic performances when tested on the more challenging problem

of detecting conversion to dementia from healthy and MCI stages, especially in

terms of improved AUC. Nevertheless, some care should be taken in drawing

conclusions from the present analysis. Our model was based on the standard

volumetric measures provided in the ADNI database, and we cannot exclude510

that a more precise quantification of morphological brain changes would lead

to even better performance of volumetric biomarkers [30, 31]. Furthermore, the

proposed model was not optimized in order to maximize the classification accu-

racy between clinical groups. For example, the results reported in Table 3 are

based on the choice of the temporal threshold corresponding to the reference515

value of the 15th percentile of the AD distribution. This cut-off was not op-

timized to maximize the predictive outcome of the biomarkers, but was rather
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chosen based on heuristics aimed at illustrating the use of the model for predic-

tive purposes. We thus cannot exclude that the optimization of the temporal

threshold would lead to different figures for the classification task. The reported520

results are therefore indicative of the effectiveness of the model in faithfully rep-

resenting the clinical spectrum of the disease. We note also that the reported

figures are in line with those provided by state-of-art methods in AD classi-

fication, without requiring complex parameter optimization procedures, which

would introduce additional levels of cross-validation and expose the results to525

selection bias and generalization issues [26].

Thanks to the probabilistic formulation we showed that the use of longitudi-

nal information is important for reducing the uncertainty of the prediction, and

thus allowing one to better identify the disease status associated to an individ-

ual. This important aspect is in agreement with the generally higher statistical530

power reported in previous Alzheimer’s studies comparing longitudinal measure-

ments to baselines ones [32, 25, 33].

In this work we focused on the modelling of the progression of amyloid posi-

tive individuals. This choice was motivated by the interest in assessing the model

performance on an homogeneous clinical population likely to be representative535

of the Alzheimer’s evolution. While the absence of pathological amylod levels

seems indicative of non-Alzheimer’s pathophysiology [34, 35], there is currently

an active debate on the mechanisms of neurodegeneration not related to brain

amyloidosis [36]. The investigation of these aspects goes beyond the scope of the

present work, and future extensions of disease progression modeling will aim at540

identifying differential progressions underlying sub-pathologies, for example by

reformulating the proposed random effect regression within the realm of Gaus-

sian process mixture models [37, 38]. Analogously, the MCI population used

for model training was composed exclusively by MCI individuals subsequently
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converted to AD, in order to train the model on a homogeneous data most likely545

to include the largest representation of individuals effectively affected by Alzh-

eimer’s disease. Although the inclusion of MCI stable could provide additional

information on the intermediate pathological stages, this choice may probably

lead to larger variability in the training set, as stable MCI are generally charac-

terized by larger heterogeneity, either cross-sectionally and longitudinally, and550

higher diagnostic uncertainty. This modeling choice was also motivated by prac-

tical reasons since, thanks to the adopted data selection scheme, we were able

to validate the model on a large and independent set of testing individuals in-

cluding an important sample of MCI individuals across different clinical stages,

thus providing a thorough and stringent assessment of the predictive qualities555

of the proposed approach.

4.1. Methodological considerations

From the methodological perspective, we proposed a novel probabilistic ap-

proach based on Gaussian process regression for disease progression modeling

from time-series of biomarker measurements enabling novel applications beyond560

the state-of-art, such as the probabilistic prediction of disease staging in testing

individuals. Furthermore, the model naturally accounts for missing data, and

provides uncertainty quantification of the biomarker evolutions. Similarly to

[8], in this work we focused on the modeling of disease staging represented by

a time shift, although the proposed framework can naturally account for more565

complex time transformations, provided that a sufficient number of time points

is available for each individual.

From the methodological point of view, the proposed model extends current

approaches to GP-regression by consistently integrating time-reparameterization

and monotonic constraints within a random effect regression framework. Mono-570

tonic GPs were introduced in [20] as a principled regularization solution to im-
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prove the plausibility of modeling results. For example, the strength of such

a regularization approach in biomedical applications has been illustrated in

survival analysis [39]. Our approach extends this framework by consistently

integrating a latent time variable parameter within a random effect model for-575

mulation.

