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Abstract

We establish the large scale convergence of a class of stochastic weakly nonlinear reaction�di�usion models
on a three dimensional periodic domain to the dynamic �34 model within the framework of paracontrolled
distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a �nite amount of
smoothness (in particular C9 is enough). We use the Malliavin calculus to perform a partial chaos expansion
of the stochastic terms and control theirLp norms in terms of the graphs of the standard�34 stochastic terms.
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Consider a family of stochastic reaction�di�usion equation in a weakly nonlinear regime:

L u(t; x) =¡"�F"(u(t; x))+ �(t; x) (t; x)2 [0; T /"2]� (T/")3 (1)

with "2 (0; 1], T > 0, initial condition u�0;": (T/")3!R, F"2C9(R) with exponential growth at in�nity, �> 0
and L :=(@t¡�) the heat �ow operator and T=R/(2�Z). Here � is a centered Gaussian noise with stationary
covariance

E(�(t; x)�(s; y)) =C~
"
(t¡ s; x; y)

such that C~
"
(t¡ s; x; y) =�(t¡ s; x¡ y) if dist(x; y)6 1 and 0 otherwise where �:R�R3!R+ is a smooth,

positive function compactly supported in [0; 1]�BR3(0; 1).
We look for a large scale description of the solution to eq. (1) and we introduce the �mesoscopic� scale variable

u"(t; x) = "
¡�u(t/"2; x/") where � > 0. Substituting u" into (1) we get

L u"(t; x)=¡"�¡2¡�F"("�u"(t; x)) + "¡2¡� �
�
t
"2
;
x
"

�
: (2)

In order for the term "¡2¡� �(t/"2; x/") to converge to a non�trivial random limit we need that �=1/2. Indeed
the Gaussian �eld �"(t; x): ="

¡5/2�(t/"2; x/") has covariance C~"(t; x) = "¡5C~
"
(t/"2; x/") and converges in

distribution to the space-time white noise on R�T3. For large values of � the non�linearity will be negligible
with respect to the additive noise term. Heuristically, we can attempt an expansion of the reaction term around
the stationary solution Y" to the linear equation

L Y"=¡Y"+ �":

Let us denote with CY ;" the covariance of Y". We approximate the reaction term as

"�¡5/2F"("
1/2u"(t; x))' "�¡5/2F"("1/2Y"(t; x)):

The Gaussian r.v. "1/2 Y"(t; x) has variance �Y ;"2 = "E[(Y"(t; x))
2] = "E[(Y"(0; 0))

2] = "CY ;"(0; 0) independent
of (t; x). Therefore we can expand the r.v. F"("1/2 Y"(t; x)) according to the chaos decomposition relative to
"1/2Y"(t; x) and obtain

F"("
1/2 Y"(t; x))=

X
n>0

fn;"Hn("
1/2Y"(t; x); �Y ;"

2 );

whereHn(x;�Y ;"
2 ) are standard Hermite polynomials with variance �Y ;"2 . Note that also the coe�cients (fn;")n>0

do not depend on (t; x) by stationarity of the law of "1/2Y"(t; x) since they are given by the formula

fn;"=n!E[F"("
1/2Y"(t; x))Hn("

1/2Y"(t; x); �Y ;"
2 )] =n!E[F"(�Y ;"G)Hn(�Y ;"G; �Y ;"

2 )]
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where G is a standard Gaussian variable of unit variance. Let X be the stationary solution to the equation

L X =¡X + �

with � the space�time white noise and denote by JXNK is the generalized random �elds given by the N -th
Wick power of X which are well de�ned as random elements of S 0(R�T3) as long as N 6 4. Denote with CX
the covariance of X. The Gaussian analysis which we set up in this paper shows in particular the following
convergence result.

Theorem 1. Fix N 6 4 and assume that "(n¡N)/2fn;"! gn for 06n6N as "! 0, that (F")"�CN+1(R) and
there exists constants c; C > 0 such that

sup
";x

X
k=0

N+1

j@xkF"(x)j6Cecjxj:
Then the family of random �elds

F"
N: (t; x) 7! "¡N/2F"("

1/2 Y"(t; x)); (t; x)2R�T3;

converges in law in S 0(R�T3) as "! 0 to
P

n=0
N gnJXNK.

Now take the smallest n such that fn;" converges to a �nite limit as "!0. SinceHn("
1/2 Y";�Y ;"

2 )="n/2JY"nK,
the n-th term in the expansion of F"("1/2 Y") is fn;" "�+(n¡5)/2JY"nK. From Theorem 1 the equation yields a
non-trivial limit only if �= (5¡ n)/2. We are interested mainly in the case n= 3)�= 1 and n= 1)�= 2.
The case �=2 gives rise to a Gaussian limit and its analysis its not very di�cult.

In the following we will concentrate in the analysis of the �=1 case where the limiting behaviour of the model
is the most interesting and given by the �34 family of singular SPDEs. In this case we obtain the family of models

L u"(t; x)=¡"
¡3

2 F"("
1

2 u"(t; x)) + �"(t; x) (3)

with initial condition u0;"(�) := "¡
1

2u�0;"("
¡1�) where u�0;" is the initial condition of the microscopic model (1).

De�ne for m> 0 and � =(t; x)2R+�T3

��
(m)

:= "(m¡3)/2F~"
(m)

("1/2Y";�): (4)

where F~" is the centered function

F~" (x) :=F"(x)¡ f0;"¡ f1;"x¡ f2;"H2(x; �Y ;"
2 )=

X
n>3

fn;"Hn(x; �Y ;"
2 );

and �Y ;"
2 is the variance of the centered Gaussian process "1/2Y". Note that Hn("

1/2Y"(�); �Y ;"2 ) = "n/2JY"nK
and denote with fn;" the coe�cients in the chaos expansion of F"("1/2Y";�). De�ne also various "�dependent
constants

d" :=
1
9

Z
s;x

Ps(x)E[�0
(1)�(s;x)

(1)
]; d~" := 2 "¡1/2f3;"f2;"

Z
s;x

Ps(x)[CY ;"(s; x)]
2;

d" :=
1

6

Z
s;x

Ps(x)E[�0
(0)�(s;x)

(2)
]; d̂" :=

1

3

Z
s;x

Ps(x)E[�0
(0)�(s;x)

(1)
];

d" := 2 d" +3 d"

(5)

where Ps(x) is the heat kernel and
R
s;x

denotes integration on R+�T3.

Assumption 2. All along the paper we enforce the following assumptions:

a) fu0;"g"2(0;1] converges to a limit u0 in C ¡1/2¡� 8�> 0 and is independent of �;

b) fu�0;"g"2(0;1] is uniformly bounded in L1, i.e. 9C > 0 such that 8"2 (0; 1] ku�0;"kL1((T/")3)6C;

c) fF"g"2(0;1]�C9(R) and there exist constants c; C > 0 such that

sup
";x

X
k=0

9

j@xkF"(x)j6Cecjxj; (6)
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d) the family of vectors f�"g"2(0;1]=
�
(�"
(0)
; �"

(1)
; �"

(2)
; �"

(3)
)
	
"2(0;1]�R4 given by

�"
(3) = f3;" �"

(1) = "¡1f1;"¡ 3d"

�"
(2)

= "¡1/2f2;" �"
(0)

= "¡3/2f0;"¡ "¡1/2f2;" d" ¡ 3d~" ¡ 3d̂"
(7)

has a �nite limit �=(�(0); �(1); �(2); �(3))2R4 as "! 0.

We can now formulate our main result.

Theorem 3. Under Assumptions 2 the family of random �elds fu"g"2(0;1] given by the solution to eq. ( 3)
converge in law and locally in time to a limiting random �eld u(�) in the space CTC ¡�(T3) for every 1/2<
�< 1/2+�. The law of u(�) depends only on the value of � and not on the other details of the nonlinearity or
on the covariance of the noise term. We call this limit the dynamic �34 model with parameter vector �2R4.

In Theorem 3 and in Assumption 2, CTC ¡�(T3) denotes the space of continuous functions from [0; T ] to
the Besov space C ¡�(T3)=B1;1

¡� (T3) (see Appendix A for details).

Remark 4. In particular we can take

F"(x) = �(3)H3(x; �Y ;"
2 )+ "1/2�(2)H2(x; �Y ;"

2 ) + "
¡
�(1)+ 
"

(1)�
H1(x; �Y ;"

2 )+ "3/2
¡
�(0)+ 
"

(0)�
so that

f3;"=�
(3); "¡1/2f2;"=�

(2); "¡1f1;"=�
(1)+ 
"

(1)
; "¡3/2f0;"=�

(0)+ 
"
(0)
;

and

d" =3(�(3))2L"; d~" =�(3)�(2)L"; d" = d̂" =0;

where L" := 2
R
s;x
Ps(x)(CY ;"(s; x))

2: Choosing


"
(1) := 3d" =9(�(3))2L"; 
"

(0) := 3d~" =3�(3)�(2)L";

we obtain �"! (�(0); �(1); �(2); �(3)). This shows that all the possible limits �2R4 are attainable. In this case
(3) takes the form

L u"=¡�(3)u"3¡�(2)u"2¡ [�(1)¡ 3�(3)"¡1�Y ;"2 +9(�(3))2L"]u"¡�(0)+�(2)�Y ;"2 ¡ 3�(3)�(2)L"+ �" : (8)

When the nonlinearity is given by a cubic polynomial like in (8) the corresponding limiting model is called
dynamic �34 equation or stochastic quantisation equation. In two dimensions, this model has been subject of
various studies since more than thirty years [13, 1, 5]. For the three dimensional case, the kind of convergence
results described above are originally due to Hairer [9, 10] and constitute one of the �rst groundbreaking
applications of his theory of regularity structures. Similar results were later obtained by Catellier and Chouk [4]
using the paracontrolled approach of Gubinelli, Imkeller and Perkowski [6]. Kupiainen [14] described a third
approach using renormalization group ideas.

Weak universality is the observation that the same limiting object describes the large scale behaviour of
the solutions of more general equations, in particular that of the many parameters present in a general model,
only a �nite number of their combinations survive in the limit to describe the limiting object. The adjective
�weak� is related to the fact that in order to control the large scale limit the non-linearity has to be very small
in the microscopic scale. This sets up a perturbative regime which is well suited to the analysis via regularity
structures or paracontrolled distributions.

The �rst result of weak universality for a singular stochastic PDE has been given by Hairer and Quastel [11]
in the context the Kardar�Parisi�Zhang equation. Using the machinery developed there Hairer and Wu [12]
proved a weak universality result for three dimensional reaction�di�usion equations in the case of Gaussian
noise and a polynomial non�linearity, within the context of regularity structures. Weak universality for reac-
tion�di�usion equations driven by non Gaussian noise is analysed in Shen and Wu [23]. Recently, important
results concerning the stochastic quantisation equation we obtained by Mourrat and Weber. In particular the
convergence to the dynamic �24 model for a class of Markovian dynamics of discrete spin systems [16] and also
the global wellposedness of �24 in space and time [17] and in time for �34 [18]. The recent preprint [7] analyzes
an hyperbolic version of the stochastic quantisation equation in two dimensions, including the associated uni-
versality in the small noise regime.
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The present work is the �rst which considers in detail the weak universality problem in the context of
paracontrolled distributions, showing that on the analytic side the apriori estimates can be obtained via standard
arguments and that the major di�culty is related to showing the convergence of a �nite number of random
�elds to universal limiting objects. The main point of our analysis is our use of the Malliavin calculus [22,
21] to perform the analysis of these stochastic terms without requiring polynomial non�linearity as in the
previous works cited above. In particular we were inspired by the computations in [20] and in general by the
use of the Malliavin calculus to establish normal approximations [21]. The main technical results of our paper,
Theorem 10 below, is not particularly linked to paracontrolled distributions. A similar analysis is conceivable
for the stochastic models in regularity structures. Moreover the same tools can also allow to prove similar non-
polynomial weak universality statements for the KPZ along the lines of the present analysis. This is the subject
of ongoing work.

The paper is structured as follows. Section 1 contains the paracontrolled analysis of eq. (3) which will allow to
obtain uniform estimates to pass to the limit. Section 2 in the core of the paper, it contains the stochastic analysis
based on Malliavin calculus which allows to control the limit of the random �elds involved in the paracontrolled
description of eq. (3) and to identify their limits. All the rest of the paper consists in three appendices which
do not contain original material but allow the paper to be self contained. In particular Appendix A collects
notations and basic results of paracontrolled calculus. Appendix C collects basic de�nitions and results from
Malliavin calculus which will be needed in the analysis of the stochastic terms. Finally Appendix B contains
mostly some technical estimates on kernels needed in the stochastic analysis. The reader not familiar with
paracontrolled calculus and/or Malliavin calculus is encouraged to read Appendix A and/or Appendix C before
going on. In particular please refer to Section A.1 for the notations and conventions in force all along the paper.

1 Analysis of the mesoscopic model

In this section we describe the paracontrolled approach [6] to a solution theory for eq. (3) along the lines of the
Catellier�Chouk [4] analysis. The basic results of paracontrolled calculus we need in this section are included
in Appendix A.

The continuity of the solution map for a paracontrolled equation (already established in [4] and recalled
here) allows us to prove convergence of the solution u" (Theorem 3) by showing the convergence of the enhanced
noise Y" and the remainder R" in the appropriate space. Finally, in Theorem 7 we identify the limiting process
as the solution of a paracontrolled equation.

1.1 Paracontrolled structure
Write u"=Y"+v", and perform a Taylor expansion of the reaction term F~"("

1/2Y"+ "
1/2v") in (3) around "1/2Y"

up to the third order to get

L u" = �"¡�(0)¡�(1)v"¡
1
2
�(2)v"

2¡ 1
6
�(3)v"

3¡R"(v")

¡"¡3/2f0;"¡ "¡1f1;"(Y"+ v")¡ "¡1/2f2;"(JY"2K+2v"Y"+ v"
2):

(9)

with ��
(m) de�ned in (4) 8� 2R�T3 and R"(v") the remainder of the Taylor series.

