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Abstract

‘We establish the large scale convergence of a class of stochastic weakly nonlinear reaction—diffusion models
on a three dimensional periodic domain to the dynamic ®3 model within the framework of paracontrolled
distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of
smoothness (in particular C? is enough). We use the Malliavin calculus to perform a partial chaos expansion
of the stochastic terms and control their L? norms in terms of the graphs of the standard ®3 stochastic terms.

Keywords: weak universality, paracontrolled distributions, stochastic quantisation equation, Malliavin
calculus, partial chaos expansion.

Consider a family of stochastic reaction—diffusion equation in a weakly nonlinear regime:
Zu(t,x)=—e*F.(u(t,x))+ n(t,x) (t,r) €0, T /%) x (T /e)? (1)

with € € (0, 1], T'> 0, initial condition g .: (T /e)®> — R, F. € C°(R) with exponential growth at infinity, a >0
and .2: =(0; — A) the heat flow operator and T=1R/(27Z). Here 7 is a centered Gaussian noise with stationary
covariance

E(n(tv 33)77(5, y)) - ée(t —$,T, y)
such that C’s(t —s,2,y)=%(t — s,z —y) if dist(z, y) <1 and 0 otherwise where ¥: R x R? — R™ is a smooth,
positive function compactly supported in [0, 1] x Bgrs(0,1).
We look for a large scale description of the solution to eq. (1) and we introduce the “mesoscopic” scale variable
ue(t,r) = Pu(t/e? x /e) where > 0. Substituting u. into (1) we get
Fuelt,x) =~ IRt 2) + e (L, L) (2)
In order for the term e =2~ n(t /2,2 /) to converge to a non-trivial random limit we need that 3=1/2. Indeed
the Gaussian field n.(t, z): =e~%/?5(t /€2, x /&) has covariance C.(t, z) = e 5C"(t /2, z/€) and converges in
distribution to the space-time white noise on IR x T3. For large values of « the non-linearity will be negligible

with respect to the additive noise term. Heuristically, we can attempt an expansion of the reaction term around
the stationary solution Y. to the linear equation

XYE =-Y.+ Ne-
Let us denote with Cy . the covariance of Y.. We approximate the reaction term as
£2=5I2F (12 (t, 2)) ~ ¥RVt @),

The Gaussian r.v. £'/2Y.(t, z) has variance 0% . = ceE[(Yz(t, x))?] = eE[(Y(0, 0))?] = eCy (0, 0) independent
of (t, ). Therefore we can expand the r.v. F.(¢!/2Y.(t,z)) according to the chaos decomposition relative to
e'/2Y_(t,z) and obtain

F(e2Ye(t, ) =) foe Hu(e' /2 Yelt, 2), 0% ),

n>0

where Hn(ac,a%_rg) are standard Hermite polynomials with variance 0%7 <. Note that also the coefficients (fy,)n>0
do not depend on (t,z) by stationarity of the law of /2 Y.(t,z) since they are given by the formula

fne=n! ]E[Fg(sl/2 Y.(t, Jc))Hn(sl/2 Y.(¢,x), U%_ﬁ)] =nlE[F.(oy,.G)H,(oy -G, 032/.,5)]
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where G is a standard Gaussian variable of unit variance. Let X be the stationary solution to the equation
LX=-X+¢

with & the space-time white noise and denote by [X] is the generalized random fields given by the N-th
Wick power of X which are well defined as random elements of S’(R x T?) as long as N <4. Denote with C'x
the covariance of X. The Gaussian analysis which we set up in this paper shows in particular the following
convergence result.

Theorem 1. Fiz N <4 and assume that € ~N)/2f, _— g, for 0<n< N as e—0, that (F.). CCNTYR) and

there exists constants ¢,C >0 such that
N+1

sup » |05 FL(x)| < Cell.

e,x
Then the family of random fields k=0

FY: (t,z) e N2F(e 2 Yo(t, 1)), (t,2) ERx T3,
converges in law in S'(R x T3) as e—0 to ijzo an[X™N].

Now take the smallest n such that f,, . converges to a finite limit as e — 0. Since H,(e'/?YL, 0%78) =e"/2[Y"],

the n-th term in the expansion of F.(¢'/?Y}) is fr.e g@+(n=5/2[y"]. From Theorem 1 the equation yields a
non-trivial limit only if = (5 —n)/2. We are interested mainly in the case n=3=a=1and n=1=a=2.
The case =2 gives rise to a Gaussian limit and its analysis its not very difficult.

In the following we will concentrate in the analysis of the a =1 case where the limiting behaviour of the model
is the most interesting and given by the ®3 family of singular SPDEs. In this case we obtain the family of models

Luct, ) = -2 F(e2ua(t, x)) + na(t, 7) (3)

with initial condition ug c(-) ;=& 2up (¢~ 1-) where 1 . is the initial condition of the microscopic model (1).
Define for m >0 and (= (t,z) e Rt x T?
O == N2EM (12, ). (4)

where F. is the centered function

Fg(x)::FE(x)_fO,E_fl,Ex f28H2 X UYE Z fna n .Z' UY s)

n>=3

and 0¥ . is the variance of the centered Gaussian process e'/2Y.. Note that H,(¢'/2Y.(-), 0% .) = e™/2[V]
and denote with f, . the coefficients in the chaos expansion of Fg(sl/ 2Yg,g). Define also various e—dependent
constants

¥ -1 / Py(x)E[2( %), LY = aerp g / Py()[Cy (s, 2))%,

9
1, gla%/ _ 1 P E@®a0) ), (5)

3 (20

P T

€ T

where Pg() is the heat kernel and [ denotes integration on R* x T?.

Assumption 2. All along the paper we enforce the following assumptions:
) {uo,c}eeo,1) converges to a limit ug in @ ~1/27% VK >0 and is independent of n;
b) {to,c}eec(0,1) is uniformly bounded in L, i.e. 3C >0 such that Ve € (0,1] ||to,c || Loo((T/2)%) < C;
¢) {F.}ee0,11S C?(R) and there exist constants ¢,C >0 such that

sup Z |OFF.(z)| < Cecl®l, (6)

ECEkO
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d) the family of vectors {Ac}ee(,11= {(/\20)’)‘S)’/\f)’)‘?))}se(o,l] CRR* given by

)‘(3) = f3,a )\21) = 5_1fl,a_3ds\wy

€

)\(2) = 571/2f2,8 )\50) - 573/2f0,5 - 571/2f2,5 dE\K/ - 3&8\@ - S&E\Ky

(>
has a finite limit A= (A9, A X2 \®)) cR* a5 £ —0.
We can now formulate our main result.

Theorem 3. Under Assumptions 2 the family of random fields {uc}ce(0,1) given by the solution to eq. (3)
converge in law and locally in time to a limiting random field u()\) in the space Cr% ~*(T3) for every 1/2 <
a<1/2+k. The law of u(X) depends only on the value of A and not on the other details of the nonlinearity or
on the covariance of the noise term. We call this limit the dynamic ®3 model with parameter vector A € R*.

In Theorem 3 and in Assumption 2, Cr% ~%(T?) denotes the space of continuous functions from [0, 7] to
the Besov space ¢ ~*(T?) = B3,%(T?) (see Appendix A for details).

Remark 4. In particular we can take
F(e) = o®Hy(z,0%.0) + ' 20 Hy(w, 08 ) +(0W) +90) Hiw, 0% o) +7(0 +1L7)

so that
f3,5:U(3)7 571/2f2,520(2), e 1. _0(1)+’Y(1) E73/2]"0 _U(O)+’Y(O)

d. \KV o3 2L &5\@:0(3)0(2) L., dg\K/:&:KV:Oa

where Le:=2]_ is(ac)(Cy,E(s,x)) . Choosing

and

NONIPFA GEFVNCITEEEINONIPY I GEPWONCES

we obtain \; — (0(0), o), 0(2), 0(3)). This shows that all the possible limits A € R* are attainable. In this case
(3) takes the form

Zue=—0Ou2 — 0Bu2 — oW - 363163  +9(0®)2LJu. — 0O +0@od .~ 306D L 4. (8)

When the nonlinearity is given by a cubic polynomial like in (8) the corresponding limiting model is called
dynamic ®4 equation or stochastic quantisation equation. In two dimensions, this model has been subject of
various studies since more than thirty years [13, 1, 5|. For the three dimensional case, the kind of convergence
results described above are originally due to Hairer [9, 10] and constitute one of the first groundbreaking
applications of his theory of regularity structures. Similar results were later obtained by Catellier and Chouk [4]
using the paracontrolled approach of Gubinelli, Imkeller and Perkowski [6]. Kupiainen [14] described a third
approach using renormalization group ideas.

Weak universality is the observation that the same limiting object describes the large scale behaviour of
the solutions of more general equations, in particular that of the many parameters present in a general model,
only a finite number of their combinations survive in the limit to describe the limiting object. The adjective
“weak” is related to the fact that in order to control the large scale limit the non-linearity has to be very small
in the microscopic scale. This sets up a perturbative regime which is well suited to the analysis via regularity
structures or paracontrolled distributions.

The first result of weak universality for a singular stochastic PDE has been given by Hairer and Quastel [11]
in the context the Kardar—Parisi-Zhang equation. Using the machinery developed there Hairer and Wu [12]
proved a weak universality result for three dimensional reaction—diffusion equations in the case of Gaussian
noise and a polynomial non-linearity, within the context of regularity structures. Weak universality for reac-
tion—diffusion equations driven by non Gaussian noise is analysed in Shen and Wu [23]. Recently, important
results concerning the stochastic quantisation equation we obtained by Mourrat and Weber. In particular the
convergence to the dynamic ®3 model for a class of Markovian dynamics of discrete spin systems [16] and also
the global wellposedness of ®3 in space and time [17] and in time for ®4 [18]. The recent preprint [7] analyzes
an hyperbolic version of the stochastic quantisation equation in two dimensions, including the associated uni-
versality in the small noise regime.
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The present work is the first which considers in detail the weak universality problem in the context of
paracontrolled distributions, showing that on the analytic side the apriori estimates can be obtained via standard
arguments and that the major difficulty is related to showing the convergence of a finite number of random
fields to universal limiting objects. The main point of our analysis is our use of the Malliavin calculus [22,
21] to perform the analysis of these stochastic terms without requiring polynomial non-linearity as in the
previous works cited above. In particular we were inspired by the computations in [20] and in general by the
use of the Malliavin calculus to establish normal approximations [21]. The main technical results of our paper,
Theorem 10 below, is not particularly linked to paracontrolled distributions. A similar analysis is conceivable
for the stochastic models in regularity structures. Moreover the same tools can also allow to prove similar non-
polynomial weak universality statements for the KPZ along the lines of the present analysis. This is the subject
of ongoing work.

The paper is structured as follows. Section 1 contains the paracontrolled analysis of eq. (3) which will allow to
obtain uniform estimates to pass to the limit. Section 2 in the core of the paper, it contains the stochastic analysis
based on Malliavin calculus which allows to control the limit of the random fields involved in the paracontrolled
description of eq. (3) and to identify their limits. All the rest of the paper consists in three appendices which
do not contain original material but allow the paper to be self contained. In particular Appendix A collects
notations and basic results of paracontrolled calculus. Appendix C collects basic definitions and results from
Malliavin calculus which will be needed in the analysis of the stochastic terms. Finally Appendix B contains
mostly some technical estimates on kernels needed in the stochastic analysis. The reader not familiar with
paracontrolled calculus and /or Malliavin calculus is encouraged to read Appendix A and/or Appendix C before
going on. In particular please refer to Section A.1 for the notations and conventions in force all along the paper.

1 Analysis of the mesoscopic model

In this section we describe the paracontrolled approach [6] to a solution theory for eq. (3) along the lines of the
Catellier—Chouk [4] analysis. The basic results of paracontrolled calculus we need in this section are included
in Appendix A.

The continuity of the solution map for a paracontrolled equation (already established in [4] and recalled
here) allows us to prove convergence of the solution u. (Theorem 3) by showing the convergence of the enhanced
noise Y. and the remainder R, in the appropriate space. Finally, in Theorem 7 we identify the limiting process
as the solution of a paracontrolled equation.