The idea of estimating a time transformation in a GP regression framework

has been previously used by [40] to account for uncertain measurement times to

a microarray dataset of mRNA. However, in that work the estimation of the time

uncertainty was subject to a strong prior constraint based on the assumption580

that the unknown biological time must be similar to the measured one. In

the application proposed in our work such an assumption is no longer valid and

would ultimately lead to implausible estimations. On the contrary, the proposed

GP regression is able to recover the underlying time transformation thanks to

the proposed monotonicity regularization.585

Finally, thanks to the flexibility of the proposed Gaussian process frame-

work, further extensions of the model will enable to consistently integrate a

spatio-temporal covariance model, such as the efficient Kronecker form of [41],

to provide a unified framework for jointly modelling time series of images and

scalar biomarkers data in a coherent fully Bayesian setting.590

5. Conclusions

This work proposes an extension of DPM for the accurate quantification

of the diagnostic uncertainty in Alzheimer’s disease. The proposed applica-

tion shows that DPM provides at the same time a plausible description of the

transition from normal to pathological stages along the natural history of the595

disease, as well as remarkable diagnostic performances when tested on de-novo

individuals. The model used in this study can account for any missing data
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patterns (longitudinal or across biomarkers), and allows to directly quantify the

uncertainty related to the missing information. It thus represents a novel and

promising tool for the analysis of clinical trials data.600

6. Further Information

The open-source code as well as the proposed predictive model trained on

ADNI data will be available at the author’s web-page: https://team.inria.

fr/asclepios/marco-lorenzi/. The realization of this study required about

1.5kWh of computing power.605
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AppendixA. Supplementary Information

AppendixA.1. Joint Model: marginal likelihood and inference

Given the sets of individual biomarker measurements y = {(yj(ti))k
j

i=1}Nj=1,

and of D control derivatives m = {mbk(t′l)}Dl=1 at points t′ = {t′l}Dl=1 for the

progression of each biomarker bk, the random effect GP model posterior is:

p
(
f , ḟ ,νj |y,m

)
=

1

Z
p(f , ḟ |t, t′)p(ν|t)p(y|f ,ν)p(m|ḟ)

= p(f , ḟ |t, t′)p(ν|t)p(y|f ,ν)∏
k

∏
l

Φ

(
1

λ
ḟbk(t′l)

)
, (A.1)

where ν = {νj}Nj=1. Thanks to the linearity of GPs under derivation, we

have that Cov
(
f(t), ḟ(t′)

)
= dCov(f(t),f(t′))

dt′ , and that the joint distribution

p
(
f , ḟ |t, t′

)
is again a GP775

p
(
f , ḟ ,νj |t, t′

)
∼ GP (fjoint|0,Σjoint) ,

with fjoint =

f

ḟ

 distributed as

N


 0

0

 ,

 ΣG(f(t), f(t)) ∂ΣG(f(t),f(t′))
∂t′

dΣG(f(t′),f(t))
dt′

d2ΣG(f(t′),f(t′))
dt′2


 .

AppendixA.1.1. Approximated inference

Due to the non-Gaussianity of the derivative likelihood term, the direct in-

ference on the posterior (A.1) is not possible due to its analytically intractable

form. For this reason, we employ an approximate inference scheme based on clas-780
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sical approaches to Gaussian process with binary activation functions [21]. Fol-

lowing [20], we compute an approximated posterior distribution q
(
f , ḟ ,νj |yj ,m

)
by replacing the derivative likelihood terms with local un-normalized Gaussian

approximations:

q
(
f , ḟ ,νj |yj ,m

)
=

1

ZEP
p(f , ḟ |t, t′)p(ν|t)p(y|f ,ν)∏

k

∏
l

Z̃klN (ḟbk(t′l)|µ̃kl, σ̃2
kl), (A.2)

where ∏
k

∏
l

Z̃klN (ḟbk(t′l)|µ̃kl, σ̃2
kl) = N (µ̃, Σ̃)