De�ne the following random �elds:

L Y" := ¡Y"+ �" Y~" := "¡1/2f2;" JY"2K;

L Y" := �(0); Y" := Y" �Y" ¡ d" ;

Y" :=
1

3
�(1) Y" := Y" �Y" ¡ d" Y"¡ d̂" ;

L Y" := Y" ; Y" := Y" �Y" ¡ d" ;

Y" :=
1
6
�(2); Y~" := Y~" �Y" ¡ d~" ;

Y"
? :=

1
6
�(3);

(10)

4 Section 1



with �(m) de�ned in (4), Y" stationary and Y" ; Y" starting from 0 in t= 0. In the scope of this section we

can take any set of constants fd" ; d" ; d" ; d~" ; d̂" g3 d"� that satisfy

d" = 2 d" +3 d" : (11)

Equation (9) takes the form

L v" = Y"¡Y" ¡Y~" ¡ 3Y" v"¡ 3Y" v"2¡Y"?v"3

¡"¡3/2f0;"¡ "¡1f1;" (Y"+ v")¡ "¡1/2f2;" (2Y" v"+ v"2)¡R"(v"):
(12)

In this expression the products Y" v", Y" v"
2 and Y" v" do not meet the conditions for continuity. In order to

continue the analysis we pose the paracontrolled Ansatz

v"=¡Y" ¡Y~" ¡ 3v"��Y" + v"
]; (13)

and proceed to decompose the ill-de�ned products using the paracontrolled techniques recalled in Appendix A .
We start with

v"Y" = v"�Y" + v"�Y" + v" �Y" :

The resonant term, together with Ansatz (13), yields:

v" �Y" = ¡Y" �Y" ¡Y~" �Y" ¡ 3 v" (Y" �Y" )

¡3 com1(v"; Y" ; Y" )+ v"
] �Y" :

So we let

Y" �̂v" := v"Y" ¡ v"�Y" +(3 v" d" + d" Y"+ d̂" + d~" )

= v"�Y" ¡Y~" ¡Y" ¡ 3v" Y" + v"
] �Y" ¡ 3 com1(v"; Y" ; Y" )

Moreover we have for v"Y":

v"Y" = '"Y"¡Y" �Y"¡Y" �Y"¡Y" �Y"

where we introduced the shorthand '"= v"+Y" . So we let

v"�Y" := v"Y"+ d" = '"Y"¡Y" �Y"¡Y" �Y"¡Y"

Finally to analyse the product Y" v"
2 we write

Y" v"
2=Y" (Y" )2¡ 2Y" Y" '"+Y" '"

2;

and consider the products involving only Y � factors: �rst

Y" Y" =Y" �Y" +Y" �Y" +Y" + d" =:Y" �Y" + d" ;

and then we de�ne the term Y" �(Y" )2 as follows:

Y" �(Y" )2 := Y" (Y" )2¡ 2d" Y"

= Y" � (Y" )2+Y" � (Y" )2+Y" � (Y" �Y" )+ 2com1(Y" ; Y" ; Y" )+ 2Y" Y" :

so that

Y" �v"2 :=Y" v"2+2d" v"=Y" �(Y" )2¡ 2 (Y" �Y" )'"+Y" '"
2

We note also that

L v"=¡L Y" ¡L Y~" +L v"
]¡ 3v"�L Y" ¡ 3com3(v"; Y" )¡ 3 com2(v"; Y" ):

Analysis of the mesoscopic model 5



Substituting these renormalized products into (12) we obtain the following equation for v"
] :

L v"
] = 3 com3(v"; Y" )+ 3 com2(v"; Y" )

¡Y"?v"3¡ 3Y" �v"2¡ 3Y" �̂ v"
+Y"¡�"

(2)
(2v" �Y"+ v"2)

¡�"
(1) (Y"+ v")+ [9d" +6d" ¡ 3d" ]v"¡�"

(0)¡R"(v")
= U(�";Y"; v"; v"

])¡R"(v") (14)

with R"(v") the Taylor remainder which appears in (9) and �"=(�"
(0); �"

(1); �"
(2); �"

(3))2R4 given by eq. (7). We
can use the constraint (11) to remove the term proportional to v". The enhanced noise vector Y" is de�ned by

Y" := (Y"
?; Y" ; Y" ; Y~" ; Y" ; Y" ; Y" ; Y~" ; Y" )

3

XT := CTC ¡��CTC ¡1

2
¡�� (CTC ¡1¡�)2�L T

1/2¡�� (CTC ¡�)3�CTC ¡1

2
¡� (15)

for every �> 0. We use the notation kY"kXT =
P

� kY"
�kX� for the associated norm where Y"� is a generic tree

in Y". The homogeneities j� j 2R are given by

Y"
� = Y"

? Y" Y" Y~" Y" Y" Y" Y~" Y"
j� j = 0 ¡1/2 ¡1 ¡1 1/2 0 0 0 ¡1/2

Notice that for every "> 0 eq. (14) is equivalent to (3) together with Ansatz (13).

1.2 A-priori estimates
In this section we show uniform a-priori estimates for the pair (v"; v"[) which solves the following system of
equations 8>>><>>>:

v" = ¡Y" ¡Y~" ¡ 3v"��Y" + v"
[+ v"

\

L v"
[ = U(�";Y"; v"; v"

[+ v"
\)¡R"(v")

v"
[(0) = Y" (0)+Y~" (0)+ 3v";0�Y" (0)

(16)

with v"
\(t) :=Pt v";0 and v";0 :=u0;"¡Y"(0)2C ¡1/2¡. U is given in (14). It is easy to see, by taking v"

]= v"
[+v"

\,
that this is equivalent to eq. (14) together with Ansatz (13) on v". We consider the spaces

VT[ :=L T
2�\L T

1/4;1/2+2�\L T
1/2;1+2�

; VT :=L T
1/2;1/2¡�\L T

1/4+3�/2;2�
;

with the corresponding norms

kv"[kVT[ := kv"[kL T
2�+ kv"[kL T

1/4;1/2+2�+ kv"[kL T
1/2;1+2�; (17)

kv"kVT := kv"kL 1/2;1/2¡�+ kv"kL 1/4+3�/2;2�: (18)

De�ne 8� 2 (0; 1) the quantity

M";�(Y"; u0;") := k"�/2ec"
1/2jY"j+c"1/2jP�v";0jkLp[0;T ]Lp(T3) (19)

which will be used to control the remainder R". The main result of this section is the following lemma.

Lemma 5. There exists a time T? = T?(kY"kXT ; ku";0kC ¡1/2¡�; j�"j) 2 (0; T ] depending only on kY"kXT,
ku";0kC ¡1/2¡� and j�"j, constants � 2 (0; 1) and M";� = M";�(Y"; u0;") > 0 de�ned by ( 19), and a universal

constant C > 0 such that, whenever M";�6T?
�/2 we have

kv"n[ kVT?[ 6 C(1+ j�"nj) (1+ kY"nkXT)3(1+ ku";0kC ¡1/2¡�)
3;

kv"kVT? 6 C
¡
kY"kXT + ku";0kC ¡1/2¡�+ kv"[kVT?[

�
:

6 Section 1



Proof. De�ne v"� := v"¡ v"
\ such that

v"
� = ¡Y" ¡Y~" ¡ 3(v"�+ v"

\)��Y" + v"
[;

and v"�(0)= 0. Note also v"
� := v"

�+Y" . Using Lemma 16 (and the fact that kf kL T
�;�.T �kf kL T

�) we obtain
for �; � > 0 small enough

kIf kL T
¡�+2�;2�+ kIf k

L T
1/4¡�+2�;1/2+2�+ kIf kL T

1/2¡�+2�;1+2�.T
�

2(kf kMT
1¡�C ¡�+ kf kM1/2+2�C ¡1/2¡2�): (20)

We choose � > 2� small enough so that

L T
¡�+3�/2;2�\L T

1/4¡�+3�/2;1/2+2�\L T
1/2¡�+3�/2;1+2��VT[

We de�ne also the norm

kv"�kVT� := kv�kL T
2�+ kv�kMT

1/4C 1/2+2�:

Now

kv"�kVT� . kY" +Y~" kVT�+ kv"
�kCTL1(kY" kCTC 1¡�+ kY" kCTC ¡1¡�)

+
¡
kv"

\kCTC ¡1/2¡�+ kv"
\kMT

1/4C ¡�

�
(kY" kCTC 1¡�+ kY" kCTC ¡1¡�)+ kv"[kVT�

. kY"kXT +T�kv"�kVT�+ kv";0kC ¡1/2¡�+ kv"[kVT[

where we used that v�(0)=0 and as a consequence that kv"�kCTL16T �kv"
�kC

T
�L16T�kv"�kVT� to gain a small

power of T . So provided T is small enough (depending only on Y") this yields the following a-priori estimation
on v"�:

kv"�kCTL1. kv"�kVT�. kY"kXT + kv";0kC ¡1/2¡�+ kv"[kVT[ :

Therefore we have an estimation on v":

kv"kVT 6 kv"\kVT + kv�kVT . kv";0kC ¡1/2¡�+ kv"�kVT�. kY"kXT + kv";0kC ¡1/2¡�+ kv"
[kVT[ :

In order to estimate terms in U(�";Y"; v"; v"
[+ v"

\) we decompose the renormalised products as

Y" �̂v" = v"�Y" ¡Y~" ¡Y" ¡ 3v" Y" + v"
[ �Y" + v"

\ �Y" ¡ 3 com1(v"; Y" ; Y" )

v"�Y" = ¡Y~" Y"¡ 3(v"��Y" )Y"+Y"4 (v"[+ v"\) +Y"� (v"[+ v"\)

¡Y" �Y"¡Y" �Y"¡Y"
Y" �v"2 = Y" �(Y" )2+2(Y" �Y" )(Y~" +3v"��Y" )¡ 2 (Y" �Y" )4 (v"[+ v"\)

+2 (Y" �Y" )� (v"[+ v"
\)+Y" 4 (v"�+ v\)2+Y" � (v"�+ v\)2:

We have U(�"; Y"; v"; v"
[ + v"

\) = Q¡1/2(�"; Y"; v0;"; v"; v"
[) + Q0(�"; Y"; v0;"; v"; v"

[) + Q�";Y" with the
de�nitions

Q¡1/2 := ¡3[v"�Y" ¡ 3 com1(v"; Y" ; Y" )+Y" � (v"�+ v\)2]

¡6[(Y" �Y" )(3v"��Y" )+ (Y" �Y" )� (v"[+ v"
\)]

+2�"
(2)
(3(v"��Y" )Y"¡Y"� (v"[+ v"

\))+ 3 com3(v"; Y" ) +3 com2(v"; Y" )

Q0 := 3[3v"Y" ¡ v"[ �Y" ¡ v"
\ �Y" +2 (Y" �Y" )4 (v"[+ v"\)¡Y" 4 (v"�+ v\)2]

¡Y"?v"3¡�"
(2)[v"

2+2Y"4 (v"[+ v"\)]

Q�";Y" :=
¡
1¡�"

(1)�
Y"¡�"

(0)
+3 [Y~" +Y" ¡Y" �(Y" )2¡ 2(Y" �Y" )Y~" ]

+2�"
(2)
(Y~" Y"+Y" �Y"+Y" �Y"+Y" )

Analysis of the mesoscopic model 7



With the same technique we used above for v"�, we obtain the following estimate on v"
�

kv"�kL T
1/2+3�/2;1/2+2�+ kv"�kL T

1/4+�;�. kY"kXT + kv";0kC ¡1/2¡�+ kv"
[kVT[

and this yields k(v"�)2kL 3/4+5�/2;1/2+2�+ k(v"�)2kL 1/2+2�;�. (kY"kXT + kv";0kC ¡1/2¡�+ kv"[kVT[ )
2.

We obtain, using the results of Appendix A

kQ¡1/2kM1/2+2�C ¡1/2¡2�+ kQ0kMT
1¡�C ¡� . (1+ j�"j)(1+ kY"kXT)3(1+ kv";0kC ¡1/2¡�+ kv"[kVT[ )

3

kQ�";Y"kCTC ¡1/2¡� . (1+ j�"j) (1+ kY"kXT)3

In order to conclude the estimation of kv"[kVT[ we have to bound kIR"(v")kVT[ . By Lemma 6 8�; � 2 (0; 1)
such that 1¡ �

3+ �
>

1

4
+

3�

2
we have kt 7! t1¡�IR"(v")(t; x)kLp[0;T ]Lp(T3) .M";�(Y"; u0;")kv"kVT

3+�e
c"1/2kv"�kV�. By

Lemma 17 together with (50) we obtain then for these values of � and �:

k IR"(v")kVT[ . M";�(Y"; u0;")kv"kVT
3+�e

c"1/2kv"�kV�:

Using that kPv"[(0)kVT[ . kv"
[(0)kCTC 1/2¡2�. (1+ kv";0kC ¡1/2¡�)kY"kXT we obtain that 9C 0> 0 such that

kv"n[ kVT[ 6 C 0(1+ j�"nj) (1+ kY"nkXT)3(1+ kv";0kC ¡1/2¡�)
3+C 0T �/2(1+ j�"j)(1+ kY"kXT)3kv"[kVT[

3

+C 0M";�(Y"; u0;")e
c"1/2

¡
kY"kXT+kv";0kC ¡1/2¡�

�
e
c"1/2kv"[kVT[ kv"kVT

3+�

6 D+CM"(Y"; u0;")e
c"1/2kv"[kVT[ +CT�/2kv"[kVT[

3 +CM";�(Y"; u0;")e
c"1/2kv"[kVT[ kv"[kVT[

3+�

with

C :=C 0[(1+ j�"j)(1+ kY"kXT)3+ e
c"1/2

¡
kY"kXT+kv";0kC ¡1/2¡�

�
(1+ (kY"kXT + kv";0kC ¡1/2¡�)

3+�)];

and

D :=C 0(1+ j�"nj) (1+ kY"nkXT)3(1+ kv";0kC ¡1/2¡�)3:

Let T?2 (0; T ] such that:

CT?
�/2[(5C)2+ ec"

1/2(5C)(5C)2+�]6 1
2
; and CT?

�/2ec"
1/2(5C)6D:

Assume that M";�6 T?
�/2. De�ne a closed interval [0; S] = ft 2 [0; T?]: kv"n[ kVt[6 4Dg � [0; T?]. This interval is

well de�ned and non�empty since t 7!kv"n[ kVt[ is continuous and nondecreasing and kv"n[ kV0[64D. Let us assume

that S <T?, then we can take �> 0 small enough such that S+ � <T? and by continuity kv"[kVS+�[ 6 5C, then

kv"n[ kVS+�[ 6 D+CM"(Y"; u0;")e
c"1/2kv"[kVS+�[

+C (S+ �)�/2kv"[kVS+�[
3 +CM";�(Y"; u0;")e

c"1/2kv"[kVS+�[

kv"[kVS+�[
3+�

6 D+CM"(Y"; u0;")e
c"1/2(5C)+CT?

�/2
(5C)2kv"[kVS+�[ +CT?

�/2
ec"

1/2(5C)(5C)2+�kv"[kVS+�[

6 2D+
1
2
kv"[kVS+�[

which gives kv"n[ kVS+�[ 6 4D. This implies S=T? (by contradiction). �

Lemma 6. For every 
 2 (0; 1), � 2 [0; 1] we have

kt 7! t
R"(v"; v"
[; v"

\)(t; x)kLp[0;T ]Lp(T3).M";�(Y"; u0;")kv"kM
/(3+�)L1
3+� ec"

1/2kv"�kCTL1

with v"� :=¡Y" ¡Y~" ¡ 3v"��Y" + v"
[.

