Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease
Résumé
Disease progression modeling (DPM) of Alzheimer's disease (AD) aims at revealing long term pathological trajectories from short term clinical data. Along with the ability of providing a data-driven description of the natural evolution of the pathology, DPM has the potential of representing a valuable clinical instrument for automatic diagnosis, by explicitly describing the biomarker transition from normal to pathological stages along the disease time axis. In this work we reformulated DPM within a probabilistic setting to quantify the diagnostic uncertainty of individual disease severity in an hypothetical clinical scenario, with respect to missing measurements, biomarkers, and follow-up information.
Domaines
Imagerie médicale Intelligence artificielle [cs.AI] Anatomie, Histologie, Anatomopathologie [q-bio.TO] Psychiatrie et santé mentale Neurobiologie Bio-informatique [q-bio.QM] Traitement du signal et de l'image [eess.SP] Applications [stat.AP] Machine Learning [stat.ML] Bio-Informatique, Biologie Systémique [q-bio.QM] ImagerieOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...