1.1 Paracontrolled structure
Write ue =Y; 4+ v, and perform a Taylor expansion of the reaction term 155(51/2}/; + 51/21)5) in (3) around el/2y,
up to the third order to get

Lue = 1. — 0 oMy, — %qﬂ%g - %tﬁ(?’)vg — R.(ve) )
7673/2.}“0,8 - 5_1f1,€(}/€ + Us) - 571/2]82.,6([[}/:52]] + 2v€ Y; + U?)

with CI)(Cm) defined in (4) V¢ € R x T2 and R.(v.) the remainder of the Taylor series.
Define the following random fields:

LYe = Yot YV o= eV YA,
A0 YE\K/ = Yﬁ’oygud}/,
VY = a0 AR AB AR A
(10)
2Y.Y = YV, v = vYovvoa ¥
Y o= %CI)(Q)) Y:a\ﬁ/ = YaYOYV_d\ﬁ/a
1
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with ®(™) defined in (4), Y. stationary and YE\V, YEY starting from 0 in ¢t = 0. In the scope of this section we

can take any set of constants {d€\<y, dg\K/, d:KV, &E\ﬁ/, &E\KV} S5 dI that satisfy
dg\gy = 2 dg\K/ +3 d€\<y.
Equation (9) takes the form

fvs = }/‘67}/'6\1/7}}8\/73}/6\/1)673}/61037}/‘6@1)83
75_3/2.}“0,6 - 571f1,€ (Y€+ Us) - 5_1/2f2,€ (2}/6'06 +’U§) - Rs(vs)-

(11)

(12)

In this expression the products Y. v., Y.' v2 and Y. v. do not meet the conditions for continuity. In order to

continue the analysis we pose the paracontrolled Ansatz

vszf}é\ysz73vs«Yv6Y+v§a

(13)

and proceed to decompose the ill-defined products using the paracontrolled techniques recalled in Appendix A .

We start with
Y Y =0, <YV 4. =Y.V +o. 0V V.
The resonant term, together with Ansatz (13), yields:
NS AR A S A ART A PRI ASIAY
—3om (v, Y.V, YoV) 4ot o ViV
So we let

Y Vov, = 0 Yy —0. <YV + (3. dg\ﬁ/ + dg\KyY} + CAZE%/ + Engy)

= Uer }/;v - Y:E\<V - YE\KV —3ve Y—E\<V+U§OY—EV - 3@1(’05, YsYa Y;v)

Moreover we have for v.Yz:

nY. = Y-V <V.-Y. sv—v. ov
where we introduced the shorthand ¢, =v.+ YE\V. So we let
va<>Ya:=vaYa+da\</=<pgKg—Yg\V<YE—YE\V>YE—Y;</
Finally to analyse the product Y' v2 we write

Y 2=V (Vo )2 2V Y| e+ Vi 2,

and consider the products involving only Y™ factors: first
AAMIISA STEINA SEA SUA SR AR ASYAY
and then we define the term Y.' <>(YE\V)2 as follows:

YEI O(YE\V)Q = YEI (YE\V)Q _ Qd:KKYE\V

= v < v s v e v o v o v t2com (v Y v Y vy 1 ov Yy ¥

so that
V' ovZ:= Y w2 + 2d}/vg =Y o(Y )2 =2 (Volo¥e Ve + YT 2
We note also that

L. = —XYE\V — fYéY—i—ng — 3, %XY‘EY — 3com3(v5,YaY) — 3 comg(v., Y2V).
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Substituting these renormalized products into (12) we obtain the following equation for vg :
2! = 3coms(ve, YgY) + 3 comy(ve, YY)
—Y.%02 —3Y. ov? — 3Y Vb,
+Y. = AP (20, 0. + 02)
AW (Yot ve) + [9d€\<V A 3d5\§/]v8 A9~ R.(v.)
= U\, Yo ve,08) — Re(v2) (14)
with R.(v.) the Taylor remainder which appears in (9) and A. = ()\20), )\él), )\§2), )\23)) € R* given by eq. (7). We
can use the constraint (11) to remove the term proportional to v.. The enhanced noise vector Y, is defined by
Y. = (YE‘Z,YJ,KV,YEV,K\VJQ\K/,K\{I/,&\@,YE\@)
m
Xr = Cp¢ " xCr% 2 "x (Cr#~17%)2 x XIT/%K x (Cr%~F)3x Crg 2" (15)

for every x>0. We use the notation |[Y.|x,=3"_|YI||x~ for the associated norm where Y_" is a generic tree
in Y.. The homogeneities |7| € R are given by

AR A A A A AT A ST AT
F[[=10 [=1/2] =1 | -1]1/2] 0 | 0 | 0 [-1/2

Notice that for every € >0 eq. (14) is equivalent to (3) together with Ansatz (13).

1.2 A-priori estimates

In this section we show uniform a-priori estimates for the pair (v, vz) which solves the following system of
equations

Ve = —Y;\V—YEY—Z&UE«YEYJrszrUE
202 = U(Ae, Y0, 02+ 0f) — Re(v2) (16)
W(0) = Yol (0)+ V.Y (0)+ 300 Y. (0)

with vﬁ(t) :=Pyve 0 and v o:=wup— Yz(0) € #~1/2= U is given in (14). It is easy to see, by taking vﬁzvg +v€h,
that this is equivalent to eq. (14) together with Ansatz (13) on v.. We consider the spaces

V%::f%"OXITMJ/QH”QXIT/ZH%, VT::j1T/2,1/27nmflT/4+3n/2,2n,

with the corresponding norms

[02llys = 02l zge+ 102l gayanraan+ [02]] yayzsan, (17)
||UEHVT = ||U€H$1/2,1/2—n+||'U€Hgl/4+3n/2,2n. (18)

Define V§ € (0,1) the quantity
ME,S(YE, Uo,g) — H€(5/26651/2|Y5H»Cgl/QlPA’Ua,O‘||Lp[07T]Lp(T3) (19)

which will be used to control the remainder R.. The main result of this section is the following lemma.

Lemma 5. There exists a time T, = Ti(||Ycllxs, |Jte,0llg-1/2-x, [Xc]) € (0, T] depending only on ||Y.||xy
lue ol g-1/2—x and |Xc|, constants 6 € (0, 1) and M. 5= M. s(Yz, uo,c) > 0 defined by (19), and a universal

constant C' >0 such that, whenever M, 5< Tf/Q we have
102, vy, < O+ AL ) (LY e ) (L + e oll g -1/2-)%,
[vellve, < C(IYellay+ [lue 0

g-1/2-x -+ ||’U2HV%*)
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Proof. Define v2:=v, — ’UE such that
oD = —YE\V —YéY -3 —l—vﬁ) «YgY—i—vZ,

and v2(0) =0. Note also v2 := v’ —|—Y\V Using Lemma 16 (and the fact that || f|| &x.« ST f||24) we obtain
for k,60 >0 small enough

m\z

||If||j;9+2n,2n+ ||If||j;/479+2n,1/2+2m+ ||If|‘j,}/279+2n,1+2n5 (”fHM; g0 — «+ Hf||M1/2+2mg; 1/2— 2;1) (20)

We choose 6 > 2k small enough so that
X;GHN/Q,QH A f1T/4—9+3n/2,1/2+2n n f1T/2—9+3n/2,1+2n cVh
We define also the norm
lollyg = 00 e+ 10 M y1agr/242n
Now

- .
losllvg < HY\VJrYYIIVDHIva lopz=(l¥=" ”CT%"I s YN llopg-1-+)

~

+ (108 g —172 102 1045 - DY logr—st Y g -1- <)+ [[o2llyp

S IYellar + TH[|ve g + v 0ll g1/ + 102l

where we used that v7(0) =0 and as a consequence that ||[vY llc, e < T"”"HvEchLoo < T |[oP ”VD to gain a small

power of T'. So provided T is small enough (depending only on Y,) this yields the following a-priori estimation
|

on vs:
b
oSl ez S 102 1vg S IVellar + [lve ol -1/2-w+ [[02]lys;.

Therefore we have an estimation on v.:
Ve llve < 020y + 10PN S llve oll g -172-n 4+ 10 g ST el + v 0ll g =172+ 02 [l

In order to estimate terms in U (A, Y; e, v +’U£) we decompose the renormalised products as

Y. Vou. = vE>Y€VfY:EYVfYE\KVfBUEY\@+vgoYv+vhOYV73W1(’U€,Y€Y,Y€V)
VoY = Y. Ye = 3ue K Yo Wk Yo (24 0f) + Yo (124 0])
—Y\V—<Y Y\V>—Y Y\K/
Yoo = Yio(Yo )22Vl oVo (VY 430 < Y.) —2(YooYo V) < (0 + o)
F2(Y oY ) (04 08 + Yl < (02 +0E)2 4 V. = (0P + 02

We have U()\Ea Ye; ve, UZ + 'Ush) = Q—1/2()\aa Ye, V0,e5 Ve, 'Ug) + QO()\E) Ye, V0,e5 Ve, UZ) + Q)\E,YE with the
definitions

Q1j2 = —3fver YoV —3com (v., YoV, YV2V) 4 Ve = (02 + 08
B[V oY )(Bu < YY) 4 (Yoo ) o (02 4+ D))
2D (30 < Y-V)Ye = Yo = (o2 + 0%)) + 3 coma(ve, Yo ¥ ) + 3 coma(ve, YoV)

Qo = 3[3U€Y\<V—vaoYV onVJrQ(Y’oY\V) < (W2 +0h) =V 5 (02 + )2
—Ye20R = NP2 + 2V < (v2 + 0]

O, = (12D 20137 ¥ 1y ¥ viow Y oo Y,

220y v avevY v v )
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With the same technique we used above for ’UE, we obtain the following estimate on v2

12l 324802172020 + V2] aann S IV ellaep + 10z oll g -1/2-n+ 102l

and this yields ||( ) Hj3/4+an/2 1/2+42k + ||( ) Hgl/2+2m K (”YE”XT + ||’UE,0||%71/27N + ||Ug||v%)2
We obtain, using the results of Appendix A

1Q—1/2ll pgrr2+2mgp—172—2n 4 [ Qoll pgs-ogr— S (L X)) (1 [V ellaeg) (1 + [[ve,oll i -172-n + [[02]ly5)°
1@ v Mlopg-1r2-n S (+ D) A+ [Yell2r)?

In order to Conclude the estimation of ||vg||vb we have to bound || R.(v)]|y. By Lemma 6 V6,6 € (0, 1)

121y
such that m > + = we have ||t — t' TR (v:)(t, @) || Lrjo, 7y Lr(T2) S Me,s(Ye, o, lvellSh +ogest2vlo By

Lemma 17 together Wlth (50) we obtain then for these values of 6 and §:

1/2
| IR0l S Mes(Ye, o ) e 526 1= o,

~

Using that [[Pe2(0) |y,  [02(0) g pqes/2-20 S

~

1+ ||veolle—1/2-+)||Ye|| a4 we obtain that 3C’ > 0 such that
( UOllg T

102, llvs < C' L+ ]) T+ 1Y, ) (T vz ol o —1/2-2)3 4 C T2+ A1+ Ve [l ? 0213
1/2 v 1/2 14
O M. (Y, o) (1Y ellptllve oll , —1/2—) o=l “vbTHvE”gM
ce' /22| . A
< D+ CM(Yz,up e ey OT /2||vg||$;%+C’M€75(Y;,uO,E) Vb a EH3+5
with
: 1/2 Ye +|ve —1/2—k
Ci= O+ N (1 + | Yellap) 4 e INelartliveollemazmed (L (1Y |l ap + e oll p-1/2-)2 )],
and
D:=C'"(1+ X, |) A+ Ve, laz)3 (X + Jve,oll - 1/2-x).
Let T € (0,T] such that:

CT?[(5C)2+ e "GO (5C)2H) <=, and CTH %GO < D,

N

Assume that M, s < K/ . Define a closed interval [0, S]={t € [0, T} ||v2n|\vtb <4D} C[0,Ty]. This interval is
well defined and nonfernpty since ¢+ ||vl [l is continuous and nondecreasing and |ve. [y <4D. Let us assume

that S <7, then we can take e >0 small enough such that S+ € <7, and by continuity ||vg|\vg+€ <5C, then

b cgl/2||,ug||vg+€ /201 b 113 cgl/2||,uz||vg+€ b 1346
[02, vy, < D+CM(Ye,uge)e +C(S+6) " vellyy, +CMe 5(Ye,uoe)e ol
< D+ CM(Ye g 0)e "0 4 CTI2(GOP okl o+ CTI e COBCY o uk
1
< 2D+ 52,
which gives vanﬂvg+ <4D. This implies S =T, (by contradiction). O

Lemma 6. For every v€(0,1), § €[0,1] we have
1/2y,,0 i
[t = 7R (v, 02, v2) (t, 2) | oo, 71r(ro) S Me s (Y, wo,o) [vel g2 sy poce™™ 120"
with v2:= Y.V — V.Y — 30, < V.Y + .