Proof. We can write the remainder in two ways:

R"(v") = v"
3

Z
0

1

[F"
(3)
("

1

2 Y"+ � "
1

2v")¡F"
(3)
("

1

2 Y")]
(1¡ �)2

2!
d� = "

1

2v"
4

Z
0

1

F"
(4)
("

1

2 Y"+ � "
1

2v")
(1¡ �)3

3!
d� :
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From assumption (6) on F we obtain by interpolation of these two expressions, 8� 2 [0; 1], 8t> 0; x2T3,

jR"(v")(t; x)j. "�/2jv"(t; x)j3+�ec"
1

2 jY"(t;x)j+c"
1

2jv"
\(t;x)j+cj"

1

2v"
�(t;x)j;

and we estimate, 8
 2 [0; 1),

kt 7! t
R"(v")(t; x)kLp[0;T ]Lp(T3). kt



3+� v"(t)kCTL1
3+� ec"

1/2kv"�kCTL1



"�2ec"12 jY"(t;x)j+c"12jv"\(t;x)j




Lp[0;T ]Lp(T3)
: �

1.3 Identi�cation of the limit
In order to identify interesting limits for equation (3), we introduce the enhanced universal noise X, de�ned as

X=(X;X ;X ;X ;X ;X );

where X is the stationary solution to to the linear equation L X =¡X + � and � is the time-space white noise
on R�T3. We de�ne

X := JX3K;
X := JX2K;

�qX := �q(X �X)=
Z
�1;�2

JX�1
3 KX�2 ��1;�2;

�qX := �q(1¡ J0)(X �X )=

Z
�1;�2

(1¡J0)(JX�1
2 KJX�2

2 K) ��1;�2;

�qX :=

Z
�1;�2

(1¡ J1)(JX�1
3 KJX�2

2 K) ��1;�2+6
Z
s;x

[�qX(t+ s; x�¡x)¡�qX(t; x�)]Ps(x) [CX(s; x)]
2;

(21)

with X (t=0)=X (t=0)=0. Here as before J�K stands for the Wick product, �i=(xi; si)2R�T3, CX(t; x)
is the covariance of X and ��1;�2 is de�ned as

��1;�2 := [

Z
x;y

Kq;x�(x)
X
i�j

Ki;x(y)Kj;x(x2)Pt¡s1(y¡x1)]�(t¡ s2)d�1d�2:

Standard computations (see e.g. [4] or [19]) show that, for any T > 0, 0<�<�0,

X2CT�C
¡1

2
¡2�0� (CT�C ¡1¡2�0)2�CT�C

1

2
¡2�0� (CT�C 0¡2�0)2�CT�C T

¡1

2
¡2�0

;

almost surely. Finally, for every �=(�(0); �(1); �(2); �(3))2R4 we de�ne

Y(�) := (�(3); �(3)X;�(3)X ;�(2)X ;�(3)X ; (�(3))2X ; (�(3))2X ;�(3)�(2)X ; (�(3))2X ): (22)

Using the paracontrolled structure we developed in the preceding sections and its continuity with respect to
Y", we can state the convergence of the solution of the mesoscopic equation, under the hypothesis that Y" and
M";� as de�ned in (19) converge (this is shown in Theorem-10 and Lemma 9).

Theorem 7. Under Assumption 2, the family of random �elds u" given by the solutions to eq. ( 3) converges
in law and locally in time to a limiting random �eld u(�) in the space CTC ¡�(T3) for every 1/2<�<1/2+�.
The limiting random �eld u(�) solves the paracontrolled equation8>>>><>>>>:

u(�) = X + v(�)

v(�) = X ¡�(3)X ¡�(2)X ¡ 3�(3)v(�)��X + v](�)

L v](�) = U(�;Y(�); v(�); v](�))

v](�)(t=0) = v0+�
(3)X (t=0)+�(2)X (t=0)+3�(3)v";0�X (t=0)

(23)

with U de�ned in ( 14) and v0=u0¡X(t=0).

Analysis of the mesoscopic model 9



Proof. Fix T > 0. Let us denote via ¡ the solution map for (16) so that u"=¡(u";0;Y"; �"; R"(v")). Denote
by u"�=¡�(u";0;Y"; �"; R"(v")) the process u" stopped at the time T?(kY"kXT ; ku";0kC ¡1/2¡�; j�"j) and ¡� the
corresponding solution map. Note that u solves the same equation with Y" replaced by Y(�), u";0 with u0,
�" replaced by � and R"= 0. So u(�) = u�(�) = ¡�(u0;Y(�); �; 0) up to time T?(kY(�)kXT ; ku0kC ¡1/2¡�; j�j).
Let us introduce the random �eld u~"

� = ¡�(u";0; Y"; �"; 0) which solves the paracontrolled equation (16)
but with remainder R" = 0. Consider the n-uple of random variables (u";0; Y"; u"

�; u~"
�) and let �" be its

law on Z = C ¡� � XT � (CTC ¡�)2 conditionally on E" := fM";� 6 T?
�/2g for � 2 (0; 1) �xed in Lemma 5.

Note that we know that P(E")! 1 from Lemma 9. By the apriori bounds of Lemma 5 we have tightness of
the family (�")". By standard arguments it is easy to obtain continuity of the map ¡� and also to observe
that for any � 0 > 0, �"(ku"� ¡ u~"

�k > � 0) ! 0 as "! 0 since M";� ! 0 in probability 8� 2 (0; 1). This shows
that �" concentrates on C ¡� � XT � f(z; z) 2 CTC ¡�g. Let � any accumulation point of (�")". Then
�(C ¡��XT �f(z; z)2CTC ¡�g)= 1. Moreover along subsequences we have that for any bounded continuous
function

E('(u";0;Y"; u~"
�))=E('(u";0;Y";¡�(u";0;Y"; �"; 0)))!E('(u0;Y(�);¡�(u0;Y(�); �; 0)))

since by Theorem 10 the vector Y" converges in law to Y(�) and u";0 to u0 and ¡� is a continuous function.
We deduce that, still along subsequences, for any test function ',Z
Z
'(x; y; z; t)d�"(x; y; z; t)!

Z
Z
'(x; y; t; t)d�(x; y; z; t)=

Z
Z
'(x; y;¡�(x; y; �; 0);¡�(x; y; �; 0))d�(x; y; z; t)

but we know also that since P(E")! 1 we have

E[ (u";0;Y")jE"] =
E[ (u";0;Y")IE"]

P(E")
!E[ (u0;Y(�))];

for any test function  . So the �rst two marginals of � have the law of (u0;Y(�)) and they are independent
since (u";0;Y") are independent for any ". Calling � the law of (u0;Y(�)) we have thatZ

Z
'(x; y; z; t)d�(x; y; z; t) =

Z
C ¡��XT

'(x; y;¡�(x; y; �; 0);¡�(x; y; �; 0))d�(x; y)

which implies that � is unique and that the whole family (�")" converges to �. �

Remark 8. In particular this proves Theorem 3.

2 Convergence of random �elds
In this section we prove the convergence of the random �elds Y" and M";�. The convergence in probability of
M";� is easily obtained as we show in the following lemma.

Lemma 9. Under Assumptions 2 the random variable M";�(Y"; u0;") de�ned in ( 19) converges to zero in
probability for every � 2 (0; 1).

Proof. Recalling that v";0 :=u0;"¡Y"(0) we can use Young's inequality estimateM";�(Y"; u0;") for some c0>0 as

M";�(Y"; u0;") . "�/2kec0"1/2jY"jkLp[0;T ]Lp(T3)+ "
�/2kec0"1/2jP.Y"(0)jkLp[0;T ]Lp(T3)

+"�/2T 1/pec
0k"1/2u0;"kL1:

Under Assumptions 2 the term k"1/2u0;"kL1(T3) is uniformly bounded, so the third term above converges to
zero almost surely. Note that "1/2Y"(t; x) and Pt"1/2Y"(t=0) are centered Gaussian random variables, and then

both Ekec0"1/2jY"jkLp[0;T ]Lp(T3)
p and Ekec0"1/2jP.Y"(0)jkLp[0;T ]Lp(T3)

p are uniformly bounded in " > 0. This yields
the convergence in probability of M";�(Y"; u0;") by Markov inequality. �

The central result of this paper is the convergence of the enhanced noises (or trees) Y � in law, and their
uniform boundedness.

Theorem 10. Under Assumptions 2 there exists C > 0 such that for any p 2 [2;1) we have kY"kXT <C in
Lp(P). Moreover, Y"!Y(�)2XT in law.

10 Section 2



Strategy of the proof
The strategy of proof is the following. Denote X = (X�)� , Y(�) = (Y �(�))� and let K� the measurable

function of the Gaussian process X 2CTC ¡1/2¡� such that X�=K�(X) and Y �(�)= f�(�)K
�(X) with f�(�)

suitable deterministic functions of �. For each � we will show that Y"� can be decomposed as

Y"
� = f�(�")K

�(Y")+ Ŷ"
�

(24)

where Ŷ"
�
are suitable remainder terms. For all p> 2 it is well-known (see [4],[9]) that the term f�(�")K

�(Y")
is uniformly bounded in Lp(
;X �) (with X � given by (15)), then we will just prove that Ŷ"

�
converges to zero

in Lp(
;X �). This con be done by showing that, by Besov embedding, for 16 p<+1 and 8�< j� j we have

E(


Ŷ"�(t)

C �¡3/p

p
).E

�

Ŷ"�(t)

Bp;p�

p
�
6

X
q

2�pq
Z
T3



�qŶ"
�
(t; x)




Lp(
)

p
dx6C"! 0 (25)

thanks to the stationarity of the process Y (t; x). For this it su�ces to showX
q

2�pq sup
x



�qŶ"
�
(t; x)




Lp(
)

p ! 0 as "! 0 (26)

In order to conclude uniform convergence for t2 [0; T ] it su�ces to show that for � 2 [0; 1/2], q>¡1:

sup
x



�qŶ"
�
(t; x)¡�qŶ"

�
(t; x)




Lp(
)

p 6C"jt¡ sj�p2¡(�¡2�)pq withC"! 0: (27)

Indeed, by the Garsia-Rodemich-Rumsey inequality we obtain for � > 0 small enough and p large enough

sup
"

E
�

Ŷ"�

CT�¡2/pBp;p�¡2�¡�

p
�
6 T 2

X
q

2(�¡2�¡�)pq sup
s<t2[0;T ]

sup
x



�qŶ"
�
(t; x)¡�qŶ"

�
(t; x)




Lp(
)

p

jt¡ sj�p

6 C"T 2
X
q

2¡�pq

which by Besov embedding yields an estimation on E
¡
kY"�kCT�¡�/2C �¡2�¡�

�
for �> 0 small enough.

This gives us the necessary tightness to claim that Y" has weak limits along subsequences. The only thing
left to prove is that for each � we have K�(Y")!K�(X) in law. However this is clear since we can introduce
a convolution regularisation of X called X" which has the same law of Y" for any " > 0. At this point an
approximation argument gives that K�(Y") has the same law of K�(X"). Transposing the regularisation to the
kernels of the chaos expansion we can write K�(X")=K"

�(X) and now it is easy to check that K"
�(X)!K�(X)

in probability (as done e.g. in [4],[9]). We can then conclude that K�(Y")!K�(X) in law for any � .

Details of the proof
Let us now give the details of the the decomposition (24) and the convergence to zero of the remainder

Ŷ"
�
in Lp(
; X �). We need to introduce some notations based on the results of Appendix C. Looking at the

de�nitions of trees listed in (10), it is clear that �qY" can be written in the form

(3¡ j)!
3!

Z
�

��
(j)
�� ; or

(3¡ j)!(3¡ k)!
3! 3!

Z
�1;�2

��1
(j)
��2
(k)
��1;�2¡ [renormalisation];

for � ; �1; �22R�T3, 06 j ; k6 3 and some measures �� and ��1;�2. Note that the k-th Malliavin derivative of
��
(m), namely Dk��

(m) is ��
(m+k)

h�

k. Then expansion (69) of Appendix C takes a more explicit form 8n> 1:

��
(m)

=
X
k=0

n¡1
E
¡
��
(m+k)�
k!

JY";�k K+ �n
¡
Q1
n��

(m+n)
h�

n�

=
X
k=0

n¡1

"(m+k¡3)/2(m+ k)!
k!

f~m+k;"JY";�k K+ �n
¡
Q1
n��

(m+n)
h�

n� (28)

with Qn
m :=

Q
k=n
m (k¡L)¡1 and Y";� :=Y"(t; x), �=(t; x)2R�T3. Here we used the fact that �n(h�


n)= JY�nK
(see Remark 40) and that by the de�nition of ��

(m) (4) we obtain 8� 2R�T3,

E
¡
��
(m+k)�

= "(m+k¡3)/2 (m+ k)! f~m+k;";
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where f~n;" is the n-th coe�cient of the chaos expansion of F~"("1/2Y") relative to "1/2 Y"(t; x), so that f~n;"= 0
for n< 3 and f~n;"= fn;" for n> 3. Choosing n=4¡m in eq. (28) we obtain

��
(m)

=
3!

(3¡m)! f3;" JY";�
3¡mK+ �4¡m

¡
Q1
4¡m��

(4)
h�

4¡m�

=
3!

(3¡m)! f3;" JY";�
3¡mK+�̂�

(m)
;

(29)

with

�̂�
(m)

:= �4¡m(Q1
4¡m��

(4)
h�

4¡m): (30)

This yields:

��
(0)

= f3;"JY";�3 K+ �4(Q1
4��

(4)
h�

4);

��
(1)

= 3f3;"JY";�2 K+ �3(Q1
3��

(4)
h�

3);

��
(2)

= 6f3;"Y";�+ �
2(Q1

2��
(4)
h�

2);

��
(3)

= 6f3;"+ �(Q1��
(4)
h�):

It su�ces to substitute this decomposition in (10) to identify the remainder terms Ŷ"
�
for every tree Y"� . In the

next two sections we will consider separately �rst order trees, which are de�ned a function of ��
(m) and second

order trees, which in turn are obtained by multiplying �rst order trees (and renormalising). We will show that
each of these remainder terms satisfy (26) and (27).

Remark 11. Note that form>3 we can easily estimate terms of the form "¡(m¡3)/2��
(m) 8� 2R�T3. We have


"¡m¡3

2 ��
(m)





Lp

p
=



F"(m)("1/2Y";�)

Lpp =

Z
R

��F"(m)(x)��p
(dx)
where 
(dx) is the density of a centered Gaussian with variance �Y ;"2 . The integral is �nite by Assumption 2.

2.1 First-order trees
First of all note that the term Y~" has no remainder and then it can be shown to converge in law to �(2)X
by usual techniques. We start with the bound (26) for �qY" ;�qY" ;�qY" ,�qY"

?. We obtain from (29) that

�qY"
�(t; x�) :=

(3¡m)!
3!

Z
�

��
(m)

��

= f3;"

Z
�

q
Y";�
(3¡m)y

��+
(3¡m)!

3!

Z
�

�̂�
(m)

��

= f�(�")�qK
�(Y")(t; x�)+�qŶ"

�
(t; x�):

As said before, f3;"
R
�

q
Y";�
(3¡m)y

�� converges in law in Lp for every 2 6 p < +1 to �(3)
R
�

q
X�
(3¡m)y

�� since
f3;"!�(3). We can bound the remainder term

R
�
�̂�
(m)

�� in Lp(
) using Lemma 33 and Lemma 36 to obtain



Z
�

�̂�
(m)

��






Lp(
)

=





�4¡mZ
�

Q1
4¡m��

(4)
h�

4¡m��






Lp(
)

6




Q1

4¡m
Z
�

��
(4)
h�

4¡m��






D4¡m;p

.
X
k=0

4¡m 



DkQ1
4¡m

Z
�

��
(4)
h�

4¡m��






Lp(
)

.








Z

�

��
(4)
h�

4¡m��






H
4¡m

2





Lp/2(
)

1/2

.




Z

�

��
(4)
�� 0
(4)hh�
4¡m; h� 0
4¡miH
4¡m���� 0






Lp/2(
)

1/2

.
�Z

�;� 0



��(4)�� 0(4)

Lp/2(
) jhh� ; h� 0ij4¡m j���� 0j�1/2
.