∏
k,l

Z̃kl,

with µ̃ = [µ̃kl], and Σ̃ is a diagonal matrix with elements σ̃2
kl. It follows that785

the marginal posterior has a Gaussian form, q
(
f , ḟ ,νj |yj ,m

)
∼ N (µ,Σ), with

µ = ΣΣ̃−1µ̃joint , and Σ = (Σ−1
joint + Σ̃−1

joint)
−1, where

µ̃joint =

y

µ̃

 , and Σ̃joint =

 Σε + ΣS 0

0 Σ̃

 .

AppendixA.1.2. Estimating the EP parameters.

The EP update of the local Gaussian approximation parameters is classically

done by iterative moment matching with respect to the product between the cav-790

ity distributions q−k′l′
(
ḟbk′ (t

′
l′)
)
and the target likelihood term Φ

(
1
λ ḟbk′ (t

′
l′)
)
.

In the GP case the cavity distribution has a straightforward Gaussian form:

q−k′l′
(
ḟbk′ (t

′
l′)
)

=

∫ ∏
k 6=k′,
l 6=l′

Z̃klN (ḟbk(t′l)|µ̃kl, σ̃2
kl)dḟbk(t′l)

∼ N (ḟbk′ (t
′
l′)|µ−k′l′ , σ−k′l′). (A.3)
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As shown in [20] for univariate monotonic regression, moments and updates

of the approximation parameters can be computed in an analogous manner as

in the classical GP classification problem [19].795

AppendixA.1.3. Marginal Likelihood and hyper-parameter estimation

The model’s log-marginal likelihood under the EP approximation is:

logL = −1

2
log |Σjoint + Σ̃joint|

−1

2
µ̃Tjoint(Σjoint + Σ̃joint)

−1µ̃joint

+
∑
k

∑
l

(µ−kl − µ̃kl)2

2(σ2
−kl) + σ̃2

kl)

+
∑
k

∑
l

log Φ(
µ−kl√

λ2
k + σ2

−kl)
)

+
1

2

∑
k

∑
l

log(σ2
−kl + σ̃2

kl). (A.4)

In what follows, the optimal parameters are obtained by maximising logL

through conjugate gradient descent, via alternate optimization between the

hyper-parameters θG and θjG, and the individuals’ time-shifts dj . The posi-800

tion of the derivative points was updated at each iteration, according to the

changes of the GP domain. Regularisation was also enforced by introducing

Gaussian priors for the parameters θG and θjG. We note that the block struc-

ture of the GP covariance allows the computation of the gradients with respect

to the biomarkers’ and individual parameters by working on matrices of much805

smaller dimension than the one of the whole GP, thus considerably improv-

ing the numerical stability and the computational efficiency of the optimization

procedure.
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AppendixA.2. Model benchmarking on synthetic multivariate progressions

We benchmarked the model with respect to synthetic multivariate biomarker810

progressions. We generated random multivariate sigmoid functions for Nb bio-

markers, f(τ) = (fb1(τ), fb2(τ), . . . , fbNb
(τ))>, with fbk(τ) = 1/(1+exp(−αkτ)),

τ ∈ [0, 15] and αk ∼ N (0, .06), and we sampled N individual noisy trajectories

at time points τ jk : yjk(τ jk) = fk(τ jk) + ε, ε ∼ N (0, σ2). For each individual we

used the same initial sampling time point for every biomarker, while the num-815

ber of samples per biomarker was allowed to independently vary between 1 and

4. The individual time points were subsequently centered by their mean µjk to

obtain shifted time-points tjk = τ jk − µ
j
k defined in the interval [−2, 2].

The model was applied to estimate biomarker progressions and individual

time-shifts with respect to different combinations of trajectory noise σ, sample820

size N , and number of biomarkers Nb. The accuracy of the model in recon-

structing the original time series was quantified by Pearson’s correlation be-

tween the estimated time-shift dj and the original individual time reference.

