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Abstract

We explicitly find the rate of exponential long-term convergence for the ruin
probability in a level-dependent Lévy-driven risk model, as time goes to infinity.
Siegmund duality allows to reduce the problem to long-term convergence of a
reflected jump-diffusion to its stationary distribution, which is handled via
Lyapunov functions.
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1. Introduction

A non-life insurance company holds at time t = 0 an initial capital u = X(0) ≥ 0,
collects premiums at a rate p(x) > 0 depending on the current level of the capital
X(t) = x, and pays from time to time a compensation (when a claim is filed). The
aggregated size of claims up to time t > 0 is modeled by a compound Poisson process
(L(t) , t ≥ 0). That is, the number of claims is governed by a homogeneous Poisson
process of intensity β independent from the claim sizes. The claim sizes, in turn,
form a sequence U1, U2, . . . of i.i.d. nonnegative random variables with cumulative
distribution function B(·). The net worth of the insurance company is then given by
a continuous-time stochastic process X = (X(t), t ≥ 0), with

X(t) = u+

∫ t

0

p(X(s))ds−
N(t)∑
k=1

Uk = u+

∫ t

0

p(X(s)) ds− L(t), t ≥ 0. (1)

Examples of such level-dependent premium rate include the insurance company down-
grading the premium rate from p1 to p2 when the reserves reach a certain threshold;
or incorporating a constant interest force: p(x) = p + ix. In this work, a more
general risk model is considered. The surplus (1) is perturbed by a Brownian motion
{W (t) , t ≥ 0}, multiplied by a diffusion parameter σ, to account for the fluctuations
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around the premium rate. This diffusion parameter may also depend on X(t). We
further let the accumulated liability L(t) be governed by a pure jump, nondecreasing
Lévy process, starting from L(0) = 0. The financial reserves of the insurance company
evolve according to the following dynamics:

dX(t) = p(X(t)) dt+ σ(X(t)) dW (t)− dL(t), X(0) = u. (2)

In risk theory, one of the main challenges is the evaluation of ruin probabilities. The
probability of ultimate ruin is the probability that the reserves ever drop below zero:

ψ(u) := P
(
inf
t≥0

X(t) ≤ 0
)
. (3)

We stress dependence of ψ on the initial capital u. The probability of ruin by time T
is defined as

ψ(u, T ) := P
(

inf
0≤t≤T

X(t) ≤ 0
)
. (4)

We often refer to ψ(u) and ψ(u, T ) as infinite and finite time horizon ruin probability,
respectively. For a comprehensive overview on risk theory and ruin probabilities, see
the book [3].

We study the rate of exponential convergence of the finite-time horizon ruin probability
toward its infinite-time counterpart. The goal of this article is to provide an explicit
estimate for such rate: To find constants C, k > 0 such that

0 ≤ ψ(u)− ψ(u, T ) ≤ Ce−kT , for all T, u ≥ 0. (5)

This is achieved via a duality argument. For the original model (1), define the storage
process Y = {Y (t) , t ≥ 0} as follows:

Y (t) = L(t)−
∫ t

0

p(Y (s)) ds. (6)

We assume that p(y) = 0 for y < 0. This makes zero a reflecting barrier. This is
essentially a time-reversed version of the risk model (1), reflected at 0. For the general
model (2) perturbed by Brownian motion, the dual process is a reflected jump-diffusion
on the positive half-line. As t→∞, Y (t) weakly converges to some distribution Y (∞).
The crucial observation is: For T > 0 and u ≥ 0,

P(Y (T ) ≥ u) = ψ(u, T ), P(Y (∞) ≥ u) = ψ(u).

This is a particular case of Siegmund duality, see Siegmund [32]. This method was
first employed in [17], for the similar duality between absorbed and reflected Brownian
motion. It has become a standard tool in risk theory since the seminal paper of Prabhu
[25], see also [3, Chapter III, Section 2]. The problem (5) therefore reduces to the study
of the convergence of Y (t) toward Y (∞) as t→∞:

0 ≤ P(Y (∞) > u)− P(Y (T ) ≥ u) ≤ Ce−kT .

In this paper in Lemma 6, we state and prove Siegmund duality between the process (1)
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and a certain reflected diffusion with additional Lévy term. We believe this is a
contribution to the theory of Siegmund duality. There exist many similar Siegmund
duality results: [10, 15, 16, 33], but we could not find exactly the one we need, so we
proved it ourselves.

