Raviart-Thomas finite elements of Petrov-Galerkin type - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2019

Raviart-Thomas finite elements of Petrov-Galerkin type

Résumé

Finite volume methods are widely used, in particular because they allow an explicit and local computation of a discrete gradient. This computation is only based on the values of a given scalar field. In this contribution, we wish to achieve the same goal in a mixed finite element context of Petrov–Galerkin type so as to ensure a local computation of the gradient at the interfaces of the elements. The shape functions are the Raviart–Thomas finite elements. Our purpose is to define test functions that are in duality with these shape functions: precisely, the shape and test functions will be asked to satisfy some orthogonality property. This paradigm is addressed for the discrete solution of the Poisson problem. The general theory of Babuška brings necessary and sufficient stability conditions for a Petrov–Galerkin mixed problem to be convergent. In order to ensure stability, we propose specific constraints for the dual test functions. With this choice, we prove that the mixed Petrov–Galerkin scheme is identical to the four point finite volume scheme of Herbin, and to the mass lumping approach developed by Baranger, Maitre and Oudin. Convergence is proven with the usual techniques of mixed finite elements.
Fichier principal
Vignette du fichier
DGP.pdf (430.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01615183 , version 1 (12-10-2017)
hal-01615183 , version 2 (22-05-2019)

Identifiants

Citer

François Dubois, Isabelle Greff, Charles Pierre. Raviart-Thomas finite elements of Petrov-Galerkin type. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53 (5), pp.1553 - 1576. ⟨10.1051/m2an/2019020⟩. ⟨hal-01615183v2⟩
417 Consultations
2843 Téléchargements

Altmetric

Partager

More