Proof. We can write the remainder in two ways:

L 1 1 1 1— 2 1
Re(ve) :vé”/ [FE(3)(52 Y.+ 71e%0,) — FE(3)(52 Y2)] ( 2'7) _
0 !
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From assumption (6) on F' we obtain by interpolation of these two expressions, V§ € [0, 1], V¢ >0,z € T3,

1 1 1
|R€(v€)(t, x)| §€6/2|’U€(t, x)|3+66055\Y5(t,x)\+cag\v5(t,a:)|+c|55'uED(t,a:)\7

and we estimate, Vy €0, 1),

1 1
8 = =
e 2ol orpoo|| 5 pee? Va(t,z)| +ce2 v (t, )] 0

||t’—)t’yR€(’U€)(t, x)||Lp[0-,T]Lp(T3) S/ Ht3+d ( )||3+5 e LP[0,T)LP(T3)’

1.3 Identification of the limit

In order to identify interesting limits for equation (3), we introduce the enhanced universal noise X, defined as
X= (X,XV,X\V,X\K/,XYV,X\KV),

where X is the stationary solution to to the linear equation .#X = —X + £ and £ is the time-space white noise
on R x T3. We define

XV = [[X3Hﬂ
XV = [[X2Hﬂ
ax¥ = axVox)= [ IxlXace
1,C2 (21)
AqXYV = Aq(ln]o)(XYOXV)/C ) (1= Jo)([XEIIXED) tcycon

Ax Y o | Q- RN pe+6 | [AX (5.5 —2) = AX (L D]P@) Cx(s.2)P
(1,2

s,x

with X\V(t: 0) :XY(t:O) =0. Here as before [-] stands for the Wick product, ¢;= (x;,s;) € R x T3, Cx(t, )
is the covariance of X and u¢, ¢, is defined as

Hewcsi= / Kyaol@) 3 Ko (0K (22) Py — 1)J6(t — 52)AC1d G
i~ j
Standard computations (see e.g. [4] or [19]) show that, for any T'>0, 0 <k <K/,

1
—2K’

X eOpz 2 2 x (Cp7 =22 x Op7 = 2 x (CHEO-2 )V x Chg 2
almost surely. Finally, for every A= ()\(0), A A2 )\(3)) € R* we define
YO = 0@ A0 X AOxV AOxV aOxY 00px ¥ 00px Y aoeax ¥ 0@px ¥) (@2

Using the paracontrolled structure we developed in the preceding sections and its continuity with respect to
Ye, we can state the convergence of the solution of the mesoscopic equation, under the hypothesis that Y. and
M, s as defined in (19) converge (this is shown in Theorem-10 and Lemma 9).

Theorem 7. Under Assumption 2, the family of random fields ue given by the solutions to eq. (3) converges
in law and locally in time to a limiting random field u(\) in the space Cr% ~*(T3) for every 1/2<a<1/2+k.
The limiting random field u(\) solves the paracontrolled equation

u(A) = X +uv())
v(\) = X - AOx Y _ )\(2)XY—3)\(3)U(>\) «XYH“(A) (23)
2N = U\ Y(N);0(N), 05(N))

0)

V) (E=0) = v+ AOX T (1=0) £ AP XY (t=0) 4+ 33Bv. o< X ¥ (t=0)

with U defined in (14) and vo=uo— X (t=0).
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Proof. Fix T > 0. Let us denote via I" the solution map for (16) so that us =I'(uc 0, Ye, Ac, Re(ve)). Denote
by u =Te(te,0, Ye, Ae, Re(ve)) the process u. stopped at the time Ty (|| Y || xp [[te 0]l o-1/2-x, |Ac|) and T’y the
corresponding solution map. Note that u solves the same equation with Y. replaced by Y(A), ue o with ug,
Ae replaced by A and R, =0. So u(A) =u®*(\) =Te(uo, Y(A), A, 0) up to time T, (|[Y(N)||xzs [|woll g-1/2-x, [A]).
Let us introduce the random field 42 = T'e(uc,0, Ye, Ae, 0) which solves the paracontrolled equation (16)
but with remainder R. = 0. Consider the n-uple of random variables (uc 0, Ye, u2, 42) and let p. be its

law on Z = 7% x Xr x (Cr% ~*)? conditionally on & := {M. s < Tf/Q} for 6 € (0, 1) fixed in Lemma 5.
Note that we know that P(€.) — 1 from Lemma 9. By the apriori bounds of Lemma 5 we have tightness of
the family (uc).. By standard arguments it is easy to obtain continuity of the map I's and also to observe
that for any 6’ > 0, pe(|lud — a@2]| > ¢’) — 0 as € — 0 since M, s — 0 in probability ¥é € (0, 1). This shows
that p. concentrates on 4~ x Xr x {(z, z) € Cr%~*}. Let p any accumulation point of (uc).. Then
W&~ x Xpr x{(z,2) € Cr%~*>})=1. Moreover along subsequences we have that for any bounded continuous

function

E(QO(UE,()? Ys; ﬂ;)) = E(‘P(“E,Oa YE; FO(“E,O? Y&a >‘€ﬂ O))) — E(@(”Oa Y(A% FO(“O; Y(A)a >‘7 0)))

since by Theorem 10 the vector Y. converges in law to Y(A) and uc o to up and I's is a continuous function.
We deduce that, still along subsequences, for any test function ¢,

/;o(ac,y,z,t)du€<x,y,z,t)a/zm,y,t,wdu(x,y,z,w:/zsa@,y,r.@c,y,A,O),r.@c,y,A,o»du(x,y,z,t)

but we know also that since P(E.) — 1 we have

— E[1/)(u€,05 YE)HXE]

E[)(ue,0, Ye)|Ee] P(E.)

for any test function ¢. So the first two marginals of p have the law of (up, Y(XA)) and they are independent
since (ue,0, Ye) are independent for any e. Calling v the law of (uo, Y(A)) we have that

/ 90(33; Y,z, t)dﬂ(fa Y,z, t) :/ QD(IE, Y, F.(IE, Y, >‘5 0)7 F.(ZL’, Y, >‘7 0))d1/($7 y)
Z %7QXXT
which implies that p is unique and that the whole family (uc). converges to p. O

Remark 8. In particular this proves Theorem 3.

2 Convergence of random fields

In this section we prove the convergence of the random fields Y, and M, 5. The convergence in probability of
M, s is easily obtained as we show in the following lemma.

Lemma 9. Under Assumptions 2 the random wvariable M, s(Yz, uo) defined in (19) converges to zero in
probability for every § € (0,1).

Proof. Recalling that v, o:=wug, — Yz(0) we can use Young’s inequality estimate M. 5(Yz, uo,c) for some ¢/>0 as

~

M57§(§/5, UO,E) < E(S/QHeC/sl/Q‘YglHLP[07T]LP(T3) + E§/2H65/51/2‘PY5(0)|HLP[O,T]Lp(TB)

+&8/21/pge’ €' 2uo,c |l oo

Under Assumptions 2 the term H€1/2U07€||L00(T3) is uniformly bounded, so the third term above converges to
zero almost surely. Note that e'/2Y.(t, ) and P,e!/?Y.(t=0) are centered Gaussian random variables, and then
both ]EHeC/EI/2 et 2PY-

the convergence in probability of M s(Ye, uo ) by Markov inequality. a

‘YE|H’£,D[O7T]LP(T3) and E|le° (O)‘Hip[o,T]Lp(Tz) are uniformly bounded in € > 0. This yields

The central result of this paper is the convergence of the enhanced noises (or trees) Y7 in law, and their
uniform boundedness.

Theorem 10. Under Assumptions 2 there exists C > 0 such that for any p € [2,00) we have ||Y¢||x, <C in
L?(P). Moreover, Y.— Y(\) € X1 in law.
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Strategy of the proof

The strategy of proof is the following. Denote X = (X7),, Y(A) = (Y"())), and let K" the measurable
function of the Gaussian process X € Cr¢ /27" such that X" =K7(X) and Y"(\) = fr(\)K"(X) with f.()\)
suitable deterministic functions of A. For each 7 we will show that Y. can be decomposed as

V7= fr(A)KT(Ye) +Y: (24)

where Y. are suitable remainder terms. For all p> 2 it is well-known (see [4],[9]) that the term fr(\o) K7(Yz)
is uniformly bounded in LP(€2; X7) (with X7 given by (15)), then we will just prove that Y. converges to zero
in LP(2; X7). This con be done by showing that, by Besov embedding, for 1 < p < +00 and Va < || we have

E(||Y:

OlI%-sr) SB[V

Hp ) Zgaz)q/ |AY t:cH dx<05—>0 (25)

thanks to the stationarity of the process Y (¢, ). For this it suffices to show

Z ZO‘pqsupHA Y. (t,x H %0 ase—0 (26)
q

In order to conclude uniform convergence for ¢ € [0, T] it suffices to show that for 0 €[0,1/2], ¢> —1:

sup ||Aq1};(t, z)— ALY (t, x)”ip(m <Ot —s|oP2~(@720)P0 with C. — 0. (27)

Indeed, by the Garsia-Rodemich-Rumsey inequality we obtain for § > 0 small enough and p large enough
HAqu(t, :L') - Aq}};(tv x)”ip(g)

sup B( |V, G -2rmposes) < TZY 207207000 sup sup
! ,

p s<tel0,T] = |t —s|oP
< C’ETQZ 2-9pq

which by Besov embedding yields an estimation on ]E(|\Y;THC%7N/2%Q,2C,,N) for x>0 small enough.

This gives us the necessary tightness to claim that Y. has weak limits along subsequences. The only thing
left to prove is that for each 7 we have K7(Y.) — K7(X) in law. However this is clear since we can introduce
a convolution regularisation of X called X. which has the same law of Y for any ¢ > 0. At this point an
approximation argument gives that K7 (Y:) has the same law of K7(X.). Transposing the regularisation to the
kernels of the chaos expansion we can write K7(X.)= K7 (X) and now it is easy to check that K7 (X)— K7(X)
in probability (as done e.g. in [4],[9]). We can then conclude that K7 (Y;) — K7(X) in law for any 7.

Details of the proof

Let us now give the details of the the decomposition (24) and the convergence to zero of the remainder
Yj in LP(Q2; X7). We need to introduce some notations based on the results of Appendix C. Looking at the
definitions of trees listed in (10), it is clear that A Y, can be written in the form

Y| . - NB—=Ek)
(3—j)! / o9 e, or BBk / DM 1., — [renormalisation],
3! ¢ 313! (1,62

for ¢,¢1, (€ R x T3, 0< 5,k <3 and some measures z¢ and ¢, ¢, Note that the k-th Malliavin derivative of
(I)gm), namely Dktl)gm) is (b(cm+k)h?k. Then expansion (69) of Appendix C takes a more explicit form Vn > 1:

. n—1 E (I)(m+k) e
(I)é ) Z ( k| ) [[Yk 1+ 5“(@?(1)( + )h®n)
"ot (28)

— m +k n n m-n n
= Ze< +h=3)/2(m )f,n+kg[[Y J+om(QralmtREm)

with Q' :=Tr—,, (k—L)~"and Yz ¢ :=Y(t,z), (=(t,x) € R x T3, Here we used the fact that 6"(h&") =[Y{']
(see Remark 40) and that by the definition of cI>(<m (4) we obtain V¢ € R x T3,

B(8" ) =D (o k) Foues
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where fn . is the n-th coefficient of the chaos expansion of F.(¢'/2Y,) relative to £'/2Y.(t, z), so that fn,g =0
for n <3 and fn e = fn,e for n>3. Choosing n=4—m in eq. (28) we obtain

3!