�
"

Z
�;� 0




"¡1

2��
(4)





Lp(
)




"¡1

2�� 0
(4)





Lp(
)

jhh� ; h� 0ij4¡mj���� 0j
�
1

2

.
�
"�
Z
�;� 0




"¡1

2��
(4)





Lp(
)




"¡1

2�� 0
(4)





Lp(
)

jhh� ; h� 0ij3¡m+� j���� 0j
�
1

2;

12 Section 2



for every � > 0, where we used the estimation of Lemma 26. Now using Remark 11 and the fact that
hh� ; h� 0iH=CY ;"(� ¡ � 0) we obtain as a �nal estimation



Z

�

�̂�
(m)

��






Lp(
)

. "
�

2

�Z
jCY ;"(� ¡ � 0)j3¡m+� j���� 0j

�
1/2

: (31)

Remark 12. These last computations are one of the key observations of this paper, exploiting the properties of
Malliavin calculus to replace hypercontractivity in the estimation of Lp norms with arbitrarily large p without
resorting to explicit expansions.

The measure ��=(s;y) being either [
R
x
Kq;x�(x)Pt¡s(x¡ y)]d� for �qY";�� or Kq;x�(y)�(t¡ s)d� for the other

trees, the l.h.s of (31) can be estimated with Lemma 28 to obtain for every x�2T3, q > 0:


�qŶ" (t; x�)




Lp(
)

. "
�

22
¡1¡�

2
q 

�qŶ" (t; x�)




Lp(
) . "

�

22
1+�

2
q



�qŶ" (t; x�)



Lp(
) . "

�

22
2+�

2
q 

�qŶ"

?(t; x�)



Lp(
) . "

�

22
�

2
q

The time regularity of trees
We want to show (27). In order to do that, we compute



Z

�

¡
�̂t;x
(m)¡ �̂s;x

(m)�
��






Lp(
)

.




�4¡mZ

�

Q1
4¡m ¡

�t;x
(4)
ht;x

4¡m¡�s;x

(4)
hs;x

4¡m�

��






Lp(
)

.








Z

�

¡
�t;x
(4)¡�s;x

(4) �hs;x
4¡m��




H
4¡m

2





Lp/2(
)

1/2

+









Z
�

�s;x
(4) (ht;x


4¡m¡hs;x
4¡m)��





H
4¡m

2





Lp/2(
)

1/2

:

We focus on the �rst term above to obtain that it is bounded by



Z
�

¡
�t;x
(4)¡�s;x

(4) �¡
�t;x0
(4) ¡�s;x0

(4) �
hhs;x
4¡m; hs;x0
4¡miH
4¡m���� 0






Lp/2(
)

1/2

.
�Z

�;� 0



¡�t;x(4)¡�s;x(4) �¡�t;x0(4) ¡�s;x0
(4) �



Lp/2(
) jhhs;x; hs;x0ij
4¡m j���� 0j

�
1/2

.
�
"

Z
�;� 0



"¡1¡�t;x(4)¡�s;x(4) �¡�t;x0(4) ¡�s;x0
(4) �



Lp/2(
)jhhs;x; hs;x0ij
4¡mj���� 0j

�
1

2

.
�
"�
Z
�;� 0



"¡1¡�t;x(4)¡�s;x(4) �¡�t;x0(4) ¡�s;x0
(4) �



Lp/2(
)jhhs;x; hs;x0ij
3¡m+� j���� 0j

�
1

2:

Now note that

"
¡1

2
¡
�t;x
(4)¡�s;x

(4) �
= F (4)("

1

2Y"(t; x))¡F (4)("
1

2Y"(s; x))

= "
1

2

Z
0

1

F (5)["
1

2Y"(s; x) + �"
1

2(Y"(t; x)¡Y"(s; x))] (Y"(t; x)¡Y"(s; x));

and we can estimate



"¡1

2
¡
�t;x
(4)¡�s;x

(4) �



Lp(
)

by hypercontractivity and using Lemma 29 as

.p "1/2




Z

0

1

F (5)["
1

2Y"(s; x) + �"
1

2(Y"(t; x)¡Y"(s; x))]





L2p(
)

kY"(t; x)¡Y"(s; x)kL2(
)

. "1/2[CY ;"(0; 0)¡CY ;"(t¡ s; 0)]1/2

. "¡2� jt¡ sj�;

for any � 2 [0; 1/2]. The other term can be estimated more easily by�
"�
Z
�;� 0
jhhs;x; hs;x0ij2¡m+� jhht;x¡hs;x; ht;x0¡hs;x0ijj���� 0j

�
1

2

. "¡2�jt¡ sj�
�
"�
Z
�;� 0
jhhs;x; hs;x0ij3¡m+�+2� j���� 0j

�
1

2;
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and �nally obtain



Z
�

¡
�̂t;x
(m)¡ �̂s;x

(m)�
��






Lp(
)

. "�/2¡2�jt¡ sj�
�Z

�;� 0
jhhs;x; hs;x0ij3¡m+�+2� j���� 0j

�
1

2:

Which yields estimation (27) by applying Lemma 28 as before.

2.2 Second-order trees

In this section we show the decomposition (24) and the bound (26) for the trees Y" ; Y" ; Y~" ; Y" . The
time regularity (27) of Y"� can be obtained with the same technique as in the previous section assuming that
(F")" �C9(R), and we do not repeat the argument here. Looking at the de�nitions in (10) it is clear that we

can write the Littlewood-Paley blocks of Y" , Y" , Y~" and Y" 8"> 0 as:

�qY" (��) =
1
6

Z
�1;�2

��1
(0)
��2
(2)
��1;�2¡ d" �q(1)(��);

�qY" (��) =
1
9

Z
�1;�2

��1
(1)
��2
(1)
��1;�2¡ d" �q(1)(��);

�qY~" (��) =
1
3

Z
�1;�2

�~ �1
(1)
��2
(1)
��1;�2¡ d~" �q(1)(��);

�qY" (��) =
1
3

Z
�1;�2

��1
(0)
��2
(1)
��1;�2¡ d" �qY"(��)¡ d̂" �q(1)(��);

(32)

for ��=(t; x�) where ��
(m) is de�ned in (4), �~ �1

(1)
:= "¡1/2f2;"JY"2(�1)K and the measure ��1;�2 on (R�T3)2 is given

by

��1;�2 := [

Z
x;y

Kq;x�(x)
X
i�j

Ki;x(y)Kj;x(x2)Pt¡s1(y¡x1)]�(t¡ s2)d�1d�2

with �i=(si; xi) i=1;2. The �rst step for decomposing (32) is to expand them using the partial chaos expansion
(69) to obtain

��1
(0)
��2
(2)

= E
�
��1
(0)
��2
(2)�

+ �Q1D(��1
(0)
��2
(2)
);

��1
(1)
��2
(1)

= E
�
��1
(1)
��2
(1)�

+ �Q1D(��1
(1)
��2
(1)
);

��1
(0)
��2
(1)

= E
�
��1
(0)
��2
(1)�

+ �
�
J0D

¡
��1
(0)
��2
(1)��

+ �2Q1
2D2(��1

(0)
��2
(1)
)

= E
�
��1
(0)
��2
(1)�

+Y"(�1)E
�
��1
(1)
��2
(1)�

+Y"(�2)E
�
��1
(0)
��2
(2)�

+ �2Q1
2D2(��1

(0)
��2
(1)
):

(33)

Like the trees appearing in the �34 model, we expect second-order trees to require a further renormalisation, on
top of the Wick ordering.

2.2.1 Renormalisation of second-order trees

In this section we show how to renormalise (32) by estimating the terms of the type E
�
��1
(m)

��2
(n)� in expansion

(33). We are going to need the following result:

Lemma 13. We have Z
�1;�2

Y"(�1)E[��1
(1)
��2
(1)
]��1;�2=

Z
s;x

�qY"(s; x�¡x)G(t¡ s; x):
and Z

�1;�2

Y"(�2)E[��1
(0)
��2
(2)
]��1;�2=

Z
x

�qY"(t; x�¡x)H(t; x);
where

G(t¡ s; x) :=

Z
x1
0;x2

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s(x1

0 )E
�
�0
(1)
�(t¡s;x2)
(1) �

;

H(t; x) :=

Z
s;x1;x1

0

X
i�j

Ki;x(x1
0 )Kj;x(0)Pt¡s(x1

0 ¡x1)E
�
�0
(0)
�(t¡s;¡x1)
(2) �

:
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Proof. We haveZ
�1;�2

Y"(�1)E
�
��1
(1)
��2
(1)�

��1;�2

=

Z
s1;x1;x2;x;x1

0
Kq;x�(x)

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s1(x1

0 ¡x1)Y"(s1; x1)E
�
�0
(1)�(t¡s1;x2¡x1)

(1) �
and by change of variables, exploiting the translation invariance of the problem we obtain:

=

Z
s1;x1;x

Kq;x�(x+x1)Y (s1; x1)

Z
x1
0;x2

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s1(x1

0 )E
�
�0
(1)
�(t¡s1;x2)
(1) �

:

Using the de�nition of Kq we have

=

Z
s1;x

�qY"(s1; x�¡x)
Z
x1
0;x2

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s1(x1

0 )E
�
�0
(1)�(t¡s1;x2)

(1) �
:

Finally we can write Z
�1;�2

Y"(�1)E
�
��1
(1)
��2
(1)�

��1;�2=

Z
s1;x

�qY"(s1; x�¡x)G(t¡ s1; x):

Similar computations holds for the other term, indeedZ
�1;�2

Y"(�2)E
�
��1
(0)
��2
(2)�

��1;�2

=

Z
s1;x1;x2;x;x1

0
Kq;x�(x)

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s1(x1

0 ¡x1)Y"(t; x2)E
�
�0
(0)�(t¡s1;x2¡x1)

(2) �
=

Z
x2

Kq;x�(x+x2)Y"(t; x2)

Z
s1;x1;x;x1

0

X
i�j

Ki;x(x1
0 )Kj;x(0)Pt¡s1(x1

0 ¡x1)E
�
�0
(0)�(t¡s1;¡x1)

(2) �
=

Z
x

�qY"(t; x�¡x)
Z
s1;x1;x1

0

X
i�j

Ki;x(x1
0 )Kj;x(0)Pt¡s1(x1

0 ¡x1)E
�
�0
(0)�(t¡s1;¡x1)

(2) �
=

Z
x

�qY"(t; x�¡x)H(t; x)

�

Using the lemma above and the partial chaos expansion (33), we can write (32) as:

�qY" (��) =
1
9

Z
�1;�2

�Q1D(��1
(1)
��2
(1)
) ��1;�2+�q(1)(��)

�
1
9

Z
s;x

G(t¡ s; x)¡ d"
�

�qY~" (��) =
1
3

Z
�1;�2

�Q1D(�~ �1
(1)
��2
(1)
) ��1;�2+�q(1)(��)

�
1
3

Z
s;x

G~(t¡ s; x)¡ d~"
�

�qY" (��) =
1
6

Z
�1;�2

�Q1D(��1
(0)
��2
(2)
) ��1;�2+�q(1)(��)

�
1
6

Z
x

H(t; x)¡ d"
�

�qY" (��) =
1
3

Z
�1;�2

�2Q1
2D2(��1

(0)
��2
(1)
)��1;�2+�q(1)(��)

�
1
3

Z
�1;�2

E
�
��1
(0)
��2
(1)�

��1;�2¡ d̂"
�

+�qY"(��)

�
1
3

Z
s;x

G(t¡ s; x)+ 1
3

Z
x

H(t; x)¡ d"
�

+
1
3
�qR" (��)+

1
3
�qR" (��)

with the additional de�nitions

G~(t¡ s; x) :=

Z
x1;x1

0

X
i�j

Ki;x(x1
0 )Kj;x(0)Pt¡s1(x1

0 ¡x1)E
�
�~0
(1)
�(t¡s;¡x1)
(1) �

;

�qR" (��) :=

Z
s;x

[�qY"(s; x�¡x)¡�qY"(t; x�)]G(t¡ s; x);

�qR" (��) :=

Z
x

[�qY"(t; x�¡x)¡�qY"(t; x�)]H(t; x):
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To proceed further in the estimation of these integrals, we need to characterise the local behaviour of
E[��1

(m)
��2
(n)
]. From the decomposition (29) we can write

E
�
��1
(m)

��2
(n)�

=
3!2

(3¡m)!(3¡n)!(f3;")
2E[JY";�1

3¡mKJY";�2
3¡nK] + 3!

(3¡m)! f3;"E
�
JY";�1

3¡mK�̂�2
(n)�

+
3!

(3¡n)! f3;"E
�
JY";�2

3¡nK�̂�1
(m)�

+E
�
�̂�1
(m)

�̂�2
(n)�

;

where E[JY";�1
3¡mKJY";�2

3¡nK] = (3¡m)!�(3¡m; 3¡n)CY ;"(�1¡ �2)3¡n and to bound all other terms we introduce
the following result.

Lemma 14. Under Assumption 2 we have, for every 06m;n6 3 and m6n:

��E�
�̂�1
(m)

�̂�2
(n)���.X

i=0

4¡n

"
1+

n¡m
2

+ijhh�1; h�2ij4¡m+i. "� jhh�1; h�2ij
3¡m+n

2
+�
; 8� 2 [0; 1]:

Moreover for every 06m;n6 3,��E�
JY";�1m K�̂�2

(n)��� . "
m+n¡3

2 jhh�1; h�2ijm if m> 4¡n;
E
�
JY";�1m K�̂�2

(n)�
= 0 if m< 4¡n:

Proof. Using the integration by parts formula (72) we decompose

E
�
�̂�1
(m)

�̂�2
(n)�

= E
�
�4¡m(Q1

4¡m��1
(4)
h�1

4¡m)�4¡n(Q1

4¡n��2
(4)
h�2

4¡n)

�
=

X
i=0

4¡n �
4¡m
i

��
4¡n
i

�
i!E

¡
Q5¡n¡i
8¡m¡n¡i��1

(8¡n¡i)
Q5¡m¡i
8¡m¡n¡i��2

(8¡m¡i)�hh�1; h�2i8¡m¡n¡i:
We can bound the term

"
m+n

2
+i¡5

E
¡
Q5¡n¡i
8¡m¡n¡i��1

(8¡n¡i)
Q5¡m¡i
8¡m¡n¡i��2

(8¡m¡i)�.