A stochastically ordered real-valued Markov process Y = {Y (t) , t ≥ 0} is such
that, for all y1 ≥ y2, we can couple two copies Y1(t) and Y2(t) of Y (t) starting from
Y1(0) = y1 and Y2(0) = y2, in such a way that Y1(t) ≥ Y2(t) a.s. for all t ≥ 0.
A Lyapunov function for a Markov process with generator L is, roughly speaking, a
function V ≥ 1 such that LV (x) ≤ −cV (x) for some constant c > 0, for all x outside of
a compact set. Then we can combine this coupling method with a Lyapunov function
to get a simple, explicit, and in some cases, sharp estimate for the rate k. This method
was first applied in Lund and Tweedie [18] for discrete-time Markov chains, and in
Lund et al. [19] for continuous-time Markov processes. A direct application of their
results yields the rate of convergence for the storage process defined in (6) and the level-
dependent compound Poisson risk model (1). However, the dual model associated to
the risk process (2) is a more general process since it is a reflected jump-diffusion on
the positive half-line.

The same method as in Lund et al. [19] has been refined in a recent paper by Sarantsev
[30] and applied to reflected jump-diffusions on the half line. The jump part is not a
general Lévy process, but rather a state-dependent compound Poisson process, which
makes a.s. finitely many jumps in finite time. In a recent paper [11], it was applied
to Walsh diffusions (processes which move along the rays emanating from the origin
in Rd as one-dimensional diffusions; as they hit the origin, they choose a new ray
randomly). Without attempting to give an exhaustive survey, let us mention classic
papers [7, 20, 21] which use Lyapunov functions (without stochastic ordering) to prove
the very fact of exponential long-term convergence, and a related paper of Sarantsev
[29]. However, the estimation of the rate k is more difficult. Some partial results in
this direction are provided in the papers [5, 6, 22, 26, 27, 28].

In this paper, we combine these two methods: Lyapunov functions and stochastic
ordering, to find the rate of convergence of the process Y , which is dual to the original
process X from (2). This process Y , as noted above, is a reflected jump-diffusion on
the half-line. We apply the same method developed in [19, 30]. In the general case, it
can have infinitely many jumps during finite time, or can have no diffusion component,
as in the level dependent compound Poisson risk model from (1). Therefore, we need
to adjust the argument from [30]. Our method only applies in the case of light tailed
claim size. Asmussen and Teugels in [4] studied the convergence of ruin probabilities
in the compound Poisson risk model with sub-exponentially distributed claim size. It
is shown that the convergence takes place at a sub-exponential rate.

The paper is organized as follows. In Section 2, we define assumptions on p,
σ, and the Lévy process L. We also introduce the concept of Siegmund duality to
reduce the problem to convergence rate of a reflected jump-diffusion to its stationary
distribution. Our main results are stated in Section 3: Theorem 3.1 and Corollary 1
provide an estimate for the exponential rate of convergence. Section 4 gives examples
of calculations of the rate k. The proof of Theorem 3.1 is carried out in Section 5.
Proofs of some technical lemmata are postponed until Appendix.
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2. Definitions and Siegmund duality

First, let us impose assumptions on our model (2). Recall that the wealth of the
insurance company is modeled by the right-continuous process with left limits X =
(X(t), t ≥ 0), governed by the following integral equation:

X(t) = u+

∫ t

0

p(X(s)) ds+

∫ t

0

σ(X(s)) dW (s)− L(t),

or, equivalently, by the stochastic differential equation (SDE) with initial condition
X(0) = u, given by (2). We say that X is driven by the Brownian motion W and Lévy
process L. A function f : R→ R, or f : R+ → R, is Lipschitz continuous if there exists
a constant K such that |f(x)− f(y)| ≤ K|x− y| for all x and y.

Assumption 1. The function p : R+ → R is Lipschitz. The function σ : R+ → R+ is
bounded, and continuously differentiable with Lipschitz continuous derivative σ′.

Assumption 2. The process L is a pure jump subordinator, that is, a Lévy process
(stationary independent increments) with L(0) = 0, and with a.s. nondecreasing
trajectories, which are right continuous with left limits. The process W is a standard
Brownian motion, independent of L.

Assumption 1 is not too restrictive as it allows to consider classical risk process such
as: (a) the compound Poisson risk process when p(x) = p, and σ(x) = 0; (b) the
compound Poisson risk process under constant interest force when p(x) = p+ ix, and
σ(x) = 0. However, the regime-switching premium rate when the surplus hits some
target is not covered.