The experiments were repeated 10 times for each configuration of parameters

σ ∈ {0.1, 0.2, 0.3, 0.4}, Nb ∈ {4, 8}, and N ∈ {20, 100}.825

AppendixA.2.1. Results.

Table A.4 reports summary correlations between time-shift estimation and

the ground truth individual sampling time. The correlation values are generally

high, and increase with lower noise levels. Interestingly, the increase in number830

of modelled biomarkers is associated with a better performance in recovering

the underlying disease staging. We also observe that larger sample sizes are

associated with higher correlation values, especially with increasing noise levels.

We note however an exception for the case σ = 0.1 where, although the overall

performance is still high, the correlation slightly decreases with N = 100.835
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N = 20 N = 100
σ σ

0.1 0.2 0.3 0.4 0.1 0.2 0.3 .4

Nb
4 .95 (.03) .86 (.08) .71 (.17) .46 (.29) .91 (.04) .89(.04) .76 (.17) .75 (.12)
8 .97 (.01) .91 (.06) .86 (.06) .66 (.3) .94 (.04) .94 (.02) .88 (.06) .84 (.07)

Table A.4: Mean (sd) R2 correlation coefficient across folds between estimated individual
time-shifts and ground truth time reference.
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AppendixA.2.2. Model benchmarking with respect to grace

The R package grace (v 1.0) was used to estimate the multivariate biomarker

progression curves from the training set used in this study, by using default pa-

rameters and syntax:

grace . s imu la t i on . f i t s <− with ( output_table , . . .840

grace (Month , Y, Outcome , RID , group , p l o t s = TRUE) )

Figure A.7 shows the relationship between the estimated individual time-

shift. Although the time range estimated by the GP model is roughly double

with the respect to the grace one, there is a strong agreement between the

relative positioning of the training individuals along the disease trajectory.845
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Figure A.7: Comparison between the shift estimated with our GP progression model (x-
axis), and the one estimated by grace (y-axis). Although the time range estimated by the
GP model is roughly double with the respect to the grace one, there is a strong agreement
between the relative positioning of the training individuals along the disease trajectory.
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AppendixA.2.3. Predictive performance under uncertain biomarker distribution

In this section we illustrate the relationship between the variability across

an individual’s biomarkers profile at a given time point and the subsequent time

shift estimation. This point is tested in the following synthetic cases, where we

considered three hypothetical baseline scenarios:850

1. Homogeneous, low severity: all the biomarkers measurements for the

individual correspond to the 10th percentile of the respective distribution

2. Homogeneous, high severity: all the biomarkers measurements for the

individual correspond to the 90th percentile of the respective distribution

3. Heterogeneous: all the biomarkers measurements for the individual cor-855

respond to the 10th percentile of the respective distribution, while FAQ

and ADAS are at the 90th percentile.

Figure A.8 illustrates the resulting log-likelihood of the prediction. We can see

that for the homogeneous scenarios (blue and red curve), the log-likelihood is

high and concentrated on the left and right extremities of the time axis, to in-860

dicate indeed greater confidence about low and high severity of the individual.

On the contrary, the heterogeneous case (green curve) is characterized by (mag-

nitude) lower log-likelihood values, and by an almost uniform profile across the

time axis, to indicate higher uncertainty about the staging prediction.
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Figure A.8: Predictive uncertainty with respect to individual’s biomarkers variability
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AppendixA.2.4. Supplementary Figure865

Figure A.9: Comparison between the time shift distribution in training and testing data.
The group-wise distribution and ordering of the predicted time-shifts in the testing data are
compatible with those estimated in the training one.
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Figure A.10: Joint temporal progression of the biomarkers (top) and derivative of the mod-
elled average trajectory (bottom). ADAS13 and FAQ are characterised by very similar longi-
tudinal profiles, and show the largest changes in the latest stages of the pathology (peak of
the derivative at t>0). On the contrary, the change in hippocampal volume is more strongly
associated with the earlier stages of the pathology. AV45 and ventricles volumes are the least
informative and are associated with the lowest changes (lowest derivative values).
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AppendixA.2.5. Supplementary Table