"n+i¡52 ��1
(8¡n¡i)





L2




"m+i¡5
2 ��2

(8¡m¡i)




L2

(see Remark 11) and therefore, using the bound "jhh�1; h�2ij= "CY ;"(�1¡ �2). 1,��E� �̂�1(m)�̂�2(n)���.X
i=0

4¡n

"
1+

n¡m
2

+ijhh�1; h�2ij4¡m+i. "� jhh�1; h�2ij
3¡m+n

2
+�
:

For the second bound we compute

E
h
JY";�1m K�̂�2

(n)

�2

i
= E

�
�m(h�1


m)�4¡n(Q1
4¡n��2

(4)
h�2

4¡n)

�
=

X
i=0

m^4¡n �
m
i

��
4¡n
i

�
i!E

¡

D4¡n¡i(h�1


m); Qm+1¡i
m+4¡n¡i��2

(4+m¡i)
h�2

m+4¡n¡i�

H
m+4¡n¡i

�
:

Since Dh�1

m=0 we obtain E

�
JY";�1m K�̂�2

(n)�
=0 if m< 4¡n and��E�

JY";�1m K�̂�2
(n)��� . "

m+n¡3
2 E["

¡3¡m¡n
2 Qm+n¡3

m ��2
(m+n)

]jhh�1; h�2ijm

if m> 4¡n, with
E["

¡3¡m¡n
2 Qm+n¡3

m ��2
(m+n)

]. 1: �

Using Lemma 14 we obtain

E
�
��1
(1)
��2
(1)�

= 9E
�
(f3;"JY";�12 K+�̂";�1

(1)
)(f3;"JY";�22 K+�̂�2

(1)
)
�
= 18 (f3;")2 [CY ;"(�1¡ �2)]2+E

�
�̂�1
(1)
�̂�2
(1)�

and thus G(t¡ s; x) = 18(f3;")2
R
x1
0;x2

P
i�jKi;x(x1

0 )Kj;x(x2)Pt¡s(x1
0 )[CY ;"(�1¡ �2)]2+ Ĝ(t¡ s; x) with

Ĝ(t¡ s; x) :=
Z
x1
0;x2

X
i�j

Ki;x(x1
0 )Kj;x(x2)Pt¡s(x1

0 )E
�
�̂0
(1)
�̂(t¡s;x2)
(1) �

:
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We have the estimation ��E� �̂�1(1)�̂�2(1)���. "�CY ;"(�1¡ �2)2+�: (34)

Similarly

E
�
�~ �1
(1)
��2
(1)�

= 3 "¡1/2f2;"E
�
JY";�12 K(f3;"JY";�22 K+ �̂�2

(1)
)
�
=6 "¡1/2f2;"f3;"[CY ;"(�1¡ �2)]2;

and��E�
��1
(0)
��2
(2)��� =

��E�¡
f3;"JY";�13 K+ �̂�1

(0)�¡
6f3;"Y";�2+�̂�2

(2)����. jf3;"j��E�
JY";�13 K�̂�2

(2)���+ ��E� �̂�1(0)�̂�2(2)���
. "�(jf3;"j+1)CY ;"(�1¡ �2)2+�;

(35)

and ��E�
��1
(0)
��2
(1)��� =

��E��(0)¡3f3;"JY",�22 K+�̂(1)
����. jf3;"jE�

JY";�13 K�̂�2
(1)�

+E
�
�̂�1
(0)
�̂�2
(1)�

. "1/2(jf3;"j+1)CY ;"(�1¡ �2)3:
(36)

We have by Lemma 30 that for all � 2 (0; 1) jĜ(t¡ s; x)j . "�(jt¡ sj1/2+ jxj)¡5¡� : Using estimate (64)

together with Lemma 24, we have that for all � 2 (0; 1), � 0 2 (0; �) that jH(t; x)j . "�
0
(jt ¡ sj1/2 + jxj)¡�.

Furthermore, letting

�qR̂" =

Z
s;x

[�qY"(t; x�¡x)¡�qY"(t; x�)] Ĝ(t¡ s; x);
we have

1
3
�qR" =6(f3;")

2

Z
s;x

[�qY"(t+ s; x�¡x)¡�qY"(t; x�)]Ps(x)[CY ;"(s; x)]
2+

1
3
�qR̂" :

The term

6(f3;")
2

Z
s;x

[�qY"(t+ s; x�¡x)¡�qY"(t; x�)]Ps(x)[CY ;"(s; x)]
2

can be shown to converge in law to 6
R
s;x
[�qX(t+ s; x�¡x)¡�qX(t; x�)]Ps(x) [CX(s; x)]

2 in CT�C ¡1/2¡2� with
the standard techniques used in the analysis of the �34 model. For all �>0 su�ciently small we have the bounds,



�qR"






L1

+





�qR̂"






L1

6 "�kY"kCT�C ¡1/2¡2�2
q(1/2+2�+2�)

Z
s;x

(jxj+ jt¡ sj1/2)�¡5

. "�kY"kCT�C ¡1/2¡2�2
q(1/2+2�+2�);

which shows that these remainders go to zero in C ¡1/2¡2� as "!0, since kY"kCT�C ¡1/2¡2� is bounded in Lp(
).

Moreover, it is easy to see that �qR" ¡�qR̂" is bounded in Lp(
; C ¡1/2). Note thatZ
s;x

G(t¡ s; x)=
Z
s;x

Ps(x)E
�
�0
(1)�(s;x)

(1) �
= 18(f3;")2

Z
s;x

Ps(x)[CY ;"(s; x)]
2+

Z
s;x

Ps(x)E
�
�̂0
(1)
�̂(s;x)
(1) �

;

Z
x

H(t; x)=

Z
s;x

Ps(x)E
�
�0
(0)�(s;x)

(2) �
=

Z
s;x

Ps(x)E
�
�0
(0)�̂(s;x)

(2) �
:

Here we used the fact that Z
x

X
i�j

Ki;x(x1
0 )Kj;x(0)=

Z
x

X
i;j

Ki;x(x1
0 )Kj;x(0)= �(x1

0 );

since
R
x
Ki;x(x1

0 )Kj;x(0) = 0, where ji ¡ j j > 1. This is readily seen in Fourier space taking into account the
support properties of the Littlewood-Paley blocks. Now,Z

s;x

Ps(x)E
�
�̂0
(1)
�̂(s;x)
(1) �

;

Z
s;x

Ps(x)E
�
�0
(0)
�̂(s;x)
(2) �

;

converge to �nite constants due to the bounds (34) and (35) and by Lemma 27
R
s;x
Ps(x)[CY ;"(s; x)]

2. jlog"j:
Finally, from (36) we haveZ

�1;�2

E
�
��1
(0)
��2
(1)�

��1;�2=

Z
s;x

Ps(x)E
�
�0
(0)
�(s;x)
(1) �

=O("¡1/2):
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Indeed Lemma 27 again yields "
R
s;x
Ps(x)CY ;"(s; x)

3. 1.
Thus

R
�1;�2

E
�
��1
(0)
��2
(1)�

��1;�2 gives a diverging constant which depends on all the (fn;")n. Making the choice
to de�ne the renormalisation constants d� as in eq. (5) we cancel exactly these contributions which are either
(F")" dependent and/or diverging. In particular we verify that we can satisfy the constraint (11).

Finally, noting that �Q1D=(1¡J0) and �2Q1
2D2=(1¡J0¡J1) we can write the trees of (32) as

�qY" (��) = (f3;")
2

Z
�1;�2

(1¡ J0)(JY";�12 KJY";�22 K) ��1;�2

+
f3;"
3

Z
�1;�2

�Q1D (�̂�1
(1)JY";�22 K+ JY";�12 K�̂�2

(1)
) ��1;�2+

1
9

Z
�1;�2

�Q1D(�̂�1
(1)
�̂�2
(1)
) ��1;�2 ;

�qY~" (��) = "
¡1

2f2;" f3;"

Z
�1;�2

(1¡ J0)(JY";�12 KJY";�22 K) ��1;�2+
1
3

Z
�1;�2

�Q1D(�~ �1
(1)
�̂�2
(1)
) ��1;�2 ;

�qY" (��) = (f3;")
2

Z
�1;�2

JY";�13 KY�2 ��1;�2

+
f3;"
6

Z
�1;�2

�Q1D (6�̂�1
(0)
Y";�2+ JY";�13 K�̂�2

(2)
) ��1;�2+

1
6

Z
�1;�2

�Q1D (�̂�1
(0)
�̂�2
(2)
) ��1;�2 ;

�qY" (��) = (f3;")
2

Z
�1;�2

(1¡ J1)(JY";�13 KJY";�22 K) ��1;�2+
1
3
�qR" (��)

+6(f3;")2
Z
s;x

[�qY"(t+ s; x�¡x)¡�qY"(t; x�)]Ps(x)[CY ;"(s; x)]2+
1

3
�qR̂" +

+
1
3

Z
�1;�2

�2Q1
2D2(3�̂�1

(0)JY";�22 K+ JY";�13 K�̂�2
(1)
) ��1;�2+

1
3

Z
�1;�2

�2Q1
2D2(�̂�1

(0)
�̂�2
(1)
) ��1;�2 ;

(37)

with 1

3
�qR" (��)�OL1(2q(1/2+2�+2�)) and 1

3
�qR̂" (��)+

1

3
�qR" (��)�OL1("� 2q(1/2+2�+2�)).

Comparing (37) with the canonical trees in (21) we can identify the remainder terms �qŶ"
�
that need to

converge to zero in order for �qY"
� to converge to �qX

� .

2.2.2 Estimation of renormalised second-order trees

In this section we show that the remainder terms identi�ed in (37) converge to zero in probability. First notice
that we can bound (37) using Lemmas 33,35 and 36 as



�nQ1

n

Z
�1;�2

Dk (��1
(i)
��2
(j)
) ��1;�2






Lp
.





Z
�1;�2

Dk (��1
(i)
��2
(j)
) ��1;�2






Lp
:

Therefore, taking the derivatives in (37) we see that it su�ces to bound in Lp(H
k+`) the term

��1
(4¡m)

��2
(4¡n)

h�1

k
h�2


`=

�
3!f3;"
(3¡m)! JY�1

m¡1K+ �̂�1
(4¡m)

��
3!f3;"
(3¡n)! JY�2

n¡1K+ �̂�2
(4¡n)

�
h�1

k
h�2


` (38)

for m+n=5 and 06 k+ `6 2. This yields some constraints on the number of branches of trees:

�qY" $ m+ k=3; n+ `=3

�qY~" $ m=3; k=0; n=2; `=1

�qY" $ m+ k=4; n+ `=2

�qY" $ m+ k=4; n+ `=3:

(39)

In (37), the terms proportional to (f3;")2 will generate �nite contributions in the limit. In particular it is easy

to see that they converge respectively to (�(3))2X ; (�(3))2X ;�(3)�(2)X ; (�(3))2X . All other terms will
vanish in probability, verifying (26), due to estimates we are going to establish now.
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We consider the terms proportional to �̂�1
(4¡m)

�̂�2
(4¡n), all the other similar terms featuring at least one

remainder �̂�
(m) can be estimated with exactly the same technique, and are easily shown to be vanishing in the

appropriate topology. One of the key observations of this paper, Lemma 37, allows us to rewrite products of
divergencies in the form �m(u)�n(v) as a sum of divergences �`(w), which are then easy to estimate in Lp using
Lemma 33. We obtain

�̂�1
(4¡m)

�̂�2
(4¡n)

= �m(Q1
m��1

(4)
h�1

m)�n

¡
Q1
n��2

(4)
h�2

n�

=
X

(q;r;i)2I
C
q;r;i

�m+n¡q¡r¡
Dr¡iQ1
m��1

(4)
h�1

m;Dq¡iQ1

n��2
(4)
h�2

n�

H
q+r¡i

�
=

X
(q;r;i)2I

C
q;r;i

"
1+

r+q

2
¡i
�m+n¡q¡r(h�1+r¡i

m+r¡i(�1)h�1

m+r¡i;�1+q¡i

n+q¡i(�2)h�2

n+q¡iiH
q+r¡i)

with I = f(q; r; i)2N3: 06 q6m; 06 r6n; 06 i6 q ^ rg and

�i
j(�) := "

¡ i

2 Qi
j��

(3+i)
:

By Remark 34, for every n;m> 1 and 	2Dom �n we can write �n(	)h
m= �n(	
h
m), and thereforeZ
�̂�1
(4¡m)

�̂�2
(4¡n)

h�1

k
h�2


`��1;�2=

=
X
I

C
q;r;i

"
2+q+r¡2i

2 �m+n¡q¡r
Z
�1+r¡i
m+r¡i(�1)�1+q¡i

n+q¡i(�2)h�1

m¡q
h�2


n¡r
h�1

k
h�2


`jhh�1; h�2ijq+r¡i��1;�2:

The following result allows us to estimate the quantity above in Lp(H
k+`).

Lemma 15. Under Assumption 2 we have the bound



�m+n¡q¡r
Z
�1+r¡i
m+r¡i(�1)�1+q¡i

n+q¡i(�2)h�1

m¡q
h�2


n¡r
h�1

k
h�2


`jhh�1; h�2ijq+r¡i��1;�2





Lp(H
k+`)

2

.
Z
jhh�1; h�10ij

m+k¡qjhh�2; h�20ij
n+`¡r jhh�1; h�2ijq+r¡ijhh�10; h�20ij

q+r¡ij��1;�2jj��10;�20j:

Proof. Thanks to Lemma 33 the integral can be estimated withX
j=0;h6j

m+n¡q¡r 



Z Dh�1+r¡i
m+r¡i(�1) D

j¡h�1+q¡i
n+q¡i(�2)h�1


m¡q
h�2

n¡r
h�1


k
h
`jhh�1; h�2ijq+r¡i��1;�2





Lp(V )

2

;

with V =H
m+k+n+`¡q¡r+j. We have that k�kLp(H
k+`)
2 = kk�kH
k+`

2 k
Lp/2
1/2 and therefore we can bound each

term in the sum above as

. (

Z
khDh�1+r¡i

m+r¡i(�1)D
j¡h�1+q¡i

n+q¡i(�2);D
h�1+r¡i

m+r¡i(�1
0)Dj¡h�1+q¡i

n+q¡i(�2
0)iH
jkLp/2�

�jhh�1; h�10ij
m+k¡q jhh�2; h�20ij

n+`¡rjhh�1; h�2ijq+r¡ijhh�10; h�20ij
q+r¡ij��1;�2jj��10;�20j)

1/2

Using Hölder's inequality we get the estimate

khDh�1+r¡i
m+r¡i(�1)D

j¡h�1+q¡i
n+q¡i(�2);D

h�1+r¡i
m+r¡i(�1

0)Dj¡h�1+q¡i
n+q¡i(�2

0)iH
jkLp/2
. khDh�1+r¡i

m+r¡i(�1);D
h�1+r¡i

m+r¡i(�1
0)iH
hkLpkhDj¡h�1+q¡i

n+q¡i(�2);D
j¡h�1+q¡i

n+q¡i(�2
0)iH
j¡hkLp

Now to bound terms of the type khDh�1+a
m+a(�);Dh�1+a

m+a(� 0)iH
hkLp we consider the cases h6m and h >m.
In the �rst region we use Lemma 36 to estimate

khDh�1+a
m+a(�);Dh�1+a

m+a(� 0)iH
hkLp .



DhQ1+a

m+a "
¡1+a

2 ��1
(4+a)





L4p(H
h)

2



DhQ1+a

m+a "
¡1+a

2 ��10
(4+a)





L4p(H
h)

2

.



"¡1+a

2 ��1
(4+a)





L4p

2



"¡1+a

2 ��10
(4+a)





L4p

2
:

If h > m we �rst commute h ¡ m derivatives in the expression DhQ1+a
m+a using formula (68) and then apply

Lemma 36 to obtain the bound


DhQ1+a
m+a "

¡1+a

2 ��1
(4+a)





L4p(H
h)

2 .



Dh¡m"

¡1+a

2 ��1
(4+a)





L4p

2 .