Assumption 2 allows the study of the compound Poisson risk process perturbed by a
diffusion when p(x) = p, and σ(x) = σ, extensively discussed in the paper by Dufresne
and Gerber [8], as well as the Lévy-driven risk processes defined for example in Furrer
[9] or Morales and Schoutens [24]. It is known from the standard theory, see for example
[13, Section 6.2], that the Lévy measure of this process is a measure µ on R+ which
satisfies ∫ ∞

0

(1 ∧ x)µ(dx) <∞. (7)

Therefore, for all c > 0 we have:

µ[c,∞) <∞, and

∫ c

0

xµ(dx) <∞.

When µ(R+) = ∞, there are infinitely many jumps on any finite time interval. If
µ(R+) <∞, then there are finitely many jumps in a finite time interval; times between
jumps form i.i.d. exponential random variables with rates µ(R+), and the displacement

during each jump is distributed according to the normalized measure [µ(R+)]
−1
µ(·).

From Assumption 2, we have:

Ee−λL(t) = exp (tκ(−λ)) , for every t, λ ≥ 0, (8)
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where κ(λ) is the Lévy exponent:

κ(λ) :=

∫ ∞
0

[
eλx − 1

]
µ(dx), λ ∈ R. (9)

As shown in [1, Theorem 3.3.15], applied to the case b = 0 and X(t) ≡ t (in the
notation of that book), under Assumption 2, L is a Feller continuous strong Markov
process, with generator

N f(x) =

∫ ∞
0

[f(x+ y)− f(x)] µ(dy), (10)

for f ∈ C∞(R) with a compact support. For our purposes, we impose an additional
assumption.

Assumption 3. The measure µ has finite exponential moment: for some λ0 > 0,∫ ∞
1

eλ0x µ(dx) <∞. (11)

Remark 1. The existence of exponential moments on the jump sizes distribution
prevents us from considering heavy tailed claim size distribution, see [31, Chapter
5]. This case is treated in the work of Asmussen and Teugels [4] or Sato [31].

Under Assumption 3, we can combine (7) and (11) to get:

κ(λ) <∞ for λ ∈ [0, λ0).

The proof of the following technical lemmas are postponed to Appendices A and B.

Lemma 1. Under Assumption 3, we can extend the formula (10) for functions f ∈
C∞(R) which satisfy

Cf := sup
x≥0

e−λx|f(x)| <∞ for some λ ∈ (0, λ0). (12)

Lemma 2. Under Assumptions 2 and 3, the following quantity is finite:

m(µ) :=

∫ ∞
0

xµ(dx) <∞. (13)

Example 2.1. If {L(t), t ≥ 0} is a compound Poisson process with jump intensity β
and distribution B for each jump, then the Lévy measure is given by µ(·) = βB(·).

The following lemma can be proved by a classic argument, a version of which can be
found in any textbook on stochastic analysis, see for example [13, Section 5.2] or [31,
Chapter 6]. For the sake of completeness, we give the proof in the Appendix C.

Lemma 3. Under Assumptions 1 and 2, for every initial condition X(0) = u there
exists (in the strong sense, that is, on a given probability space) a pathwise unique



6 Pierre-Olivier Goffard, Andrey Sarantsev

version of (2), driven by the given Brownian motion W and Lévy process L. This is
a Markov process, with generator

Lf(x) := p(x)f ′(x) +
1

2
σ2(x)f ′′(x) +

∫ ∞
0

[f(x− y)− f(x)]µ(dy) (14)

for f ∈ C2(R) with a compact support. Under Assumption 3, this expression (14) is
also valid for functions f ∈ C2(R) satisfying (12) with f(−x) instead of f(x).

Define the ruin probability in finite and infinite time horizons as in (4) and (3). We are
interested in finding an estimate of the form

0 ≤ ψ(u)− ψ(u, T ) ≤ Ce−kT , u, T ≥ 0,

for some constants C, k > 0. Recall the concept of Siegmund duality.

Definition 1. Two Markov processes X = (X(t), t ≥ 0) and Y = (Y (t), t ≥ 0) on
R+ are called Siegmund dual if for all t, x, y ≥ 0,

Px(X(t) ≥ y) = Py(Y (t) ≤ x).

Here, the indices x and y refer to initial conditions X(0) = x and Y (0) = y.