(a) Ventricles (b) WholeBrain (c) Entorhinal

(d) FDG (e) AV45 (f) RAVLT.learning

(g) FAQ (h) ADAS13 (i) Hippocampus

Figure A.11: Posterior prediction on testing data by using a single biomarker and the follow-up
information.
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NL vs AD (145 vs 74) MCI conv vs MCI stable (106 vs 243) NL conv vs NL stable (17 vs 74)
Accuracy .95 .69 .86
Sensitivity .94 .89 .28
Specificity .97 .61 .97
AUC .96 .75 .62

Table A.5: Classification results by using a random forest classifier trained on the whole set of
biomarkers for the baseline training data. The missing values in the testing data were imputed
by nearest neighbour search.
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AppendixA.2.6. Data preparation

#Loading ADNIMERGE l i b r a r y

870

l i b r a r y ("ADNIMERGE")

#Id en t i f y i n g c l i n i c a l subgroups

ridAD = unique ( subset ( adnimerge ,DX=="Dementia ")$RID)875

ridNL = unique ( subset ( adnimerge ,DX=="NL")$RID)

ridMCI = unique ( subset ( adnimerge ,DX=="MCI")$RID)

#In the next s t ep s converted / r eve r t ed i nd i v i d u a l s are manually i d e n t i f i e d

# and c l i n i c a l groups are de f ined acco rd ing ly880

ADreverted = c (167 , 1226 , 4641)

ridAD = ridAD [ ! ridAD%in%ADreverted ]

NLconverted = c (15 , 22 , 35 , 55 , 61 , 106 , 112 , 127 , 156 , 171 , 210 , 223 , 232 ,885

259 , 420 , 454 , 459 , 467 , 520 , 545 , 548 , 555 , 558 , 602 , 605 , 622 , 680 , 722 ,

778 , 779 , 842 , 843 , 883 , 899 , 920 , 972 , 985 , 1063 , 1123 , 1169 , 1190 , 1194 ,

1200 , 1202 , 1203 , 2150 , 4041 , 4071 , 4092 , 4218 , 4262 , 4385 , 4474 , 4506 , 4566 ,

4577 , 4579 , 4652 , 4855 , 5096 , 5121 , 5207 , 5273)

ridNL = ridNL [ ! ridNL%in%NLconverted ]890

ridConv = subset ( adnimerge ,RID%in%ridMCI&DX=="MCI to Dementia ")$RID
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r i dReve r t e r = c (429 , 4706)

ridConv = ridConv [ ! ridConv%in%r idReve r t e r ]895

ridMCI = c ( ridMCI , ADreverted )

ridNConv = ridMCI [ which ( ! ridMCI%in%ridConv ) ]

ridNConv = ridNConv [ ! ridNConv%in%c ( ridConv , ridAD , ridNL , NLconverted ) ]

900

ridAD = ridAD[−which ( ridAD%in%ridConv ) ]

#Amyloid p o s i t i v e i n d i v i d u a l s are r e t a in ed f o r subsequent an a l y s i s

905

Abpos = read . csv ("AbposADNI . csv " , sk ip=1)

ridABpos = Abpos$RID

Set = subset ( adnimerge ,RID%in%c ( ridNConv , ridConv , ridAD , ridNL , NLconverted ) ,

s e l e c t=c ("RID" ,"Month" ,"DX" ,"Hippocampus " ,910

" Ven t r i c l e s " ,"WholeBrain " ," Entorh ina l " ,"FDG" ,"AV45" ,

"RAVLT. l e a rn i ng " ,"FAQ" , "ADAS13" ,"ICV . b l " ) )