"¡1+a

2 ��1
(4+a)





Dh¡m;4p

:
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Thus, we need to know ��
(N) up to the order (4+ r¡ i+h¡m)_ (4+ q ¡ i+ j ¡h¡ n)6 (4 +n)_ (4 +m) to

perform this estimates. �

From Lemma 15 we obtain 8� 2 [0; 1/2):



"2+q+r¡2i2 �m+n¡q¡r
Z
�1+r¡i
m+r¡i(�1)�1+q¡i

n+q¡i(�2)h�1

m¡q
h�2


n¡r
h�1

k
h�2


`jhh�1; h�2ijq+r¡i��1;�2





Lp(H
k+`)

."�
�
"2+q+r¡2i¡�

Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡r jhh�1; h�2ijq+r¡ijhh�10; h�20ij

q+r¡ij��1;�2jj��10;�20j
�
1

2

:="
�

2(I)
1

2:

Our aim now is to estimate the quantity I. The idea is to use the bound "jhh� ; h� 0ij="CY ;"(�¡ � 0).1 to cancel
strategically some of the covariances jhh� ; h� 0ij. We will consider three regions:

If q+ r6 2 we use the bounds

"q+r¡2ijhh�1; h�2ijq+r¡ijhh�10; h�20ij
q+r¡i. "2jhh�1; h�2ijqjhh�10; h�20ijr

and then (we suppose r < 2)

"2¡r¡�jhh�2; h�20ij
n+`¡r. jhh�2; h�20ijn+`¡2+�

to obtain

I . "r¡�
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡2jhh�1; h�2ijq jhh�10; h�20ij

r j��1;�2jj��10;�20j

.
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡2+�jhh�1; h�2ijq j��1;�2jj��10;�20j: (40)

(If vice-versa q < 2 it su�ces to put � on the term jhh�1; h�2ijq+�.) Notice that in this case m+ k¡ q > 0:
In the case q+ r=3 if m+ k¡ q> 2 we estimate like before to obtain

I . "2¡�
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡r jhh�1; h�2ij

q+r

2 jhh�10; h�20ij
q+r

2 j��1;�2jj��10;�20j

.
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡r jhh�1; h�2ij1+� j��1;�2jj��10;�20j: (41)

Note that m+ k¡ q+ �¡ 1> 0 and m+ k¡ q+2�¡ 3>¡1 here. If m+ k¡ q=1 we bound

I .
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡r¡2jhh�1; h�2ij

3+�

2 jhh�10; h�20ij
3+�

2 j��1;�2jj��10;�20j (42)

and note that m+ k ¡ q ¡ 1/2+ �/2> 0, m+ k ¡ q ¡ 1+ � > 0, n+ `¡ r ¡ 2> 0. Finally if m+ k ¡ q=0 we
can only have m+ k=3; q=3; r=0; i=0 and thus

I . "3¡2�
Z
jhh�2; h�20ij

n+`jhh�1; h�2ij2¡� jhh�10; h�20ij
2¡� j��1;�2jj��10;�20j

.
Z
jhh�2; h�20ij

n+`+m+k¡6jhh�1; h�2ij2¡� jhh�10; h�20ij
2¡�j��1;�2jj��10;�20j (43)

If q+ r> 4 we bound �rst

"2q+2r¡2i+�¡4jhh�1; h�2ijq+r¡ijhh�10; h�20ij
q+r¡i. jhh�1; h�2ij

2¡ �

2jhh�10; h�20ij
2¡ �

2

(note that 2q+2r¡ 2i+ �¡ 4> �) to obtain:

I. "6¡q¡r¡�
Z
jhh�1; h�10ij

m+k¡q jhh�2; h�20ij
n+`¡r jhh�1; h�2ij

2¡ �

2jhh�10; h�20ij
2¡ �

2j��1;�2jj��10;�20j

Now in the cases m+k=3; n+ `=3 and m+k=4; n+ `=2 we can just write "6¡q¡r¡�="m+k¡q"6¡m¡k¡r¡�

and cancel the corresponding number of covariances to obtain

I .
Z
jhh�2; h�20ij

�jhh�1; h�2ij
2¡ �

2jhh�10; h�20ij
2¡ �

2j��1;�2jj��10;�20j (44)
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while for the casem+k=4;n+`=3 we have either `>1 or k>1 and therefore with one of the following bounds

"m+k¡1¡q"n+`¡r¡�jhh�1; h�10ij
m+k¡qjhh�2; h�20ij

n+`¡r . jhh�1; h�10ijjhh�2; h�20ij
�

"m+k¡q"n+`¡1¡r¡�jhh�1; h�10ij
m+k¡qjhh�2; h�20ij

n+`¡r . jhh�2; h�20ij
1+�

we obtain the estimates

I .
Z
jhh�2; h�20ij

1+�jhh�1; h�2ij
2¡ �

2jhh�10; h�20ij
2¡ �

2j��1;�2jj��10;�20j (45)

I .
Z
jhh�1; h�10ijjhh�2; h�20ij

�jhh�1; h�2ij
2¡ �

2jhh�10; h�20ij
2¡ �

2j��1;�2jj��10;�20j: (46)

We can use directly Lemma 31 to obtain a �nal estimate of (40), (41), (42), (45). For (43); (44) and (46) notice
that the integral over �1; �10 is �nite and thus the whole quantity is proportional to jhh�2; h�20ij

n. Globally, we have

I. 2(m+k+n+`¡6)q

as needed to prove (26). Lastly, by taking one more derivative of F" as done in Section 2.1, we can show (27)

for Y � =Y" ; Y" ; Y~" ; Y" , thus proving that Ŷ
�! 0 in CT

�/2C �¡� in probability 8�< j� j.

Appendix A Basics of paracontrolled analysis

In this section we recall the notations and the basic results of paracontrolled calculus introduced in [6] without
proofs. For more details on Besov spaces, Littlewood�Paley theory, and Bony's paraproduct the reader can refer
to the monograph [2].

A.1 Notation and conventions.
Throughout the paper, we use the notation a. b if there exists a constant c > 0, independent of the variables
under consideration, such that a 6 c � b, and we write a ' b if a . b and b . a. If we want to emphasize the
dependence of c on the variable x, then we write a(x).x b(x). For index variables i and j of Littlewood-Paley
decompositions (see below) we write i. j if there exists N 2N, independent of j, such that i6 j+N , and we
write i� j if i. j and j. i.

An annulus is a set of the form A = fx 2 R3: a 6 jxj 6 bg for some 0 < a < b. A ball is a set of the form
B = fx 2 R3: jxj6 bg. If f is a map from A �R to the linear space Y , then we write fs;t= f(t)¡ f(s). For
f 2Lp(Td) we write kf(x)kLxp(T3)

p :=
R
T3jf(x)jpdx.

Given a Banach space X with norm k�kX and T >0, we write CTX=C([0; T ];X) for the space of continuous
maps from [0; T ] to X , equipped with the supremum norm k�kCTX, and we set CX =C(R+; X). For �2 (0; 1)
we also de�ne CT�X as the space of �-Hölder continuous functions from [0; T ] to X , endowed with the seminorm
kf kCT�X= sup06s<t6T kf(t)¡ f(s)kX/ jt¡ sj�, and we write Cloc

� X for the space of locally �-Hölder continuous
functions from R+ to X. For 
 > 0, we de�ne

MT

X = fv:C((0; T ]; X) : kvkMT


X= kt 7! t
v(t)kCTX<1g:

The space of distributions on the torus is denoted by D 0(T3) or D 0. The Fourier transform is de�ned with the
normalization

F u(k)= û(k)=

Z
Td

e¡�hk;xiu(x)dx; k 2Z3;

so that the inverse Fourier transform is given by F ¡1v(x)= (2�)¡1
P

k e
�hk;xiv(k). Throughout the paper, (�;

�) will denote a dyadic partition of unity such that supp(�(2¡i�))\ supp(�(2¡j�))=; for ji¡ j j>1. The family
of operators (�j)j�¡1 will denote the Littlewood-Paley projections associated to this partition of unity, that is
�¡1u=F ¡1(�F u) and �j=F ¡1(�(2¡j�)F u) for j �0. We also use the notation Sj=

P
i<j�i. The Hölder-

Besov space B1;1
� (T3;R) for �2R will be denoted by C � and equipped with the norm

kf k�= kf kB1;1
� = sup

i>¡1
(2i�k�if kL1(T3)):
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If f is in C �¡" for all " > 0, then we write f 2 C �¡. We let Kq the kernel of �q so that �qf(x�) =R
T3Kx�;q(x)f(x)dx.

A.2 Schauder estimates
For �2 (0; 2), we de�ne the space L T

� =CT
�/2

L1\CTC �, equipped with the norm

kf kL T
�=max

�
kf k

CT
�/2

L1
; kf kCTC �

	
:

The notation is chosen to be reminiscent of L =@t¡�, by which we will always denote the heat operator with
periodic boundary conditions on Td. We also write L �=Cloc

�/2
L1\CC �. When working with irregular initial

conditions, we will need to consider explosive spaces of parabolic type. For 
>0, �2 (0;1), and T >0 we de�ne
the norm

kf kL T

;�=max

�
kt 7! t
f(t)k

CT
�/2

L1
; kf kMT


C �

	
and the space L T


;�=ff : [0; T ]!R:kf kL T

;�<1g. In particular, we have L T

0;�=L T
�. We introduce the linear

operator I:C(R+;D 0(T))!C(R+;D 0(T)) given by

If(t)=

Z
0

t

Pt¡sf(s)ds;

where (Pt)t>0 is the heat semigroup. Standard estimates in exposive spaces that are summarized in the following
Lemma.

Lemma 16. Let �2 (0; 2) and 
 2 [0; 1). Then

kIf kL t

;�. kf kMt


C �¡2 (47)

for all t > 0. If further �>¡�, then
ks 7!Psu0kL t

(�+�)/2;�. ku0kC ¡�: (48)

For all �2R, 
 2 [0; 1), and t > 0 we have

kIf kMt

C �. kf kMt


C �¡2 (49)

For all �2 (0; 2), 
 2 [0; 1), "2 [0; �^ 2
), t > 0 and f 2L t

;� with f(0)=0 we have

kf k
L t


¡"/2;�¡". kf kL t

;� (50)

Proofs can be found in [8]. We need also some well known estimates for the solutions of the heat equation
with sources in space�time Lebesgue spaces.

Lemma 17. Let � 2R and f 2LT
pBp;1

� , then for every �2 [0; 1] we have If 2C�/q C�+2(1¡�)¡(2¡2�+d)/p with

kIf k
CT
�/qC�+2(1¡�)¡(2¡2�+d)/p.T kf kLTpBp;1� ;

with 1

q
+

1

p
=1. Moreover, for every 
 < 
 0< 1¡ 1/p and every �< 2¡ 5/p+ � we have

kIf k
L T


 0;�. kv 7! v
f(v)kLTpBp;1�

Proof. We only show the second inequality as the �rst one is easier and obtained with similar techniques. Let
u= If , we have

t
k�iu(t)kL1 6 t1/q 2di/p
�Z

0

1

s¡
q e¡cq2
2it(1¡s) ds

�
1/q

�Z
0

t

s
pk�i f(s)kLp
p d s

�
1/p

.
;q 2id/p2¡2i/q
�Z

0

t

s
pk�i f(s)kLp
p d s

�
1/p
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which allows us to bound kIf kMT

C �. In order to estimate kt 7! t


0
If k

CT
�/2L1

we write

kt
 0�iu(t)¡ s

0
�iu(s)kL1 .

Z
s

t

v

0¡1k�iu(v)kL1dv+ jt¡ sj2i(d+2)/pkv 7! v
�if(v)kLt;xp

+





Z
s

t

v

0
�i f(v) d v






L1

We can estimate the �rst term asZ
s

t

v

0¡1k�iu(v)kL1dv. 2i(d+2)/pkv 7! v
�if(v)kLt;xp

Z
s

t

v

0¡
¡1dv:

For the third term we have



Z
s

t

v
�i f(v) d v






L1

.
�Z

s

t

dv

�
1/q

�Z
s

t

v
pk�i f(s)kL1
p dv

�
1/p

. 2id/p jt¡ sj1/q kv 7! v
�if(v)kLt;xp

We obtain then if 22ijt¡ sj6 1

kt
 0�i u(t)¡ s

0
�i u(s)kL1. 2id/pjt¡ sj1/qkv 7! v
�if(v)kLt;xp

and if 22ijt¡ sj> 1 we just use the trivial estimate

kt
 0�i u(t)¡ s

0
�iu(s)kL1. 2id/p2¡2i/q kv 7! v
�if(v)kLt;xp . 2id/pjt¡ sj1/qkv 7! v
�if(v)kLt;xp :

Therefore, for every �2 [0; 1]:

kt
 0�iu(t)¡ s
 0�iu(s)kL1. 2
(
d+2

p
¡2)i

22�i/q jt¡ sj�/q kv 7! v
�if(v)kLt;xp :

Choosing �/q=�/2 we obtain the desired estimate. �

A.3 Bony's paraproduct and some commutators
Paraproducts are bilinear operations introduced by Bony [3] in order to linearize a class of non-linear PDE
problems. They appear naturally in the analysis of the product of two Besov distributions. In terms of Little-
wood�Paley blocks, the product f g of two distributions f and g can be decomposed as

f g= f � g+ f � g+ f � g;
where

f � g= g� f :=
X
j>¡1

X
i=¡1

j¡2

�if�jg and f � g :=
X

ji¡j j61
�if�jg:

This decomposition behaves nicely with respect to Littlewood�Paley theory. We call f � g and f � g para-
products, and f � g the resonant term. We use the notation f 4 g= f � g+ f � g. The basic result about these
bilinear operations is given by the following estimates, essentially due to Bony [3] and Meyer [15].

Lemma 18. (Bony's paraproduct estimates) For any � 2R we have

kf � gkC �.� kf kL1kgkC �; (51)

and for �< 0 furthermore

kf � gkC �+�.�;� kf kC �kgkC �: (52)

For �+ � > 0 we have

kf � gkC �+�.�;� kf kC �kgkC �: (53)

A natural corollary is that the product f g of two elements f 2 C � and g 2 C � is well de�ned as soon as
�+ � > 0, and that it belongs to C 
, where 
=min f�; �; �+ �g.

We will also need the several commutator lemmas:
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Lemma 19. (Bony's commutator estimate) Let �> 0, � 2R, and let f ; g 2C �, and h2C �. Then

kf � (g�h)¡ (fg)�hkC �+�. kf kC �kgkC �khkC �:

When dealing with paraproducts in the context of parabolic equations it would be natural to introduce
parabolic Besov spaces and related paraproducts. But to keep a simpler setting, we choose to work with
space�time distributions belonging to the scale of spaces (CTC �)�2R for some T > 0. To do so e�ciently, we
will use a modi�ed paraproduct which introduces some smoothing in the time variable that is tuned to the
parabolic scaling. Let therefore ' 2 C1(R; R+) be nonnegative with compact support contained in R+ and
with total mass 1, and de�ne for all i>¡1 the operator

Qi:CC �!CC � ; Qif(t)=

Z
0

1
2¡2i'(22i(t¡ s))f(s)ds:

We will often apply Qi and other operators on CC � to functions f 2CTC � which we then simply extend from
[0; T ] to R+ by considering f(� ^T ). With the help of Qi, we de�ne a modi�ed paraproduct

f �� g :=
X
i

(QiSi¡1f)�ig

for f ; g 2 C(R+; D 0(T)). We collect in the following lemma various estimates for the modi�ed paraproduct,
proofs are again in [8].