Siegmund duality allows us to reduce the ruin problem to a convergence problem of
a reflected jump-diffusion Y = {Y (t) , t ≥ 0} toward stationarity. There is a vast
literature on Siegmund duality and a more general concept of functional duality of
stochastic processes, both in discrete and continuous time. The earliest example of
Siegmund duality was [17, p.210]: absorbed and reflected Brownian motions on R+ are
Siegmund dual. In a more general case, duality between absorbed and reflected pro-
cesses was noted in [32]. Siegmund duality was studied for diffusions, jump-diffusions,
and their absorbed and reflected versions, in [15, 16, 33], and for continuous-time
discrete-space Markov chains in [37]. The paper [34] deals with Siegmund duality for
general partially ordered spaces. See also survey [10] and references therein.

Take some functions p∗, σ∗ : R+ → R.

Definition 2. Consider an R+-valued process Y = (Y (t), t ≥ 0) with right-continuous
trajectories with left limits, which satisfies the following SDE:

Y (t) = Y (0) +

∫ t

0

p∗(Y (s)) ds+

∫ t

0

σ∗(Y (s)) dW (s) + L(t) +R(t), (15)

where R = (R(t), t ≥ 0) is a nondecreasing right-continuous process with left limits,
which starts from R(0) = 0 and can increase only when Y (t) = 0. Then the process Y
is called a reflected jump-diffusion on the half-line, with drift coefficient p∗, diffusion
coefficient σ∗, and driving jump process L with Lévy measure µ.

The following result is the counterpart of Lemma 3 for the process Y = {Y (t) , t ≥ 0}.

Lemma 4. If p∗ and σ∗ are Lipschitz, then for every initial condition Y (0) = y, there
exists in the strong sense a pathwise unique version of (15). This is a Markov process



Convergence rate of ruin probabilities 7

with generator A, given by the formula

Af(x) = p∗(x)f ′(x) +
1

2
σ2
∗(x)f ′′(x) +

∫ ∞
0

[f(x+ y)− f(x)] µ(dy), (16)

for f ∈ C2(R+) with a compact support and with f ′(0) = 0.

The proof, which is similar to that of Lemma 3, is provided in the Appendix D.

It was shown in [32] that a Markov process on R+ has a (Siegmund) dual process if
and only if it is stochastically ordered.

Theorem 1. A Markov process X, corresponding to a transition semigroup (P t)t≥0,
is stochastically ordered, if and only if one of the following two conditions holds:

(a) the semigroup (P t)t≥0 maps bounded nondecreasing functions into bounded
nondecreasing functions; that is, for every bounded nondecreasing f : R+ → R
and every t ≥ 0, the function P tf is also bounded and nondecreasing;

(b) for every t ≥ 0, c ≥ 0, the function x 7→ Px(X(t) ≥ c) is nondecreasing in x.

Proof. This equivalence follows from [12]. �

Now, consider the process (2), stopped at hitting 0. The following result is known in
the literature. A proof is provided in Appendix E for the sake of completeness.

Lemma 5. The process (2) is stochastically ordered.

Our main convergence theorem relies on the following result. We did not find this
exact result in the literature, a proof is given in Appendix F.

Lemma 6. Under Assumptions 1 and 2, the Siegmund dual process for the jump-
diffusion (2), absorbed at zero, is the reflected jump-diffusion on R+ from (15), starting
at Y (0) = 0, with drift and diffusion coefficients

p∗(x) = −p(x) + σ(x)σ′(x), (17)

σ∗(x) = σ(x). (18)

To summarize this section: We have shown that under Assumptions 1, 2, 3, the wealth
process is a stochastically ordered Markov process that admits as a Siegmund dual
process a Markov process defined as a reflected jump-diffusion process. Therefore, the
rate of convergence for ruin probabilities coincides with that of the dual process Y =
{Y (t) , t ≥ 0}, associated to the risk process X = {X(t) , t ≥ 0}, toward stationarity.

3. Main results

A common method to prove an exponential rate of convergence toward the stationary
distribution is to construct a Lyapunov function.

Definition 3. Let V : R+ → [1,∞) be a continuous function and assume there exists
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b, k, z > 0 such that

AV (x) ≤ −kV (x) + b1[0,z](x), x ∈ R+. (19)

then V is called a Lyapunov function.

We shall build a Lyapunov function for the Markov process Y in the form Vλ(x) = eλx,
for λ > 0. This choice appears to be suitable to tackle the rate of convergence problem
of reflected jump-diffusions process as the generator acts on it in a simple way. Under
Assumption 3, consider the function

ϕ(λ, x) := p∗(x)λ+
1

2
σ2(x)λ2 + κ(λ), λ ∈ [0, λ0), x ∈ R.

