EXPONENTIAL CONVERGENCE RATE OF RUIN PROBABILITIES FOR LEVEL-DEPENDENT LEVY-DRIVEN RISK PROCESSES
Résumé
We explicitly find the rate of exponential long-term convergence for the ruin probability in a level-dependent Lévy-driven risk model, as time goes to infinity. Siegmund duality allows to reduce the problem to long-term convergence of a reflected jump-diffusion to its stationary distribution, which is handled via Lyapunov functions.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...