Lemma 20.

a) For any � 2R and 
 2 [0; 1) we have

t
kf �� g(t)kC �. kf kMt

L1kg(t)kC �; (54)

for all t > 0, and for �< 0 furthermore

t
kf �� g(t)kC �+�. kf kMt

C �kg(t)kC �: (55)

b) Let �; � 2 (0; 2), 
 2 [0; 1), T > 0, and let f 2L T

;�, g 2CTC �, and L g 2CTC �¡2. Then

kf �� gkL T

;�. kf kL T


;�(kgkCTC �+ kL gkCTC �¡2): (56)

c) Let �2 (0; 2), 
 2 (0; 1); T > 0, and let f 2L T
�. Then for all � 2 (0; �] we have

kf kL T
� . kf(0)kC �+T (�¡�)/2kf kL T

� ;

kf kL T

;� . T (�¡�)/2kf kL T


;�:
(57)

Finally we introduce various commutators which allow to control non-linear functions of paraproducs and
also the interaction of the paraproducts with the heat kernel.

Lemma 21.

a) For �; �; 
 2R such that �+ �+ 
 > 0 and �2 (0; 1) there exists bounded trilinear maps

com1; com1:C �� C �� C 
!C �+�+
 ;

such that for smooth f ; g; h they satisfy

com1(f ; g; h)= (f � g) �h¡ f (g �h): (58)

com1(f ; g; h)= (f �� g) �h¡ f (g �h): (59)

b) Let �2 (0; 2), � 2R, and 
 2 [0; 1). Then the bilinear maps

com2(f ; g): =f � g¡ f �� g: (60)

com3(f ; g): =[L ; f �� ]g :=L (f �� g)¡ f ��L g: (61)

have the bounds

t
kcom2(f ; g)(t)k�+�. kf kL t

;�kg(t)kC �; t > 0: (62)
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as well as

t
kcom3(f ; g)(t)k�+�¡2. kf kL t

;�kg(t)kC �; t > 0: (63)

Proofs can be found in [8].

Appendix B Estimation of the kernels
In this section we recall a few well-known results on convolution of functions with known singularities around
zero. We remand to Section 10.3 of [9] for an extensive treatment of this subject. First of all we need to
characterize the local behaviour of the heat kernel Pt(x) and of the covariance CY ;"(t;x) of the Gaussian �eld Y".

Lemma 22. The heat kernel P :R�R3!R de�ned by Pt(x) =
1

(4pt)3/2
e
¡jxj

2

4t It>0 has the bound

jP (�)j. (jtj1/2+ jxj)¡3:

Let k 2N4 a multi-index with jk j=2k1+ k2+ ���+ k4. Then for every multi-index jk j6 2 we have:

jDkPt(x)j. (jtj1/2+ jxj)¡3¡jkj:

Remark 23. In this article we use a slightly di�erent version of the heat kernel, namely

Pt(x)=
1

(4pt)3/2
e
¡ jxj

2

4t e¡t It>0

in order to have that X(t; x) =
R
¡1
t R

T3Pt¡s(x ¡ y)v(s; y)dsdy is the stationary solution to L X = ¡X + v.
However, every estimate remains trivially valid in this setting.

Proof.

jPt(x)j(jtj1/2+ jxj)3. [1+ (jxjjtj¡1/2)3]e
¡ jxj

2

4jtj =(1+ j�j3)e¡
j�j
4 <+1

In the same way we prove that j@tPt(x)j . (jtj1/2 + jxj)5, j@xiPt(x)j . (jtj1/2 + jxj)4 and j@xi@xjPt(x)j .
(jtj1/2+ jxj)5. �

We recall a special case of Lemma 10.14 of [9], which is enough for our purpose. We use the notation
9�9 := (jtj1/2+ jxj) for � =(t; x)2R�T3.

Lemma 24. Let f ; g: R � T3 n f0g ! R smooth, integrable at in�nity and such that jf(�)j . 9�9� and
jg(�)j.9�9� in a ball B= f� 2R�T3:9�9< 1; � =/ 0g. Then if �; � 2 (¡5; 0) and �+ �+5< 0 we have

jf � g(�)j.9�9�+�+5

in a ball centered in the origin.
Moreover, if �; � 2 (¡5; 0) and 0 < � + � + 5 < 1 and for every multi-index jk j 6 2 we have jDkf(�)j .

9�9�¡jkj and jDkg(�)j.9�9�¡jkj, then
jf � g(�)¡ f � g(0)j.9�9�+�+5

in a ball centered in the origin.

Remark 25. The covariance CY ;" of Y" can be written as CY ;"=P �C~"�P with C~"(t; x) :=E(�"(t; x)�"(0;0)).
Recall from the introduction that C~"(t;x)="¡5C~

"
("¡2t; "¡1x) where C~

"
is the covariance of the Gaussian process

� de�ned on R� (T/")3, and C~
"
(t ¡ s; x ¡ y) = �(t ¡ s; x¡ y) if dist(x; y)6 1 and 0 otherwise (so that the

family of functions C~
"
is bounded uniformly on " by a Cc1 function). Then there exists a family of functions

CY
" de�ned on R� (T/")3 such that CY ;"(t; x) = "¡1CY" ("¡2t; "¡1x) and CY" (t; x)=

�
P �C~" �P

�
(t; x).

Lemma 26. The covariance CY ;" has the bound, for every multi-index jk j6 2:

jDkCY ;"(t; x)j. (jtj1/2+ jxj)¡1¡jkj:
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Moreover, we have

"jkj+1jDkCY ;"(t; x)j. 1

Proof. The �rst bound is obtained directly from Lemma 22 and Lemma 24. Indeed, since by hypothesis C" has
compact support, it is easy to see that

��C~"(t; x)��. (jtj1/2+ jxj)¡5. The second bound is obtained by a simple
change of variables in the convolution de�ning CY ;". �

Lemma 27. We have
R
s;x
Ps(x)[CY ;"(s; x)]

2. jlog"j and for every n> 3 "n¡2
R
s;x
Ps(x)[CY ;"(s; x)]

n. 1.

Proof. From the fact that P"2s(" x)= "¡3Ps(x) together with Remark 25 we obtainZ
R�T3

Ps(x)[CY ;"(s; x)]2dsdx.
Z
B(0;"¡1)

Ps(x)[CY
" (s; x)]2dsdx. jlog"j

with B(0; R) = f� 2 R4: 9�9 < R; � =/ 0g a �parabolic� ball centered in the origin. The second estimation is
obtained in the same way. �

Lemma 28. For m2 (0; 3), n2 (3; 5), de�ne for � ; � 02R�T3

Im :=

Z
jCY ;"(� ¡ � 0)jm j���� 0j; I~n :=

Z
jCY ;"(� ¡ � 0)jn j�~��~� 0j

with �� :=Kq;x�(y)�(t¡ s)d� and �~� := [
R
x
Kq;x�(x)Pt¡s(x¡ y)]d� for � =(s; y). Then

Im. 2mq and I~n. 2(n¡4)q:

Proof. The estimation of Im is easily obtained by Lemma 26 and a change of variables. For I~n observe that
for every q > 0

�~�= [

Z
x

Kq;x�(x)(Pt¡s(x¡ y)¡Pt¡s(x�¡ y))]d�

and then we can apply Lemma 24 to obtain the result. �

Lemma 29. We have for every � 2 [0; 1]

sup
x2T3

jCY ;"(t; x)¡CY ;"(0; x)j. "¡1¡2� jtj�

Proof. It is easy to obtain by interpolation knowing that j@tCY ;"(t; x)j. "¡3 from Lemma 26. �

Lemma 30. We have for every �< 3X
i�j

����Z Ki(x¡ y)Pt(y)dy
���� Z jKj(x¡ y)j

(jy j+ t1/2)�
dy. 1

(jxj+ t1/2)3+�

Proof. We will show that ����Z Ki(x¡ y)Pt(y)dy
����. 2¡i(jxj+ t1/2+2¡i)¡4; (64)

and that Z
jKi(x¡ y)j
(jy j+ t1/2)�

dy. (jxj+ t1/2+2¡i)¡�; (65)

from which we deduce thatX
i�j

����Z Ki(x¡ y)Pt(y)dy
���� Z jKj(x¡ y)j

(jy j+ t1/2)�
dy.

X
i

2¡i

(jxj+ t1/2+2¡i)4+�
:

Bounding the sum over i with an integral, we concludeZ
0

1d�
�

�

(jxj+ t1/2+�)4+�
=

1

(jxj+ t1/2)3+�

Z
0

1/(jxj+t1/2) d�
(1+�)4+�

. 1

(jxj+ t1/2)3+�
:
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Let us show (64). We want to estimate

I =

Z
Ki(x¡ y)Pt(y)dy=

Z
Ki(x¡ y)[Pt(y)¡Pt(x)]dy

=

Z
0

1

d�

Z
Ki(x¡ y)[Pt0(x+ �(y¡x))(y¡x)]dy

jI j .
Z
0

1

d�

Z
j(y¡x)Ki(x¡ y)jjPt0(x+ �(y¡x))jdy. 2¡i

Z
0

1

d�

Z
jyK1(y)jjPt0(x+ �2¡iy)jdy

. 2¡i
Z
0

1

d�

Z
jyK1(y)j

e¡cjx+�2
¡iy j2/t

t2
dy

where

jPt0(z)j=

�����Ce¡jz j
2/t

t4/2
z

t1/2

�����6Ce¡cjz j
2/t

t2
:

When t1/2> 2¡i; jxj we have

jI j. 2¡i t¡2. 2¡i(jxj+ t1/2+2¡i)¡4:

When 2¡i> t1/2; jxj we estimate simply

jI j.
Z
jKi(x¡ y)jPt(y)dy. 23i. 2¡i(jxj+ t1/2+2¡i)¡4:

When jxj>2¡i; t1/2 we have instead that either jxj>2�2¡ijy j or jxj<2�2¡ijy j. In the �rst region jx+ �2¡iy j>
cjxj so

jI j. 2¡i
Z
0

1

d�

Z
jyK1(y)j

e¡c
0jxj2/t

t2
dy. 2¡ie

¡c0jxj2/t

t2
. 2¡ijxj¡4. 2¡i(jxj+ t1/2+2¡i)¡4:

while in the second region jy j > 2ijxj/ (2�), then jyK1(y)j 6 jyK1(y)j1/2F (2ijxj/ (2�)) where F is a rapidly
decreasing function and in this region

jI j . 2¡i
Z
0

1

d�F (2ijxj/(2�))
Z
e¡cjx+�2

¡iyj2/t

t2
dy

. 2¡i
Z
0

1

d�F (2ijxj/(2�))
Z
e¡c

0j�2¡iyj2/t

t3/2j�2¡iy j
dy. 2¡i

Z
0

1

d�F (2ijxj/(2�)) 23i

�3jxj

Z
e¡c

0jyj2/t

t3/2
dy

. 2¡i

jxj4
Z
0

1

d�F (2ijxj/(2�))2
3ijxj3
�3

. 2¡i

jxj4 . 2
¡i(jxj+ t1/2+2¡i)¡4:

So we conclude that (64) holds. Let us turn to (65). When t1/2> 2¡i; jxj we haveZ
jKi(x¡ y)j
(jy j+ t1/2)�

dy. 1
t�

Z
jKi(x¡ y)jdy.

1
t�
. (jxj+ t1/2+2¡i)¡�:

When 2¡i> t1/2; jxj we estimateZ
jKi(x¡ y)j
(jy j+ t1/2)�

dy. 2�i
Z

jK1(y)j
j2ix+ y j�dy. 2

2i sup
z

Z
jK1(y)j
jz+ y j�dy. 2

2i. (jxj+ t1/2+2¡i)¡�;

and �nally when jxj>2¡i; t1/2 we have either jxj>2¡i+1jy j or jxj<2¡i+1jy j. In the �rst region jx+2¡iy j>cjxj
so Z

jKi(x¡ y)j
(jy j+ t1/2)�

dy.
Z

jK1(y)j
jx+2¡iy j�dy. jxj

¡�. (jxj+ t1/2+2¡i)¡�;

while in the second jy j> 2ijxj/2, then jK1(y)j6 jK1(y)j1/2F (2ijxj/2) where F is another rapidly decreasing
function and in this regionZ

jKi(x¡ y)j
(jy j+ t1/2)�

dy.F (2ijxj/2)
Z
jK1(y)j1/2
j2¡iy j� dy. 2�iF (2ijxj/2). jxj¡�. (jxj+ t1/2+2¡i)¡�;

concluding our argument. �
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Lemma 31. For m;n2 (0; 5), k; `2 [0; 2) de�ne

Ik;m;n :=

Z
�1;2;�1;2

0
CY ;"(�1¡ �2)kCY ;"(�1¡ �2)`CY ;"(�1¡ �10)mCY ;"(�2¡ �20)nj��1;�2jj��10;�20j;

with ��1;�2 for ��= (t; x�), �i=(si; xi) i=1; 2 de�ned as

��1;�2 := [

Z
x;y

Kq;x�(x)
X
i�j

Ki;x(y)Kj;x(x2)Pt¡s1(y¡x1)]�(t¡ s2)d�1d�2:

If `=0, 0<m+ k¡ 2< 5, m+ k¡ 22 (¡1; 5) and k+m+n¡ 42 (0; 5) we have the estimate

Ik;m;n. 2(k+m+n¡4)q:

If (k+m¡ 2); (`+m¡ 2)2 (0; 5), k+m+ `¡ 42 (0; 5) and k+ `+m+n¡ 42 (0; 5) we have the estimate

Ik;m;n. 2(k+`+m+n¡4)q:

Proof. Observe that

��1;�2 = [
X
i�j

Z
x;y

Kq;x�(x2)Ki;x(y)Kj;x(x2)(Pt¡s1(y¡x1)¡Pt¡s1(x�¡x1))]�(t¡ s2)d�1d�2

+[
X
i�j

Z
x;y

(Kq;x�(x)¡Kq;x�(x2))Ki;x(y)Kj;x(x2)Pt¡s1(y¡x1)]�(t¡ s2)d�1d�2

= Kq;x�(x2)[Pt¡s1(x2¡x1)¡Pt¡s1(x�¡x1)]�(t¡ s2)d�1d�2
+[

X
i�j

Z
x;y

[Kq;x�(x)¡Kq;x�(x2)]Ki;x(y)Kj;x(x2)Pt¡s1(y¡x1)]�(t¡ s2)d�1d�2

= ���1;�2+ �̂�1;�2

where in the �rst line we used
R
y
Ki;x(y) = 0 and the fact that

R
x
Ki;x(x1

0 )Kj;x(x2) = 0 if ji ¡ j j > 1 andP
i;jKi;x(y)Kj;x(x2) = �(x2¡ y)�(x2¡x). Now the estimation of the term

I�k;m;n :=

Z
�1;2;�1;2

0
CY ;"(�1¡ �2)kCY ;"(�10¡ �20)`CY ;"(�1¡ �10)mCY ;"(�1¡ �2)nj���1;�2jj���10;�20j;

with ���1;�2=Kq;x�(x2)[Pt¡s1(x2¡x1)¡Pt¡s1(x�¡x1)]�(t¡ s2)d�1d�2 can be done with Lemma 24 and gives the
expected result. The integral

