Weak universality for a class of 3d stochastic reaction-diffusion models. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Weak universality for a class of 3d stochastic reaction-diffusion models.

Résumé

We establish the large scale convergence of a class of stochastic weakly nonlinear reaction-diffusion models on a three dimensional periodic domain to the dynamic Phi^3_4 model within the framework of paracontrolled distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of smoothness (in particular C^9 is enough). We use the Malliavin calculus to perform a partial chaos expansion of the stochastic terms and control their L^p norms in terms of the graphs of the standard Phi^3_4 stochastic terms.
Fichier principal
Vignette du fichier
weak_phi4_september_HAL.pdf (525.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01615822 , version 1 (12-10-2017)

Identifiants

  • HAL Id : hal-01615822 , version 1

Citer

Marco Furlan, Massimiliano Gubinelli. Weak universality for a class of 3d stochastic reaction-diffusion models.. 2017. ⟨hal-01615822⟩
183 Consultations
183 Téléchargements

Partager

More