, ! 3—m — 4—mz (4 4—m
L L s B Cr YT »
3! . R
= mf&,s [[Ya?},cmﬂ+q)(gm)v
with
)= gt-m(Qime M pEi ™). (30)

This yields:
o0 = fo [V ]+ QIoREY,
o) = 3fs[V2]+%(QIeMREY),
P = 6fs.Y. ¢ +02(QF0nE),
o = 6f3.+0(Q10!" >h<).

It suffices to substitute this decomposition in (10) to identify the remainder terms Y. for every tree Y. In the
next two sections we will consider separately first order trees, which are defined a function of CID(Cm)
order trees, which in turn are obtained by multiplying first order trees (and renormalising). We will show that

each of these remainder terms satisfy (26) and (27).

and second

Remark 11. Note that for m > 3 we can easily estimate terms of the form sf(mfg)/QCI)(Cm) V(¢ €R x T3. We have

m—3 !
| a2 =R Yl [ |E @)

where v(dz) is the density of a centered Gaussian with variance 032/.,5- The integral is finite by Assumption 2.

2.1 First-order trees

First of all note that the term Y.V has no remainder and then it can be shown to converge in law to A@XV
by usual techniques. We start with the bound (26) for A YE\V, AqYEV, AGY A Y.?. We obtain from (29) that

Ayre) = B / 30

f3€/[[Y3 m]]ug+ )/‘I’(m)
= [r(A)AKT(Y: )(t$)+AY( z).

As said before, f3, Efg[[y (3-m ]]HC converges in law i 1n LP for every 2 < p < 400 to A% fg[[X (3=m ]]HC since
f3,e— A3 We can bound the remainder term fC(I) ug in LP(Q) using Lemma 33 and Lemma 36 to obtain

H/C‘i(gm)uc < "Q?_m/¢§4)h?4muc

54—m/Q411—m (b(g4)h?47m11§

L?(Q) Lr(Q) Di-m.»p
- —-m DkQ4 m/ (4)h®4 e HH/ 4)h®4 ™ 2 1/2
T LP() H®4=m|[LP/2(Q)

1/2
5 (4)¢(4) h®4 m h®4 ™Y e m fC e
LP/2()
. 1/2
< / o e e
1
< <4>‘ H -3 <4/>‘ Nd—m 1z
S / w0 o B e
< (4)‘ HE*%@(‘%)‘ ho hoer)|3—m+8 , ];
= /w ol T o o BB g
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for every 6 > 0, where we used the estimation of Lemma 26. Now using Remark 11 and the fact that
(h¢yheymr=Cy <(( — (') we obtain as a final estimation

|36
¢

Remark 12. These last computations are one of the key observations of this paper, exploiting the properties of
Malliavin calculus to replace hypercontractivity in the estimation of LP norms with arbitrarily large p without
resorting to explicit expansions.

5[/|cn C— = e | (31)

@)

The measure fi¢—(s,,) being either [[ Ky z(2)P;—s(z — y)]d( for AqYE,g\V or Ky z(y)d(t — s)d( for the other
trees, the Lh.s of (31) can be estimated with Lemma 28 to obtain for every z € T3, ¢ > 0:

S 146
2

A\{/ 5 1—-6
|2,y (t,f)‘Lp(Q) S 2Tt AT gy S 22
AN D ey S 2270 [AYP D)y S 2225

The time regularity of trees
We want to show (27). In order to do that, we compute

H/ (I)(m q)(m) 5 64—m/Q111—m (I)(4)h®4 m gil)zh?ii—m)uc
Lr(Q) Lr(Q)
2 1/2
< [ otz
H®4=m|[[P/2(Q)
2 1/2
|| [eneesm—net -
H®4—m LP/2(Q)
We focus on the first term above to obtain that it is bounded by
1/2
[ (40— @) (@8~ @) (hE - KEE o m icpc
¢ Lp/2(Q)
1/2
4 4 4 4 “m
S /< C,H(@E,;f@i,;)(@i,;/f@K;/)Hmzm)|<hs,z,hs,mf>|4 quucl]
S 5/{ C/Hf_l(@(@ o(h) (@ — o)) (Q>|<hs,zahs,z'>|4_m|l£<u</|}2

o), —olh))

A
™
>
n\
~
™
|
A
—~
KA
AR
e
KA
S
)
SN—
—~

ol e P
Now note that
1 1 1
ez(@f)—all) = FO(EYL(t,2) - FO(eFYo(s,2)

s,

1 1 1 )
= 55/0 FOe2Y (s, 2) + 1e2(Ye(t,z) — Yo(s, x))] (Ye(t, 2) — Ya(s, ),

(I)gg — <I>24;) by hypercontractivity and using Lemma 29 as

LP(Q)

1
and we can estimate Hs 2(

Sp €2 IYe(t, ) = Ye(s, )l L2()

1 1 1
/ FOezY. (s, ) + 12 (Ya(t, z) — Ye(s, z))]
0 L2r(@)

S, 51/2[CY,€(0ﬂ0)7CY,s(t75;0)]1/2
< et -,

~

for any o €[0,1/2]. The other term can be estimated more easily by

1
|:55/C </| <hs,ma hs,x’>|27m+5|<ht,m - hs,za ht7ml — hS,I’>||‘LL<‘LL</| :| 2

1
S €_2R|t - S|U|:55/ |<hs,a:a hs,x’>|3_m+6+2g|MCMC/|:|2’
¢,¢’
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and finally obtain

| -otn

Which yields estimation (27) by applying Lemma 28 as before.

1

sl [ b s e
LP(Q) ¢

2.2 Second-order trees

In this section we show the decomposition (24) and the bound (26) for the trees YE\K/, Y€\<V, Yé\@, YE\KV The
time regularity (27) of Y7 can be obtained with the same technique as in the previous section assuming that
(F.): CC?(R), and we do not repeat the argument here. Looking at the definitions in (10) it is clear that we

can write the Littlewood-Paley blocks of YE\K/, Y;\ﬁ/, Yé\ﬁ/ and Y;Ky Ve >0 as:

G R LRI

YO = g el uq-d VA0,

Aqié\@(f) = 1/4 chpg% <2—&5\<VAq(1)(E)

A i 00 0D s comde YAYAO) —d. T AL1)(0)

for ¢ = (t, %) where <I>(Cm) is defined in (4), @8) =& V/2f, [Y2(¢1)] and the measure pi¢, ¢, on (R x T?)? is given
by

Py 6ot = / Kq2(2)> " K o(y) K o(w2) P, (y — 21)]6(t — 52)d1d G

in~g

with ¢;=(s;,2;) i=1,2. The first step for decomposing (32) is to expand them using the partial chaos expansion
(69) to obtain

q)(g?)q)(é) [ (O)CI)(Q)} +6Q1D (@ (0)(1)(2))
(I)(l)(I)(l) _ E[ (1)(1)(1 } +6Q:D q)(l)q)(l))’
<I><°><I><1> — E| <°><I> +o[JoD(20eL))] +82QiD2(e Ve l))

(ool v e + v GEa Y st n)

= E

)
o (33)

Like the trees appearing in the ®3 model, we expect second-order trees to require a further renormalisation, on
top of the Wick ordering.

2.2.1 Renormalisation of second-order trees
In this section we show how to renormalise (32) by estimating the terms of the type IE[CID(CT)CI)(Z)]
(33). We are going to need the following result:

in expansion

Lemma 13. We have
/< JYEREE e 6= / AYe(s,7—2) G(t—s,2).
1,62 s, T

and

/ Yo(E@OD e, = / AYe(t,z - 2)H(t, ),
(1,62 T

where

G(t—s,z) = / 3" Kiw(@)Kj o(w2) Proo(a)B[O{VDY) T,
Z1 IleJ

H(t,z) = / 37 Kia(@) K 2(0) P (o} —z) B[ ]
$,%1,

’
Tljnj
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Proof. We have
1) £ (1
/c CK(Cl)E[‘I’(Q)‘I’(@)]MQ,cQ
1,62

= Ky 2(2)Y ) K w(29) K o(22) P, (] — 21)Ye(s1, 2) B[OV ]

’
$1,T1,22,T,T1 i~j

and by change of variables, exploiting the translation invariance of the problem we obtain:
= / Kqa(z+21)Y (51, 21) / Y Kiwl@) K a(w) Py () E[ 0600 L]
81,1, :Dl,CDQiNj

Using the definition of K, we have
= / AYe(s1,7 - ) / D Kial@) Ko@) P (aDE[00R) 0T,
S1,T T1, 225

Finally we can write
/< AGE[R0 n= [ A7) Gl s1n)
1,62

81,

Similar computations holds for the other term, indeed

0 2
/< B[ e,
1,02

/ Kq2(2) " Kiw(@) K o(22) P, (0] — 20)Ya(t, ) B[O ]
$1,T1,T2,T,T]

i~ g

/ Ky o(z+29)Ye(t, .1‘2)/ 3 K w(a) K o(0) Py (21 — ) B[00 | ]
To 81,961,9673311-,\/]'

_ /AqYE(t, 7—2) S Ko a(@) Ko (0) P, (o — o) E[000P ]

/
51,I1-,$1i~j

— /AqY;(t,:E —z)H(t,z)

Using the lemma above and the partial chaos expansion (33), we can write (32) as:

A G 5 / 5D BL0Y) e+ AdD(0)| 5 / G(ts,x)d:ﬂ
¢1,¢2 L7 s,z
AT @ = 5[ @) ket 8O3 G-s)-2.Y]
AY@ = 4 QD@0 e et 80O [ 00—
AQYE\KV(C_) = %/C C62Q%D2(¢(§?)¢(?)MC1¢C2+Aq(1)(5)|:%/< CE[(I)(C?)@(Q?} MCIyCQ&E\@]

+AqY:€(C)|:%/ xG(t_S’x)JF%LH(t’x) —dﬁ/}

1 = 1 =
WA (GRS
with the additional definitions
G(t—s,z) = / 3 Kiw(a) Ky o(0) Py (24 — ) B[SV | ],
1,

’
Llinj

ARY(E) = / ALY (5,7 — ) — AYa(t, )] Gt — 5, 2),

Aqu\K/(<_> = /[AqYE(tafffL’)7AqY€(taj)]H(tax)'
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To proceed further in the estimation of these integrals, we need to characterise the local behaviour of
]E[(I)(CT)(I)(CZ)]' From the decomposition (29) we can write

B8] = ot (BT + g o B8

3! <
tEo /el [[Y2e12¢7] + B[22,

where E[[[Y;’Zlm]] [[Y;’ZZ" =B -=m)!§(3—m,3—n)Cy ({1 — (2)> ™ and to bound all other terms we introduce
the following result.

Lemma 14. Under Assumption 2 we have, for every 0<m,n<3 and m<n:

B[] Z T e he) T S he he) PR, wee0,1].
=0
Moreover for every 0 <m,n<3,
E[[v™ 16 < &5 [(he he)|™ if m>
} [[[ e, 1]] §2]| ~ € |< C1y C2>| it m>=4-n,
E[[v% ]88 =0 if m<4-n.