Îk;m;n :=

Z
�1;2;�1;2

0
CY ;"(�1¡ �2)kCY ;"(�10¡ �20)`CY ;"(�1¡ �10)mCY ;"(�1¡ �2)nj�̂�1;�2jj�̂�10;�20j;

with �̂�1;�2= [
P

i�j
R
x;y

[Kq;x�(x)¡Kq;x�(x2)]Ki;x(y)Kj;x(x2)Pt¡s1(y¡ x1)]�(t¡ s2)d�1d�2 can be estimated by
multiple changes of variables. We have Kq;x�(x)¡Kq;x�(x2)= 23q(x2¡x)

R
0

1
K 0(2q(x2¡x)� ¡ 2q(x�¡x2))d� , and

by the scaling properties of CY ;" and Pt;y, namely CY ;"(2¡2is; 2¡ix).2iCY ;"(s; x) and P2¡2is(2¡ix). 23iPs(x)
given by Lemma 22 and Lemma 26, we obtain easily the bound on Îk;m;n by rescaling the integral. �

Appendix C Some Malliavin calculus results
Let D be the Malliavin derivative, � the divergence (de�ned as the adjoint of D) and Pt the Ornstein-Uhlenbeck
semigroup. We refer to [22] for an extensive discussion on these operators. Call fW (h)gh2H the isonormal
Gaussian process indexed by H some real separable Hilbert space. For every 	2L2(
), Pt can be written via
the well-known Mehler's formula for 	=F (W (h)):

Pt	=PtF (W (h)) =EY"[F (e
¡tW (h)+ (1¡ e¡2t)1/2W 0(h))] (66)

where fW 0(h)gh2H is an independent copy of W . In our case we will consider the Gaussian process Y" indexed by
ht;x 8(t;x)2R�T3, withH=L2(R�T3), with Y"(t;x) de�ned as in Section 1. By a direct calculation we obtain

DPt	= e
¡tEW [F

0(e¡tW (h)+ (1¡ e¡2t)1/2W 0(h))]h= e¡tPtD	: (67)
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This gives a commutation result between the Malliavin derivative D and the generator of the Ornstein-Uhlenbeck
semigroup L (de�ned by Pt=etL, recall that L=¡�D ([22], Proposition 1.4.3)). Indeed, let 	 such thatE(	)=0,
then we have for every �> 0 and every j> 0:

D (j ¡L)¡�	=D
1

¡(�)

Z
0

1
t�¡1 e¡jtetL	dt=

1
¡(�)

Z
0

1
t�¡1 e¡(j+1)tPtD	=(j+1¡L)¡�D	 (68)

and the same works for every 	 (not necessarily centered) if j > 0. It is well-known (see [22]) that L acts on
square integrable functions 	 as

L	=¡
X
n=0

1

nJn	

where Jn	 is the projection of 	 on the n-th Wiener chaos. We can de�ne (j¡L)¡1 by its action on n-th order
chaoses as (j ¡ L)¡1 Jn	=

1

j+n
Jn 	 8n> 0; j > 1. The results recalled above allow for the following partial

chaos expansion :

Lemma 32. Let 	2L2(
). Then for every n2Nnf0g:

	=
X
k=0

n¡1
1
k!
�kJ0D

k	+ �nQ1
nDn	 (69)

with Qj
m=

Q
k=j
m (k¡L)¡1.

Proof. We have for any 	2L2(
):

	¡J0	=LL¡1(	¡J0	)=¡�DL¡1(	¡J0	)= � (1¡L)¡1D	

where we used (68) and the fact that the Malliavin derivative of a constant is zero. This yields

	=E(	)+ � (1¡L)¡1D	 (70)

Iterating this formula up to an order n and using the fact that J0(k¡L)¡1= 1

k
J0 we obtain the result. �

Notice that the lemma above implies �nQ1
nDn	=(1¡ J0:::¡ Jn¡1)	.

In order to have Lp estimations of the terms �nQ1
nDn	 generated by expansion (69), we will need the

following lemmas:

Lemma 33. ([22], Proposition 1.5.7) Let V be a real separable Hilbert space. For every p > 1 and every
q 2N; k> q and every u2Dk;p(H q
V ) we have

k�q(u)kDk¡q;p(V ).k;p kukDk;p(Hq
V )

Remark 34. Using Lemma 33 we can state a simpli�ed version of Lemma 39 in the case where F 2 V is
deterministic. Let V be a real separable Hilbert space. For every F 2 V and every u 2Dq;2(H
q) with q 2N
we have u
F 2Dom �q and

�q(u)F = �q(u
F ):

We can prove this formula as follows. First notice that for every smooth G 2 Dq;2(V ) and every smooth
u2Dq;2(H
q) we have

E(h�q(u
F ); GiV )=E(hu
F ;DqGiH
q
V ) =E(h�q(u)F ;GiV ):

Now since Dq(u
F )=Dqu
F and u2Dq;2(H
q) we have that u
F 2Dq;2(H
q
V ). Lemma 33 yields the
bound k�q(u
F )kL2(V ). ku
F kDq;2(H
q
V ) which allows to pass to the limit for G and �q(u
F ) in L2(V ).

Lemma 35. For every n;m2Nnf0g, the operator Qn
m=

Q
k=n
m

(k¡L)¡1 is bounded in Lp for every 1<p<1.

Proof. We have Qj 	= (j ¡ L)¡1	=
P

n=0
1

(j + n)¡1Jn	= (1/ j)E(	) + T�	 with T�	=
P

n=0
1

�(n)Jn	

and �(0) = 0. Then the operator T� satis�es the hypotheses of Theorem 1.4.2 of [22], with �(n) = h(n¡1) and
h(x)=

x

j x+1
analytic in a neighbourhood of 0. Therefore

kQj	kLp6E(	)+ kT�	kLp. k	kLp
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and the result follows applying repeatedly this inequality. �

Lemma 36. Let j 2Nnf0g and p> 1. There exists a �nite constant cp such that for every 	2Lp:


D(j ¡L)¡1

2 	




Lp(H)

6 cpk	kLp

(where the operator D(j ¡L)¡
1

2 is de�ned on every 	 polynomial in W (h1); :::;W (hn) and can be extended by
density on Lp).

Proof. First notice that we can suppose w.l.o.g. E(	)= 0 thanks to the commutation (68). Therefore we can
write D (j ¡L)¡

1

2 as

D(j ¡L)¡
1

2 =D(¡C)¡1(¡C) (j ¡L)¡
1

2

with C =¡ ¡L
p

. We decompose the second part as:

¡C (j ¡L)¡
1

2	=
X
n=1

1 �
n

j+n

�
1

2Jn	=T�	

With T�	 :=
P

n=0
1 �(n)Jn	. We can apply Theorem 1.4.2 of [22] to show that T� is bounded in Lp, indeed

�(n) = h(1 /n) and h(x) = (j x + 1)¡1/2 which is analytic in a neighbourhood of 0. Finally, we can apply
Proposition 1.5.2 of [22] to show that DC¡1 is bounded in Lp, thus concluding the proof. �

The following lemma is the most useful tool we used in the paper. It allows us to write products of decom-
positions of the type (69) as sums of iterated Skorohod integrals.

Lemma 37.
Let u = Fu(W (hu))hu


m, v = Fv(W (hv))hv

n with Fu; Fv 2 Cm+n(R) such that u 2 Dm+n;2(H
m), v 2

Dm+n;2(H
n). Then:

�m(u)�n(v)=
X
i=0

m^n X
q=0

m¡i X
r=0

n¡i �
m
q+ i

��
q+ i
i

��
n

r+ i

��
r+ i
i

�
i! �m+n¡q¡r¡2i(hDru;DqviH
q+r+i): (71)

And also

�m(u)�n(v) =
X
q=0

m X
r=0

n X
i=0

q^r �
m
q

��
q
i

��
n
r

��
r
i

�
i! �m+n¡q¡r(hDr¡iu;Dq¡iviH
q+r¡i): (72)

Proof. We have using Cauchy-Schwarz inequality and Lemma 33 that hDr�n(v); �j(u)iH
r2L2(
;H
m¡j¡r)
for every 06 r+ j6m. Then we can apply Lemma 39 to obtain

�m(u)�n(v)=
X
r=0

n �
n
r

�
�n¡r(hDr �m(u); viH
r):

Then using the commutation formula (73) we rewrite the r.h.s. as

�m(u)�n(v)=
X
r=0

n �
n
r

�X
i=0

r^m �
r
i

��
m
i

�
i! �n¡r(h�m¡i(Dr¡iu); viH
r):

We write h�m¡i(Dr¡iu); viH
r= h�m¡i(Dr¡iu); Fv(W (hv))hv

riH
r hv
n¡r and verify in the same way as before

that h�m¡i(Dr¡iu); Fv(W (hv))hv

riH
r satis�es the hypotheses of Lemma 41. We obtain

�m(u)�n(v) =
X
r=0

n X
i=0

r^m �
n
r

��
r
i

��
m
i

�
i! �n¡r[h�m¡i(Dr¡iu); Fv(W (hv))hv


riH
rhv
n¡r]

=
X
r=0

n X
i=0

r^m �
n
r

��
r
i

��
m
i

�
i!
X
`=0

m¡i �
m¡ i
`

�
�n¡r[�m¡i¡`(hDr¡iu;D`Fv(W (hv))hv


riH
r+`)hv
n¡r]

=
X
r=0

n X
i=0

r^m X
`=0

m¡i �
n
r

��
r
i

��
m
i

��
m¡ i
`

�
i!�m+n¡r¡i¡`(hDr¡iu;D`viH
r+`)
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where we used the fact that �k(	)h
n¡r= �k(	
h
n¡r) for 	2Dom �k, as seen in Remark 34. Call q= `+ i,
then

�m(u)�n(v) =
X
i=0

m^n X
q=i

m X
r=i

n �
n
r

��
r
i

��
m
i

��
m¡ i
q¡ i

�
i!�m+n¡q¡r(hDr¡iu;Dq¡iviH
q+r¡i);

and noting that

�
m
i

��
m¡ i
q¡ i

�
=

(m¡ i)!m!
(q¡ i)!(m¡ q)!i!(m¡ i)! =

q!m!

i!(q¡ i)!q!(m¡ q)! =
�
q
i

��
m
q

�
;

we have the nicer symmetric expression

�m(u)�n(v)=
X
i=0

m^n X
q=i

m X
r=i

n �
m
q

��
q
i

��
n
r

��
r
i

�
i! �m+n¡q¡r(hDr¡iu;Dq¡iviH
q+r¡i):

Finally we perform the change of variables q¡ i! q, r¡ i! r to get

�m(u)�n(v) =
X
i=0

m^n X
q=0

m¡i X
r=0

n¡i �
m
q+ i

��
q+ i
i

��
n

r+ i

��
r+ i
i

�
i! �m+n¡q¡r¡2i(hDru;DqviH
q+r+i):

The second formula is a straightforward change of indexes of the �rst one. �

Remark 38. Our choice of giving two distinct but closely related formulas in Lemma 37 is due to the fact that
the �rst formula has a more evident �physical meaning�. Indeed, vertices u and v (being non-polynomial) have
an in�nite chaos decomposition, which can be represented as having in�nite �legs� in a Feynman-like diagram.
It is apparent that the index i in �rst equation denotes contractions between the already existing legs of the
vertices u; v and that r; q stay for new legs in each vertex created by the Malliavin derivatives which are then
contracted with other legs from the other vertex. This leaves m+n¡ r¡ q¡ 2i legs overall uncontracted which
are arguments to the iterated Skorokhod integral and would be contracted with other composite vertices in the
Lp estimates. The second formula however, is more practical in the calculations.

We give below the results we used to prove Lemma 37.

Lemma 39. ([20], Lemma 2.1) Let q > 1, F 2 Dq;2, u 2 Dom(�q) and symmetric. Assume also that
806 r+ j6 q hDrF ; �j(u)iH
r2L2(
; H
q¡r¡j). Then 806 r6 q hDrF ; uir2Dom(�q¡r) and

F �q(u) =
X
r=0

q �
q
r

�
�q¡r(hDrF ; uiH
r):

Remark 40. Note that

�k(h
k)= JW k(h)K

where J�K stands for the Wick product. Indeed 8F 2 D1;2 we know that E[�(h
n)F ] = E[W (h) h
n¡1]

using the de�nition of � and therefore �n(h
n) = �n¡1(W (h)h
n¡1). We have also �n¡1(W (h)h
n¡1) =

�n¡1(h
n¡1)W (h)¡ (n¡ 1)hh; hi�n¡2(h
n¡2) using Lemma 39, and the result is proved by induction.

Lemma 41. Let `2N, F 2Dq;2(H
`), u2Dom (�q) with values in H
q+` and symmetric. Assume also that
h�j(u); DrF iH
`+r2L2(
; H
q¡r¡j) 806 r+ j6 q. Then 806 r6 q hu;DrF iH
`+r2Dom(�q¡r) and

h�q(u); F iH
`=
X
r=0

q �
q
r

�
�q¡r(hu;DrF iH
`+r)

Proof. Let q=1. We have for smooth G2D1;2, F 2Dq;2(H
`) and u2Dom (�q):

E(hhu; F iH
`;DGiH) = E(hu;DG
F iH
`+1)
= E(h�(u); F iH
`G)¡E(hu;DF iH
`+1G)

where we used the fact that D(G F ) = DG 
 F + G DF for smooth functions. The equality hhu; F iH
`;
DGiH= hu;DG
F iH
`+1 holds because u is symmetric.
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We can pass to the limit thanks to the assumption h�j(u); DrF iH
`+r 2L2(
; H
q¡r¡j) and obtain

�(hu; F iH
`)= h�(u); F iH
`¡hu;DF iH
`+1:

Now suppose the statement true for q¡ 1. We have that

h�q(u); F iH
` =
X
r=0

q¡1 �
q¡ 1
r

�
�q¡1¡r(h�(u);DrF iH
`+r)

=
X
r=0

q¡1 �
q¡ 1
r

�
�q¡r(hu;DrF iH
`+r) +

X
r=0

q¡1 �
q¡ 1
r

�
�q¡r¡1(hu;Dr+1F iH
`+r+1)

=
X
r=0

q �
q
r

�
�q¡r(hu;DrF iH
`+r)

�

Lemma 42. Let j ; k2N, u2Dj+k;2(H
j) symmetric and such that all its derivatives are symmetric. We have

Dk�j(u) =
X
i=0

k^j �
k
i

��
j
i

�
i! �j¡i(Dk¡iu) (73)

Proof. If j = 0, k = 1 or k = 0; j = 1 we have identities. Now let j = k = 1 and u 2 D2;2(H). We have
that D1;2(H) � Dom(�) ([22], Proposition 1.3.1), and since Du 2 D1;2(H
2) it is easy to see that 8h 2 H

hDu; hi 2D1;2(H) by computing its norm. Then we can apply Proposition 1.3.2 of [22] to obtain 8h2H

hD�(u); hi= hu; hi+ �(hDu; hi)

and since by hypothesis Du is symmetric we have �(hDu; hi) = h�Du; hi and then D�(u) = u + �Du. The
proof by induction is easy noticing that �v is symmetric whenever v is symmetric, and using the fact that
D�j= �jD+ j�j¡1. �
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