#Brain volumes are s c a l ed f o r ICV

915

Set$Hippocampus = Set$Hippocampus/Set$ICV . b l

Set$WholeBrain = Set$WholeBrain/Set$ICV . b l

Set$Entorh ina l = Set$Entorh ina l /Set$ICV . b l

S e t $Ven t r i c l e s = Se t $Ven t r i c l e s /Set$ICV . b l

920
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Set = subset ( Set , s e l e c t=c ("RID" ,"Month" ,"DX" ,"Hippocampus " ," Ven t r i c l e s " ,

"WholeBrain " ," Entorh ina l " ,"FDG" ,"AV45" , "RAVLT. l e a rn i ng " ,"FAQ" , "ADAS13") )

#Id en t i f y i n g i n d i v i d u a l s with at l e a s t one measurements f o r each biomarker

# ( t r a i n i n g s e t )925

RIDnoNA = subset ( Set ,Month==0)$RID [ which ( apply ( i s . na ( subset ( Set ,Month==0)) ,

1 , any)==FALSE) ]

SetnoNA = subset ( Set ,RID%in%ridABpos&RID%in%RIDnoNA&RID%in%930

c ( ridConv , ridAD , ridNL , NLconverted ) )

#Sampling t r a i n i n g s e t composed by 200 i nd i v i dua l s , and t e s t i n g s e t composed by

#remaining ones

935

trainRID = sample ( unique (SetnoNA$RID ) ,200)

t r a i nS e t = subset ( Set ,RID%in%trainRID )

t e s t S e t = subset ( Set , ! RID%in%trainRID&RID%in%Abpos$RID)

#Ranking o f biomarkers va lue s accord ing to940

# tra i n i n g s e t d i s t r i b u t i o n

newSet = t r a i nS e t

945

f o r ( i in seq (4 , l ength ( names ( newSet ) ) ) )

{
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newSet [ , i ] = rank ( newSet [ , i ] , na . l a s t =’keep ’ ) /

l ength ( newSet [ , i ] [ which ( ! i s . na ( newSet [ , i ] ) ) ] )

}950

newSet_test = t e s t S e t

955

f o r ( i in seq (4 , l ength ( names ( newSet ) ) ) ) {

f o r ( j in seq (1 , l ength ( newSet_test [ , i ] ) ) )

{

i f ( ! i s . na ( t e s t S e t [ j , i ] ) )

{960

newSet_test [ j , i ] = rank ( c ( t e s t S e t [ j , i ] , t r a i nS e t [ , i ] ) ,

na . l a s t =’keep ’ ) [ 1 ] /

( l ength ( t r a i nS e t [ , i ] [ which ( ! i s . na ( t r a i nS e t [ , i ] ) ) ] )+1 )

}

965

}

}

# Sca l i ng the biomarkers to i n c r e a s i n g abnormal ity order970

newSet$FDG = 1−newSet$FDG

newSet$Hippocampus = 1−newSet$Hippocampus

newSet$WholeBrain = 1−newSet$WholeBrain
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newSet$Entorhinal = 1−newSet$Entorhinal975

newSet$RAVLT . l e a rn i ng = 1 − newSet$RAVLT . l e a rn i ng

newSet_test$FDG = 1−newSet_test$FDG

newSet_test$Hippocampus = 1−newSet_test$Hippocampus

newSet_test$WholeBrain = 1−newSet_test$WholeBrain980

newSet_test$Entorhinal = 1−newSet_test$Entorhinal

newSet_test$RAVLT . l e a rn i ng = 1 − newSet_test$RAVLT . l e a rn i ng

# Output985

wr i t e . csv ( newSet , " ADNIDataTrain . csv ")

wr i t e . csv ( newSet_test , " ADNIDataTest . csv ")

wr i t e . csv ( ridAD ," ridAD . csv " , row . names=FALSE)990

wr i t e . csv ( NLconverted , " ridNLconverted . csv " , row . names=FALSE)

wr i t e . csv ( ridConv , " ridConv . csv " , row . names=FALSE)

wr i t e . csv ( ridNL ," ridNL . csv " , row . names=FALSE)

wr i t e . csv ( ridNConv [ ridNConv%in%ridABpos ] , " ridNConv . csv " , row . names=FALSE)
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