Proof. Using the integration by parts formula (72) we decompose

E[q}({?)&)g)] _ [54 m(Q4 m®<1)h®4 54 n(Q4 an) )h®4 n)]
4—

(R G e et

1=
We can bound the term

n+1 5

c 2 e 5 (Qg m—n— ch)(S n—1i) ngmfnfiq)(é—m—i))s‘ (I)(8 n—1i) (I)(S m—1i)

—m—i

H m+7. 5

L2
(see Remark 11) and therefore, using the bound ¢|(h¢,, he,)| =Cy (1 — (2) S 1,

}[l(n)z

=0

U -t
Whey he) = S (hey he) P2

For the second bound we compute

E|[Y2: 198 | = E[mn&met—m(@imelng )]
mA4—

" 4— . i m m+4—n—i —1 m+4—n—i
S (T4 (D, QT I ),
i=0

7

1=

Since Dh%m:O we obtain E[ [ 8’?21]@(&)} =0if m<4—n and

+n—3 3—m-—n
2

B[00 < & = Bl T s @ (e hey) |

if m>4—n, with

3—m—n

Ele~ Q45T <1 O

Using Lemma 14 we obtain
B[00 00 ] = 9B[(f 2]+ L) (V2] + BE)] =18 (£3.0)2 [Cy <(¢1 — ())* + B[ 8L ]
and thus G(t —s,2) =18(f3.¢) f > K z(xl)Kj,x(xZ)Ptfs(xi)[CY,E(CI742)]2+G(t787x> with

:v , X2 i~ j

Gt —s,2) = / S Ko a(wh) K a2 P o) E[®VS() T,
xy,

’
xzi/\‘j
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We have the estimation

[E[0)0L)]| S°Cy o(G1 - Go)*H°. (34)

Similarly

E[8020)] = 3672 fo E[[Y2(](fa Y2+ 80)] =672 fo o fs clCy (¢ — G2
and
LR = (51 fcE ]+ 0) (6sYe 8] < Al BB 4 [EB0OE)

< (| fae] +1)Cy (G — (2)2H9,

and

E[0000]] = [B[00(35,.020] + $0)]| 15 B 2160] + B60] -

3

A

e 2(| fs.e| + 1)Cy (C1— G2)*
We have by Lemma 30 that for all 6 € (0, 1) |G(t—37x)| < 55(|tf5|1/2+ |x|)*5*5 . Using estimate (64)

together with Lemma 24, we have that for all § € (0, 1), 8’ € (0, §) that |H(t, z)| < '(|t — s|*/? + |z|)~?
Furthermore, letting

WA :/ ANt 7 —2) — ANt )] Gt — 5,2),
we have ot

YN G / [AYe(t+5,2 —2)— Aqn(t,z)]PS(x)[cy,g(s,z)]uéAqREYV.

The term
6(f3,a)2/ [AgYe(t+ 5,2 —2) = AgYe(t, 2)]Po(2)[Cy (s, )]

can be shown to converge in law to 6 [, [A X (t+s,T —x) — A X (t,7)|Ps(x) [Ox(s,2)]* in Ch# ~Y/272% with
the standard techniques used in the analysis of the ®4 model. For all § >0 sufficiently small we have the bounds,

’AqRa\Kf Lt ’AqREVV

o < S N¥ellopmara a2 022430 [ (o sty

S,

S IVl /22201 2H2429),

~

—1/2—-2k

which shows that these remainders go to zero in % as €0, since ||Yz|[opg —1/2-2+ is bounded in LP(Q2).

Moreover, it is easy to see that AqRE\@ — Aq]%:@ is bounded in LP(9), %’1/2). Note that

/ Gt —s,2)= / Pu(@)B[8(V2(),)] =18(f3.)? / Py(@)[Cy o5, 2)]2 + / Py(a)B[25"%(.), ],

S, T

2 (2

Here we used the fact that

[ Kl /ZK VK .2(0) = b(a?),

i~ g

since [ K; »(1)K; 2(0) =0, where [i — j| > 1. This is readily seen in Fourier space taking into account the
support properties of the Littlewood-Paley blocks. Now,

[ Pt [ reEee,)

converge to finite constants due to the bounds (34) and (35) and by Lemma 27 [ Py(z)[Cy (s, 7)]? < [loge|.
Finally, from (36) we have 7

0 1 0 1 —
/C ¢ ]E[(I)él) 61)22)} MCl,sz/ Py(x )E[(I)( )q)gs)x)} =0(e 1/2).
1,62 S,x
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Indeed Lemma 27 again yields sf Py(2)Cy (s,2)3< 1.
Thus fgl.,gz [CID(I) CIJ(Q)} ey, ¢, gives a diverging constant which depends on all the ( f,, <)n. Making the choice

to define the renormalisation constants d” as in eq. (5) we cancel exactly these contributions which are either
(F¢)e dependent and/or diverging. In particular we verify that we can satisfy the constraint (11).

Finally, noting that 6Q1D = (1 — Jo) and 62Q3D?= (1 — Jo— J1) we can write the trees of (32) as

AY. V() = (fa)? /< =22
€ ’ 1 ~ ~
e [ s @D D) pactg [ 0D @PEY) e

AT L < (1= T2 V26 et 5 / 6QuD (2 2L)) gy o

C1,¢2

Aqus\Kx(E) = (f3,€)2/< C[[Y—a?ifl]]y@uﬁl-,@

2 (0 2 (2 1 2
+%/C ) QD (600Yz ¢, + [Y2 ]0) M@cﬁg/ S (@02 i, ¢
1,02

1,G2

X0 = (B[ 0= MDD et FAR Q)

_ _ 1 -
#6050 [ AN+ 5,7 =) = AV DIRECy o, )+ B0 Y 4
S,T
1 1
+§/ 52Q2D2( CI)(O)[[YQ@]] + [[YSCl]]cI)( )) ¢, ¢o +§/ 52Q2D2(¢’(0)¢’(1)) H¢q,¢as
C1,62 C1,62
with L8, ¥ ()~ 05 w(210/2425029) and 1A R Y () 1 2A,R. ¥ (0) e Ope (£ 2001 /24 2520
Comparing (37) with the canonical trees in (21) we can identify the remainder terms A,Y. that need to
converge to zero in order for A Y,.” to converge to A X".

2.2.2 Estimation of renormalised second-order trees

In this section we show that the remainder terms identified in (37) converge to zero in probability. First notice
that we can bound (37) using Lemmas 33,35 and 36 as

P

5”@?/ DF (@{)0)) e, c, H/ D* (@) e, ¢,
C1,C2 1,G2

Therefore, taking the derivatives in (37) we see that it suffices to bound in LP(H®**) the term

L -n ' £ m £
ol el nghang =| s yp e || BB prope sl gt ey e

for m+n=5 and 0 <k +£<2. This yields some constraints on the number of branches of trees:

AqYEYy < m+k=3, n+/l=3
Aq}é\@ o m=3k=0,n=2,(=1
AqYE\K/ < m+k=4, n+l=2

AqYE\Ky < m+k=4, n+{l=3.

n (37), the terms proportional to (fs )% will generate finite contributions in the limit. In particular it is easy

to see that they converge respectively to (A(B))QX\K/, ()\(3))2X\<V, )\(3))\(2)X\<V, (A(B))QX\KJ/. All other terms will
vanish in probability, verifying (26), due to estimates we are going to establish now.
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We consider the terms proportional to <I>(4 m)CIJ(4 n), all the other similar terms featuring at least one
remainder CIJ( ™) can be estimated with exactly the same technique, and are easily shown to be vanishing in the
appropriate topology One of the key observations of this paper, Lemma 37, allows us to rewrite products of
divergencies in the form 6™ (u)é™(v) as a sum of divergences §‘(w), which are then easy to estimate in L? using

Lemma 33. We obtain
2 (4—m) 5 (4—1 m 4 n 4
GG = QRGN (QIREhE)
=Y o (D QR DR R )
(g,r,3) €l

rtaq
1
E Cc et
q,m,1

(q,r,i)el
with I={(q,7,i) EN3:0<qg<m,0<r<n,0<i<gAr} and

S (O (CORE T T O (@ T T peare)

0l(¢) =<2 Q.
By Remark 34, for every n,m >1 and ¥ € Dom 6" we can write 6"(¥)h®™ = §"(¥ @ h®™), and therefore

/cI><4 MU TIRER @ hE g, o=

24 qbr—2i . B .
=y C, . ° 5m+n7qJ/Gﬁtﬁz(ﬁ)@ﬁg—f(Cz)h®m TQhE" " RAEF @ hE [(he, he)| T e, o
I

The following result allows us to estimate the quantity above in LP(H®F+6),

Lemma 15. Under Assumption 2 we have the bound

. _ 2
HémmqT/@TﬁTT(Q)@Hé]f(Cz) hEM IR RE T @ hE @ hE! [(hey, heo) |1 e ¢,

LP(H®k+L’)

5/ [(hey, B ™ TR By heg) " T [y, Re) |7 (hegy e |9~ ey, ol l et -

Proof. Thanks to Lemma 33 the integral can be estimated with

m4+n—q—r

>

§=0,h<j

2

Lo(v)

/Dhe)ﬁt:i(ﬁ)Dj*h@ﬁg:f(@) hEMTIRREM T @ hEF @ h®|(hey, he) |7 e, ¢,

with V = HOmFktntl=a=r+7 We have that |-[|7 s geere = |- ||H®k+é||Lp/2 and therefore we can bound each
term in the sum above as

(/H<Dh9’f1+7_7(<1)13j’h@’figff(Cz),Dh@TE«T_T(C{)Dj*hG’fi;]:f(Cé»H@fHLW x
X Chey hep) ™= (g e " Ky hea)| T K heg hep)| 7 ey, call ey, )2
Using Holder’s inequality we get the estimate
I(DOT 5 (G)DI Oy =i (¢2), DO (CHDY 0T =) il oo
< DO (G), DROTE S (¢ men | e | (DI 0T 421 (¢), DY "OT L1 (CE)) il Lo

Now to bound terms of the type ||(D"OT*(¢), D"OT1*(¢")) gen||r» we consider the cases h < m and h >m.
In the first region we use Lemma 36 to estimate

_14a _1+4a
hom-+a hom-+a h m+a (4+a) h m+a (4+a)
DO Q. D O (e e S [DhQEE e+ 0 | [Dreree el
< H 1+aq)(4+a) *12”@(4+a)
~ L4p Cl L4p

If h > m we first commute h — m derivatives in the expression D"Q7"",* using formula (68) and then apply

Lemma 36 to obtain the bound

1+a _1+4a

> (I)(4+a)

(4+a)

1

HDth-i-a : CI)(4+a)

1

< HDh—m

<)

L4p(H®h) L4p ]Dh—m,élp.
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Thus, we need to know (I>(<N) up to the order (4+7r—i+h—m)V(4d+qg—i+j—h—n)<(4+n)V(4+m) to
perform this estimates. O

From Lemma 15 we obtain Vd € [0,1/2):

2

24 g+r—2i o . i B B y »
ez gmina ’"/9?17"_14’(41)@?1375(42)h?lm T@hE T @R @ hE [(hey he) 1T e ¢,

LP(H®k'+L’)

1
55‘5(82““_2“5/|<h<uh<{>|m+k_q|<h<2»h<4>|"+€_’"|<h<uh<2>|q+’“_z|<h<{»h<4>|q+’”_’|uchcg||M<{,<é|)2

)

=e3(3)7,

Our aim now is to estimate the quantity J. The idea is to use the bound ¢ |(h¢, h¢)| =eCy (¢ — (') S1 to cancel
strategically some of the covariances [(h¢, h¢r)|. We will consider three regions:
If ¢+ r <2 we use the bounds

T2 (hey, heo) |77 (g heg) 1777 7 S €2(heys heo) |9 (g hg) ™

and then (we suppose r < 2)
27" (hey, he) "7 S gy, heg) " H 20

to obtain

J s 8“5/|<h<1,h<{>|m+k’q|<h<2,hq;;)l”“*Qchnh<2>|q|<h<{vh<2'>lrlu<1,<2||u<{,<;;l
S /|<h<1,h<{>|m+k*q|<h<2,h<g>|”“’2”|<h<uh<2>|q|u<1,<2||u<{7<2’|~ (40)

(If vice-versa g < 2 it suffices to put § on the term |(h¢,, h¢,)|2F?.) Notice that in this case m+k — ¢ > 0.
In the case g+ r=3if m+k — g > 2 we estimate like before to obtain

J g 82*5/|<h<uh<{>|m+k*q|<h<2,h<2'>|"””|<h<uh<2>

N /|<h<1,h<{>|m+k’q|<h<2,hq;;>|”“”|<h<uh<2>ll”lu<l,<2||u<{,<2'|~ (41)

Note that m+k—qg+d—1>0and m+k —q+26 —3>—1 here. If m+k — g=1 we bound

ats
J < /|<h<1,h<{>|m+k*q|<h<2,h<g>|”“*“2|<h<uh<2> (heps hep) |2 Ty, call e, ol (42)

and note that m+k—q¢—1/2+6/2>0,m+k—qg—145>0,n+£¢—r—22>0. Finally if m+k —¢=0 we
can only have m+k=3,¢=3,r=0,9=0 and thus

J s 63*25/|<h<27h<g>|””|<h<ph<2>|2*5|<h<{7h<2'>|2’5|u<1,<2||u<{,<2'|

/|<h<2,hgg)l”“*m*’“*ﬁlmglvh<2>|2*5|<h<{7h<g>l2*5|u<b<2|lu<{7<4| (43)

atr
=]

atr
(hegs hep)l 2 ey call et el

345
=

A

If g4+ r >4 we bound first
—2i46— —i —i 2-3 2-3
242 =20 b hep )T (g, heg)| T S Iy hea | 2 (e heg) ™2
(note that 2q+2r —2i+ 95 —4 > ) to obtain:

g — _ _ 935 938
JSebmar 5/|<h<uh<{>|m+k Wiy hep "Ry, hed) ™ 2 e hepd) | 2 ey, cal e, il

Now in the cases m+k=3,n+¢=3 and m+k=4,n+£=2 we can just write 60— 17— =gmthk—g6-m—k—-r=9
and cancel the corresponding number of covariances to obtain

~ 2-3 22
J s /|<h<27hcg>|5|<hcnh<2>| 2[(hep el 2 ey, call e, (44)
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while for the case m+k=4,n+¢=3 we have either £>1 or k> 1 and therefore with one of the following bounds

emtEAmagn T O (e )R ey, heg M S [Khe hep Ko he)1°
MR g T (e he )[R U by, hep " T S [hey, hep [

we obtain the estimates

~ 2-3 22

J < /|<h<2,h<4>|1+5|<h<uh<2>| 2|(hep hep) 1™ 2 ey, call e, ¢4l (45)
~ 2-3 22

J < /|<hC1’hC{>||<hszhCé>|S|<hC17hC2>| 2[(hep hep) 1™ 2 e call ineq,cal- (46)

We can use directly Lemma 31 to obtain a final estimate of (40), (41), (42), (45). For (43),(44) and (46) notice
that the integral over (i, (i is finite and thus the whole quantity is proportional to [{h¢,, h¢s)|"™. Globally, we have

J< 2(m+k+n+€—6)q
as needed to prove (26). Lastly, by taking one more derivative of F. as done in Section 2.1, we can show (27)

for Y7 = YE\KK, YEYV, };;Yy, Y:KV, thus proving that Y — 0 in C;/2 %>~ in probability Vo < |7|.

Appendix A Basics of paracontrolled analysis

In this section we recall the notations and the basic results of paracontrolled calculus introduced in [6] without
proofs. For more details on Besov spaces, Littlewood—Paley theory, and Bony’s paraproduct the reader can refer
to the monograph [2].

A.1 Notation and conventions.

Throughout the paper, we use the notation a <b if there exists a constant ¢ > 0, independent of the variables
under consideration, such that a < ¢ - b, and we write a ~ b if a <b and b < a. If we want to emphasize the
dependence of ¢ on the variable x, then we write a(z) <, b(z). For index variables i and j of Littlewood-Paley
decompositions (see below) we write ¢ < j if there exists N € N, independent of j, such that ¢ < j+ N, and we
write i~ jif i <j and j<1.

An annulus is a set of the form .o/ = {x € R%: a < |z| < b} for some 0 < a < b. A ball is a set of the form
# ={xeR%|z|<b}. If f is a map from A C R to the linear space Y, then we write fs .= f(t) — f(s). For
feLP(T?) we write || f(2)[17p(pa) = [l f (2)[Pda.

Given a Banach space X with norm ||-|| x and 7> 0, we write C7 X = C([0,T], X) for the space of continuous
maps from [0,7] to X, equipped with the supremum norm ||-||c,x, and we set CX =C(R4, X). For a € (0,1)
we also define C$X as the space of a-Holder continuous functions from [0,7] to X, endowed with the seminorm
I fllcex =supocs<i<t || f(£) — f(8)llx /|t —s|%, and we write Cf.X for the space of locally a-Hoélder continuous
functions from R4 to X. For v >0, we define

MEX ={v:C((0, 7], X) : v maex = It = t70(8) | ox <00}

The space of distributions on the torus is denoted by Z/(T?) or Z’. The Fourier transform is defined with the
normalization

Fu(k)=1(k)= / e~ 2y (z)de, kez3,
Td

so that the inverse Fourier transform is given by .# ~lv(z) = (2r) 73", e“¥:®)y(k). Throughout the paper, (X,
p) will denote a dyadic partition of unity such that supp(p(2~%)) ﬂsupp(p(Z J.))=0 for |i — j| >1. The family
of operators (A i)j>—1 will denote the Littlewood-Paley projections associated to this partition of unity, that is
A ju=7"Y(xFu)and Aj=.7 ~1(p(277-)Fu) for j >0. We also use the notation S;=3", ;A The Holder-
Besov space B (T3, R) for a € R will be denoted by ¢ and equipped with the norm

[Flla=1flBs .= Sup (2 NAf [ oo (T2)-
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If fisin @2 ¢ for all ¢ > 0, then we write f € &“~. We let K, the kernel of A, so that A,f(Z) =
Jrs Kz q(2) f(z)da.

A.2 Schauder estimates

For a € (0,2), we define the space %= C’%/2L°° NCr%“, equipped with the norm

1£1l.2g = max {|| fll a2y e [ f lorea}-

The notation is chosen to be reminiscent of . =3J; — A, by which we will always denote the heat operator with
periodic boundary conditions on T¢. We also write £ = CY2 LN C% . When working with irregular initial

loc
conditions, we will need to consider explosive spaces of parabolic type. For v >0, a € (0,1), and T >0 we define

the norm

1f 1232 =max {1t = t"f ()| a2 poes | fllaazera}
and the space £ 7 “={f:[0,T] = R: || f|| &7~ <oo}. In particular, we have %% = 7%, We introduce the linear
operator I: C(R4, 2'(T)) — C(Ry4, 2'(T)) given by

If(t) /OtPtsf(s)ds,

where (P;);>0 is the heat semigroup. Standard estimates in exposive spaces that are summarized in the following
Lemma.

Lemma 16. Let a€(0,2) and y€[0,1). Then

I f ey SN llmpee—2 (47)
for all t > 0. If further B> —a, then

s+ Puttoll y s /20 S ol - 5. (48)

For alla €R, v€10,1), and t >0 we have

ILf e S lagg a2 (49)
For all € €(0,2), v€1[0,1), e€[0,aA27), t >0 and f € L] with f(0) =0 we have
11l gy=erza-e SIflleye (50)

Proofs can be found in [8]. We need also some well known estimates for the solutions of the heat equation
with sources in space-time Lebesgue spaces.

Lemma 17. Let B€R and f € L%Bf,oc, then for every k€ [0,1] we have I f € C*/1CA+2(1=r)=Q2=2r4d)/p yitp,
||If||C;/qcﬂ+2<1,ﬁ),(2,2,€+d)/p ST HfHL?Bg,oo’

with %+%:1. Moreover, for every y<~y'<1—1/p and every a<2—5/p+ [ we have

V£ 1Ly S o= 0 ) s

Proof. We only show the second inequality as the first one is easier and obtained with similar techniques. Let
u=1f, we have

di 1 92i 1/q t 1/p
N Asut)|| L~ < tl/q21/p/s*7qe’cq t(1-5) qg /SW’HAif(s)prds
0 0

d 0 t 1/p
<, 2Py Z/Q[ / swmif(s)wzpds]
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which allows us to bound ||1f | r4z.¢«- In order to estimate ||t + t"’/IfHC%/zLOO we write
t
0 Bsue) - s Arul)lem S [ 07 A mdu+ f = 2D s A 0,
s

+ /tUV/Aif(v)dv

Lo

We can estimate the first term as

t t
/v””1||A,-u(U)HLoodv52i(d+2)/p||vHUVAif(v)HLfI/ v =7 1dy.

t 1/q t ) 1/p
N [/ dv] [/ v”pllﬁif(S)ll’ioodv]

204/P |t — 5|19 |jo s 0V A f (0)| p

For the third term we have

‘ /tvaif(v)dv

We obtain then if 22|t — s| <1

AN

AN

17 Asu(t) = 57 Aiuls)ll e S 2Pt = 5[ o vI A (V) 2p,
and if 22|t — s| > 1 we just use the trivial estimate
7 Asu(t) — 57" Aguls) 1= S 2727219 015 A (o) g S 2RI — 1Y o> 0T AL )]s

Therefore, for every & € [0, 1]:

d+2 o
- 2)i

167 Asu(t) — sV Asu(s)| L < o 2281/ a |t — g|%/ 4 ||y = YA f (V)] e -

Choosing k/q=a/2 we obtain the desired estimate. O

A.3 Bony’s paraproduct and some commutators

Paraproducts are bilinear operations introduced by Bony [3] in order to linearize a class of non-linear PDE
problems. They appear naturally in the analysis of the product of two Besov distributions. In terms of Little-
wood—Paley blocks, the product fg of two distributions f and g can be decomposed as

fg=f=<g+f=g+fog,
where
j—2
f=g=g=Ff=> > AifAg and  fog:i= > AifAjg.
Jj>—1i=-1 li—j|<1

This decomposition behaves nicely with respect to Littlewood—Paley theory. We call f < g and f > g para-
products, and f o g the resonant term. We use the notation f<g= f <g-+ fog. The basic result about these
bilinear operations is given by the following estimates, essentially due to Bony [3] and Meyer [15].

Lemma 18. (Bony’s paraproduct estimates) For any §€R we have

f<glles Spllfllzellglles, (51)
and for a <0 furthermore

1F =< gllgets Sas | fllzallgllee. (52)

For a+ >0 we have
[FogllgatsSa.pllfllzallgllss. (53)

A natural corollary is that the product fg of two elements f € # and g € #” is well defined as soon as
a+ >0, and that it belongs to %7, where vy=min {«, 8,a+ 8}.

We will also need the several commutator lemmas:
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Lemma 19. (Bony’s commutator estimate) Let a >0, 3€R, and let f,g€ &, and h€ ©P. Then

If <(g=<h) = (fg) <hllgars S| fllz=llgllzalln]les.

When dealing with paraproducts in the context of parabolic equations it would be natural to introduce
parabolic Besov spaces and related paraproducts. But to keep a simpler setting, we choose to work with
space—time distributions belonging to the scale of spaces (Cr%“),ecr for some T > 0. To do so efficiently, we
will use a modified paraproduct which introduces some smoothing in the time variable that is tuned to the
parabolic scaling. Let therefore ¢ € C*°(R, R4) be nonnegative with compact support contained in R4 and
with total mass 1, and define for all ¢ > —1 the operator

Qi:CFP—CFP,  Qif(t) :/002*2%0(221'(15— 5)) f(s)ds.
0

We will often apply Q; and other operators on C'¢” to functions f € Cr% ? which we then simply extend from
[0,T] to R4 by considering f(- AT). With the help of Q;, we define a modified paraproduct

F=g:=) (QiSi-1/)Aig

for f, g€ C(R4+, 2'(T)). We collect in the following lemma various estimates for the modified paraproduct,
proofs are again in [8].
Lemma 20.

a) For any S €R and v€[0,1) we have

N f=g@Ollgs S llagr<llg®)ll«s, (54)
for allt >0, and for a« <0 furthermore
N f < g@)llgors SIS llamgeallg®)lge. (55)

b) Let a,5€(0,2), v€[0,1), T>0, and let fef%"‘s, geCr%®, and L9 Cr#*2. Then
1f < gllzy=SIfllgysllglorse+1-2gllcree—2)- (56)

¢) Let «€(0,2), v€(0,1), T>0, and let f € 5. Then for all § € (0,a] we have

1flzs S 1FO)les+TC2) fllzg,
Iflpys S T2 fllzpe.

Finally we introduce various commutators which allow to control non-linear functions of paraproducs and
also the interaction of the paraproducts with the heat kernel.

Lemma 21.
a) Fora,,v€R such that a4+ B+ ~v>0 and a € (0,1) there exists bounded trilinear maps
com;,Comy: ¥ X P8 x 71— gotht+y

such that for smooth f,g,h they satisfy

comi(f,g,h)=(f=<g)oh—f(goh). (58)
comy(f,g,h)=(f<g)oh—f(goh). (59)

b) Let a€(0,2), BER, and y€[0,1). Then the bilinear maps
coma(f,g):=f<g—f<g. (60)
coms(f,9):=[L, fK]g:=L(fxKg)— fKLy. (61)

have the bounds
tYlcoma(f, g)E)lat+s SNfllzyallg®)llgs,  t>0. (62)
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as well as
tlcoms(f, g)(E)la+p—2Z 1 fllzyellg®)lgs,  t>0. (63)

Proofs can be found in [8].

Appendix B Estimation of the kernels

In this section we recall a few well-known results on convolution of functions with known singularities around
zero. We remand to Section 10.3 of [9] for an extensive treatment of this subject. First of all we need to
characterize the local behaviour of the heat kernel P,(z) and of the covariance Cy (¢,x) of the Gaussian field Y.

_l=?
T 151)3/26 4 I;>0 has the bound
e

IPOIS (L2 + [ ).
Let k€ N* a multi-index with |k|=2ky + ks + -+ ks. Then for every multi-index |k|<2 we have:

Lemma 22. The heat kernel P: R x R® = R defined by Pi(z)

|DFPy ()| S ([t + [ar) 3 ML
Remark 23. In this article we use a slightly different version of the heat kernel, namely

1 _l=?
Py(r) =

 —t
et ¢ e

in order to have that X (¢, z) = fioofT3Pt,5(:r — y)v(s, y)dsdy is the stationary solution to £X = —X + v.
However, every estimate remains trivially valid in this setting.

Proof.

1|2

—l=l2 _le]
[Pe(@)|([t]2 4 ) S L+ ([t ]71/2)%e T = (14 |aff)e™ + < +oo
In the same way we prove that |0:Pi(z)| < (|t|'/? + |2])% [02,Pi(x)| < (|t|* + |z)* and [0:,0,Pi(z)]

S
([t1V/2 + J])°. O

We recall a special case of Lemma 10.14 of [9], which is enough for our purpose. We use the notation
Gl == (¢ + |]) for ¢= (¢, 2) € R x T*.

Lemma 24. Let f, g: R x T%\ {0} — R smooth, integrable at infinity and such that |f(¢)| < </l and
lg(OIZNICI? in a ball B={¢€ R x T3 |||¢|| <1,(#0}. Then if o, B€ (—5,0) and a+ B+5<0 we have

| £+ g(QI S NICla+ o5
i a ball centered in the origin.
Moreover, if a, B € (=5,0) and 0 < o+ B+ 5 <1 and for every multi-indexr |k| <2 we have |DFf(¢)| <

licle=* and [DEg () S IICIIP~M, then
£ 9(¢) = fxg(O) S IlClet7+?

i a ball centered in the origin.

Remark 25. The covariance Cy . of Y. can be written as Cy .= P C. x P with C.(t,z) :=E(n.(t,z)n-(0,0)).
Recall from the introduction that Ce(t,z) = ~5C" (e ~2t,e~'2) where C" is the covariance of the Gaussian process
n defined on R x (T /)3, and C*(t — s, —y) = B(t — s, x — y) if dist(z, y) <1 and 0 otherwise (so that the
family of functions C” is bounded uniformly on & by a C° function). Then there exists a family of functions
C5 defined on R x (T /¢)? such that Cy (t,z) =~ 'C5 (e %, e z) and C§(t,z) =[P x* C° « P|(t,z).

Lemma 26. The covariance Cy ¢ has the bound, for every multi-index |k|<2:

ID*Cy e(t, )| S (12 + ) 711,
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Moreover, we have
eMH DRy L(t, ) S 1

Proof. The first bound is obtained directly from Lemma 22 and Lemma 24. Indeed, since by hypothesis C*¢ has
compact support, it is easy to see that |C.(¢, z)| < ([t|'/?+ |z|)~°. The second bound is obtained by a simple
change of variables in the convolution defining Cy . O

Lemma 27. We have f Py(2)[Cy (s,2)]? < loge| and for every n >3 "~ 2f Py(2)[Cy (s, 2)]" < 1.

Proof. From the fact that P.z,(c 2) =& 3Ps(z) together with Remark 25 we obtain
/ Py(x)[Cy (s, )]*dsdx 5/ Py(2)[C5 (s, 2)]2dsdz < |loge]|
Rx T3 B(0,e7h)

with B(0, R) = {¢ € R* ||[¢]|| < R, ¢ # 0} a “parabolic” ball centered in the origin. The second estimation is
obtained in the same way. O

Lemma 28. For m<(0,3), n€(3,5), define for ¢, ('€ R x T3
Ini= [ 10 ¢~ O lcil, Tni= [ 0% = OO ciicd
with pe:= Ky z(y)o(t —s)d¢ and fic:= [, Kqz(2)Pi—s(x —y)]dC for (= (s,y). Then
I,<2m4  and  I,<200%9

Proof. The estimation of I,, is easily obtained by Lemma 26 and a change of variables. For I,, observe that
for every ¢ >0

fic= 1| Kualo)(Prosl =) = Prea( = )]G
and then we can apply Lemma 24 to obtain the result. O

Lemma 29. We have for every o €0, 1]

sup |Cy «(t,2) = Cy £(0,2)[ Se™'27|t|”
zeT3

Proof. It is easy to obtain by interpolation knowing that |0,Cy (¢, 7)| e~ from Lemma 26. O

Lemma 30. We have for every o <3

K ac— 1
Ki(x—y)P(y | <
/ H ' |y|+t“2 WS e+ o7pe

’LN]

Proof. We will show that

‘ [~ y)Pt(y)dy' <2-(fe| £/ 4 20y, (64)
and that
K@ =)l g, < (1112 s gty
/(| 07 dy S (|lz|+¢ 72 +270) (65)

from which we deduce that

_ <
/K T Pt ‘/ |y|+t1/2 Z |x|+t1/2+2 )4+a.

Bounding the sum over ¢ with an integral, we conclude

’LNJ

dA A 1 Y(el+e ) gy 1
/0 A (|@| + /24 A)Ate (|x|+t1/2)3+a/o (LX) (|| 4 ¢1/2)3+a
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Let us show (64). We want to estimate
- /K 2 — y)Pi(y)dy = /K 2 — ) [Pily) — Pi(a)]dy

_ / dr [ Ki(z — y)[Pl(z +7(y —2))(y —2)]dy

1l < /dv (y — ) Kl — )| P+ 7(y — 2))|dy S 2 /d7/|yz<1 1P/ + r2y)dy
—c|x+7'2 1y| /t
<2 / ar [ 1K) —— gy
where
o2t e—clz2/t

1)) —
|Pt<z>|—‘c | <
When /2> 27 |z| we have
115272 S 2 (a4 /24 270) 4

When 277>#/2 |z| we estimate simply

1= / |Ki(z — y)| Pi(y)dy $2% S27 " (Ja| + /2 4277)
When || >27%, /2 we have instead that either |z|>272"|y| or || <272 /|y|. In the first region |z 472 y| >
clz| so

o—c'lw 2/t o—c'lw 2/t

1
N2 [ ar [ Iyl gy S 2 <2 el g2 (el + #1227
0

while in the second region |y| > 2¢|x|/(27), then |yK;(y)| < |yKi(y)|"/2F(2!|z|/ (27)) where F is a rapidly
decreasing function and in this region

ol . e—c|x+‘r2*iy\2/t
15 2 [ arr@le)/ @) [y

e—c'Im27 |2/t B e—c'lul? /t
/ F(2"x|/( 27))/mdy§2 /dTF(21|;p|/ (27)) 3|x|/ IE dy

i €T 2t — iy —
2 [arr@iel ey s 2 gami (el 02 27
0

A

S
So we conclude that (64) holds. Let us turn to (65). When t'/2>27% |z| we have

Kie —y)| Ko — y)ldy S-L < (ja| +£1/2 12710
( i

|y|+1t1/2

When 277>#Y/2 |z| we estimate

| K (@ / 2 / 2 1/2
Iy <22%igy —d <22 < (| +t1/2 9=
/(|y|+t1/2 |2tz +y|a Y28 [ agy oY (le] )

and finally when || >27%,t'/2 we have either |z|>2""t1|y| or |z| <27"T!|y|. In the first region |z +2 %y | >c|z|
S0

Kifz — y)| |K1(y)] - 1/2 4 9—iy—
/Wdys Tora iy <l o < (|o|+ 124277

while in the second |y| > 2°|z|/2, then |Ki(y)| < |K1(y)|'/2F(2¢|z|/2) where F is another rapidly decreasing
function and in this region

|Ki(z —y)| : [Ki(y)|'/? 12
2R Dy < F(2x| /2 dy <20 F (2] /2) Sz~ S (o] + /2 42—
/(|y|+t1/2)“ ( | |/ ) |2 4 | ( | |/ ) | | (| | )

concluding our argument. O
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Lemma 31. For m,n€(0,5), k,£€]0,2) define
Iy = /(172&1,203/,5(@“1 —)F Oy (61— ) Cy (C1 = )™ Cy (G — )™ ey, coll et el
with e, ¢, for (= (t,), ¢;=(si,x;) i=1,2 defined as
¢y ¢ = [/ qu,;z(J?)Z K o(y) K o(22) Pr—s,(y — 21)]6(t — 52)d(1dCa.
T, By
Ift=0,0<m+k—2<5 m+k—2€(—1,5) and k+m+n—4€(0,5) we have the estimate
Lo < 2bFmtn—1)a,

If (k+4m—-2),l+m—2)€(0,5), k+m+L—4€(0,5) and k+£L+m+n—4€(0,5) we have the estimate

Ik _— < 2(k:+€+m+nf4)q.
Proof. Observe that

peee = D | Kaolw2)Kiw(y) K a(22)(Prosy(y = 21) = Prosy (T — 21))]6(t — 52)dG1d G

inj z,y

+[Z / (Kg,z(z) = Kq,5(02)) Ki o (y) Kj2(22) Pr—s,(y — 21)]6(t — 52)d1d (2

= Kq,z(22)[Pr—s, (72— 1) = P—s,(T — 21)]0(t — 52)d1d (2
+D / (Kq,3(2) = Kq,5(22)| Ki 2(y) Kj o(x2) Pr—s,(y — 21)]6(t — 52)d (1d G2

inj
= Heg,et ﬂ<17<2

where in the first line we used ny“E(y) = 0 and the fact that [ K .(21)K;(z2) = 0if [i — j| > 1 and

>0 Ki oY) K o(22) = 0(x2 — y)d(22 — ). Now the estimation of the term

Iimon ::/c y Cy.e(C—)*Cy (=) Cy (G — )™ Cy (G — )" ey, ol et sl

with fi¢, ¢, = Kq z(22)[Pi—s, (22 — 21) — Py—s,(T — x1)]0(t — s2)d(1d 2 can be done with Lemma 24 and gives the
expected result. The integral

fk,m,n ::A . CY,E(Cl - C2)kCY,£(C{ - CQI)Z CY,&(Cl - Cll)m CY78(C1 - CQ)nlﬂCLCzHﬂC{,CQ/'?

with fie, ¢, =30, fm?y[qu(:r) — K g 5(22)|K; 2(y) K o(x2) Pi—s,(y — 21)]0(t — s2)d(1d (> can be estimated by
multiple changes of variables. We have K, z(x) — K, z(z2) =23(zs — ac)fo1 K'(2%xe—x)T — 29T — x2))dT, and
by the scaling properties of Cy . and P, ,, namely Cy -(27%s,272) <20y (s,2) and Py-2:,(27'2) <23 Py(x)
given by Lemma 22 and Lemma 26, we obtain easily the bound on I k,m,n Dy rescaling the integral. O

Appendix C Some Malliavin calculus results

Let D be the Malliavin derivative, d the divergence (defined as the adjoint of D) and P, the Ornstein-Uhlenbeck
semigroup. We refer to [22]| for an extensive discussion on these operators. Call {W(h)}rep the isonormal

Gaussian process indexed by H some real separable Hilbert space. For every W € L?(Q), P, can be written via
the well-known Mehler’s formula for ¥ = F(W (h)):

PV = P,F(W (h)) =Ey.[F(e W (h) + (1 — e 2)/2W'(h))] (66)

where {W'(h)}ne m is an independent copy of W. In our case we will consider the Gaussian process Y indexed by
he o V(t,2) €R x T3, with H = L*(R x T3), with Y.(¢,7) defined as in Section 1. By a direct calculation we obtain

DPU = 'Ew[F'(e”'W(h)+ (1—e 2)Y2W'(h))|h=e 'P,D V. (67)
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This gives a commutation result between the Malliavin derivative D and the generator of the Ornstein-Uhlenbeck
semigroup L (defined by P,=e!%, recall that L=—3D ([22], Proposition 1.4.3)). Indeed, let ¥ such that E(¥) =0,
then we have for every a >0 and every j > 0:

1 e ; 1
D(—L *”‘\II:D—/ teleitetlydt = ——
S T )
and the same works for every ¥ (not necessarily centered) if j > 0. It is well-known (see [22]) that L acts on
square integrable functions ¥ as

/ telem U P DU =(j+1—L)"°DW¥ (68)
0

(o)
LY== "nJ,0V
n=0
where J,, U is the projection of ¥ on the n-th Wiener chaos. We can define (j — L)~! by its action on n-th order

chaoses as (j — L)~ J,¥ = jTan" U VYn >0, 7 > 1. The results recalled above allow for the following partial
chaos expansion :

Lemma 32. Let ¥ € L?(). Then for every n € N\{0}:

3
|
-

3

|~

U=
k

55 JoDF W + §"QD" W (69)

=

!
0

with Q7' = HZL:J. (k—L)~%
Proof. We have for any ¥ € L?():
U— JoU=LL ¥ —Jp¥)=—6DL YV - Jp¥)=6(1-L)"'DV¥

where we used (68) and the fact that the Malliavin derivative of a constant is zero. This yields

UV=E(W)+d(1-L)"'DV (70)
Iterating this formula up to an order n and using the fact that Jo(k — L)~* :%JO we obtain the result. O
Notice that the lemma above implies §"QTD"¥ = (1 — Jo... — J,,—1) V.

In order to have LP estimations of the terms §"Q7D"™V¥ generated by expansion (69), we will need the
following lemmas:

Lemma 33. ([22], Proposition 1.5.7) Let V be a real separable Hilbert space. For every p > 1 and every
qEN,k>q and every u € D*P(H1® V) we have

||5q(u)|\n3k*w(V) Skop HUHD’“P(Hq@)V)

Remark 34. Using Lemma 33 we can state a simplified version of Lemma 39 in the case where F € V is
deterministic. Let V be a real separable Hilbert space. For every F' € V and every u € D¢2(H®9) with ¢ € N
we have u ® F' € Dom §9 and

0N(u)F =61 u®F).
We can prove this formula as follows. First notice that for every smooth G € D%2(V) and every smooth
u € D?2(H®9) we have
E((0(u® F),G)v) =E(ue F,D1G)gogy) =E(6"(u)F, G)v).

Now since DY(u® F) =D% ® F and u € D??(H®?) we have that u® F € DT2(H®?® V). Lemma 33 yields the
bound [|69(u @ F)|| L2(v) S [u ® Fllpe.2(gesgyy which allows to pass to the limit for G and §%(u® F) in L*(V).

Lemma 35. For every n,m e N\{0}, the operator Q1 =T~ (k— L)~ is bounded in LP for every 1< p < oo.

Proof. We have Q; U= (j — L)' U =3 (j+n) ' Jo¥ = (1/7)E(Y) + T,¥ with T, =35> ¢(n)J,¥
and ¢(0) =0. Then the operator T} satisfies the hypotheses of Theorem 1.4.2 of [22], with ¢(n)=h(n~!) and

h(z)= j;:_ - analytic in a neighbourhood of 0. Therefore

1Q; 9l E(Y) + | ToW| e < [[ W] v
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and the result follows applying repeatedly this inequality. O
Lemma 36. Let j € N\{0} and p>1. There exists a finite constant ¢, such that for every ¥ e LP:

1
D '—L‘E\IJH <l W e
|[pG-D7=e|,,  <clvi

1
(where the operator D(j — L) 2 is defined on every ¥ polynomial in W (hy), ..., W(hy) and can be extended by
density on LP).

Proof. First notice that we can suppose w.l.o.g. E(¥) =0 thanks to the commutation (68). Therefore we can
write D(j —L) 2 as

1 1

D(j— L) *=D(~C) " {(~C) (j 1) >
with C = —+/—L. We decompose the second part as:

—C(j—L)‘%\lzzz ( n )2Jn\I/:T¢,\I!

J+tn

n=1

With TV := ZZO:O é(n)Jp¥. We can apply Theorem 1.4.2 of [22] to show that T is bounded in LP?, indeed
#(n) = h(1/n) and h(z) = (j  + 1)~'/2 which is analytic in a neighbourhood of 0. Finally, we can apply
Proposition 1.5.2 of [22] to show that DC ! is bounded in LP, thus concluding the proof. O

The following lemma is the most useful tool we used in the paper. It allows us to write products of decom-
positions of the type (69) as sums of iterated Skorohod integrals.

Lemma 37.
Let u = F,(W(hy))hE™, v = Fy(W(hy))hE™ with F,, F, € C™T™(R) such that u € D™T™2(H®™) v €
Dm+m2(H®™), Then:

=55 5 ()L e
And also .
m qnT

(")) Jiramnar (D, DI ) o). (72)

Proof. We have using Cauchy-Schwarz inequality and Lemma 33 that (D"6"(v), 87 (u)) ger € L2(Q, HE™ =1 -7)
for every 0 <r+ 7 <m. Then we can apply Lemma 39 to obtain

n

om()an(v) =" (1)on T UD 6™ (), v) ).

r=0

Then using the commutation formula (73) we rewrite the r.h.s. as

5"”(u)6"(v):i (:f)f (Z)(T?)z’!5”_T(<5m_i(D’"_"'u),’U)H®T-).

We write (6™ (D" "), v) gor = (6" "4D"~"u), F,(W (hy))he") gor hS™ " and verify in the same way as before
that (6™ ~4(D" "), Fy(W (hy))hE") ger satisfies the hypotheses of Lemma 41. We obtain

i) = 3 5 ("

‘ (T)ﬂ5"”[(5””(13’”’%),Fv(W(hv))h?WH@rh?””]

n 7-./Tm m—i X
= S (Y)Y (M )ar e DT, DR W ()BT e
r=0 =0 £=0

NI i)i!é”’*”*’”*i*e((D’”*iu, Do) grorse)

I
/N
3 3
N—
N
=3
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where we used the fact that 6*(W)h®" "= 5(U @ h®" ") for ¥ € Dom 6, as seen in Remark 34. Call ¢=/+1,

then
=3 33 ()G

and noting that

(T)(?—_Z) " (- i)!Eﬁ - 2)!!73ém —i g — z')(I!!Z!l(!m —9! (3)(?)

we have the nicer symmetric expression

mAn m

S (O b,

=0 g=t r=1t

Finally we perform the change of variables ¢ —i— ¢, r —i— 7 to get

—1 n—1

Z (QTZ z)(q —zi_ l) (r i z)(r —z’— Z)Z' gmAn=a=r=2(D ', D) oot r+i).

The second formula is a straightforward change of indexes of the first one. g

mAn

6" (w)d"™(v) = Z Z

Remark 38. Our choice of giving two distinct but closely related formulas in Lemma 37 is due to the fact that
the first formula has a more evident “physical meaning”. Indeed, vertices u and v (being non-polynomial) have
an infinite chaos decomposition, which can be represented as having infinite “legs” in a Feynman-like diagram.
It is apparent that the index 7 in first equation denotes contractions between the already existing legs of the
vertices u, v and that r, g stay for new legs in each vertex created by the Malliavin derivatives which are then
contracted with other legs from the other vertex. This leaves m +n —r — g — 2i legs overall uncontracted which
are arguments to the iterated Skorokhod integral and would be contracted with other composite vertices in the
LP estimates. The second formula however, is more practical in the calculations.

We give below the results we used to prove Lemma 37.

Lemma 39. ([20], Lemma 2.1) Let ¢ > 1, F € D92 u € Dom(§9) and symmetric. Assume also that
VOLr+j<q (D"F,8(u)) gor € L3(Q, H®47"~ J). Then YO<r<q (D"F,u), € Dom(67"") and

F§(u i( )01 (D F u) o).

Remark 40. Note that
" (h&F) =[WH(h)]
where [-] stands for the Wick product. Indeed VF € D%? we know that E[§(h®")F] = E[W(h) h®"~1]

using the definition of § and therefore 6"(h®") = 6"~ YW (h)h®"~1). We have also 6" 1(W (h)h®"1) =
S YR HW (h) — (n —1){h, h)6"~2(h®"~2) using Lemma 39, and the result is proved by induction.

Lemma 41. Let €N, F € DT2(H%*), u € Dom (69) with values in H®1* and symmetric. Assume also that
(69(u), D"F) yoetr € L2(Q, H®1""=1) VO r +j< q. Then YO<r<q (u, D"F)yee+r € Dom(697") and

q

(09(u), Fygoe=>_ (1)o7 (w.D"F) gocsr)

r=0

Proof. Let ¢=1. We have for smooth G € D"2, F € D92(H®*) and u € Dom (§9):

E(((u, F)ges, DG)n) = E((u, DGO F) o)
= E(<5(u),F>H®£G)—E(<U,DF>H®£+1G)

where we used the fact that D(G F) = DG ® F + G DF for smooth functions. The equality ((u, F')pget,
DGYy={u,DG® F) gee+1 holds because u is symmetric.
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We can pass to the limit thanks to the assumption (67(u), D"F) geetr € L2(2, H®9~"~7) and obtain
6((u, F)gee) = (0(u), F') goe — (u, DF) gaetr.

Now suppose the statement true for ¢ — 1. We have that

(6%(u), F) goe = i (q . 1)5‘1_1_T(<5(u),D7'F>H®e+,.)

Q3
(Nl
=Oo

- (q N 1)5(177«(@’ DTF>H®4+7~) + § (q ” 1)5qiril(<UaDT+1 F>H®“T'“)
r r=0 "

<
Il
=]

Il
MQ.

(1)o7 (. D"F) o)

%
Il
o

O

Lemma 42. Let j, k€N, uc DI F2(H®I) symmetric and such that all its derivatives are symmetric. We have

D63 (u) :% (’;)(g)u(sj—i(Dk—iu) (73)

1=

Proof. If j =0, k=1o0r k=0, j = 1 we have identities. Now let j = k = 1 and u € D*2(H). We have
that D*2(H) C Dom(d) ([22], Proposition 1.3.1), and since Du € DV2(H®?) it is easy to see that Vh € H
(Du,h) € DY2(H) by computing its norm. Then we can apply Proposition 1.3.2 of [22] to obtain Vh € H

(Dé(u), hy=(u,h)+0((Du, h))

and since by hypothesis Du is symmetric we have 6((Du, h)) = (6Du, h) and then D§(u) = u + 6Du. The
proof by induction is easy noticing that Jv is symmetric whenever v is symmetric, and using the fact that
D47 = 6D + joI — 1, O
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