For a signed measure ν on R+ and a function f : R+ → R, we denote by (ν, f) =∫
fdν. Additionally, for a function f : R+ → [1,+∞), define the following norm:
‖ν‖f := sup|g|≤f |(ν, g)|. If f ≡ 1, then ‖·‖f is the total variation norm. Define

Φ(λ) = inf
x≥0

(−ϕ(λ, x)) = − sup
x≥0

ϕ(λ, x). (20)

Theorem 3.1. Under Assumptions 1, 2, 3, suppose

Φ(λ) > 0 for some λ ∈ (0, λ0). (21)

Then there exists a unique stationary distribution π for the reflected jump-diffusion
Y . Take a λ ∈ (0, λ0) such that k = Φ(λ) > 0. This stationary distribution satisfies
(π, Vλ) <∞. The transition function Qt(x, ·) of the process Y satisfies

‖Qt(x, ·)− π(·)‖Vλ ≤ 2 [Vλ(x) + (π, Vλ)] e−kt. (22)

The proof of Theorem 3.1 is postponed until Section 5. The central result of this
paper is a corollary of Theorem 3.1, direct consequence of the duality link established
between the processes X and Y .

Corollary 1. Under Assumptions 1, 2, 3, and the condition (21),

0 ≤ ψ(u)− ψ(u, T ) ≤ 2 [1 + (π, Vλ)] e−kT , u, T ≥ 0. (23)

Proof. In virtue of Siegmund duality we have that

ψ(u)− ψ(u, T ) = P(Y (∞) ≥ u)− P(Y (T ) ≥ u), (24)

where Y = (Y (t) , t ≥ 0) is a reflected jump-diffusion on R+, starting at Y (0) = 0,
and Y (∞) is a random variable distributed as π. We may rewrite (24) as

ψ(u)− ψ(u, T ) = π ([u,∞))−QT (0, [u,∞)).

Then the inequality (23) follows immediately from the application of Theorem 3.1. �

In the space-homogeneous case: p(x) ≡ p and σ(x) ≡ σ, the quantity ϕ(λ, x) is
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independent of x, and condition (21) means that there exists a λ > 0 such that
ϕ(λ) < 0. Then p∗ = p, and

ϕ′(0) = −p+ ψ′(0) = −p+m(µ).

It is easy to show that ϕ(·) is a convex function with ϕ(0) = 0. Therefore, condition (21)
holds if and only if ϕ′(0) < 0, or, equivalently,

p > m(µ). (25)

4. Explicit rate of exponential convergence calculation

In this section, we aim at studying the rate k of exponential convergence depending
on the parameters of the risk model. In the examples, we assume a constant premium
rate that satisfies the net benefit condition with

p = (1 + η)E[L(1)], η > 0,

and a constant diffusion parameter σ around the premium rate. Under these settings
and for finite measure ν (when L is the compound Poisson process), the rate of
exponential convergence, derived in this work, has been shown to be optimal in a
certain sense: See the paper [30, Section 6]. However, we absolutely do not claim that
for general (non-constant) premium rate p and diffusion parameter σ, this exponential
rate is optimal. Let us remark that the concept of optimal rate of convergence could
be understood in various ways; at the very least, it depends on the distance used.

4.1. Compound Poisson risk model perturbed by a diffusion

In this subsection, the risk process X = (X(t) , t ≥ 0) is defined as

X(t) = u+ pt+ σW (t)−
N(t)∑
k=1

Uk, (26)

where u ≥ 0 denotes the initial capital and p corresponds to the premium rate. The
process W = (W (t) , t ≥ 0) is a standard Brownian motion allowing to capture the
volatility around the premium rate encapsulated in the parameter σ > 0. The process
N = (N(t) , t ≥ 0) is a homogeneous Poisson process with intensity β > 0, independent
from the claim sizes U1, U2, . . . which are i.i.d. with distribution function B. The
premium rate satisfies the net benefit condition: p = (1 + η)βE(U), where η > 0 is
safety loading.

We can study the rate of exponential convergence of ruin probabilities; specifically, how
it depends on the parameters of the model: (a) the diffusion coefficient σ in front of the
perturbation term; (b) the safety loading η; (c) the shape of the claim size distribution.
The function ϕ(λ, x) for this risk process is given by

ϕ(λ, x) = −pλ+
1

2
σ2λ2 + β

[
B̂(λ)− 1

]
, λ ≥ 0, x ∈ R,

where B̂(λ) = E(eλU ) denotes the moment generating function (MGF) of the claim
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amounts distribution. As the expression of ϕ(λ, x) actually does not depend on x then

inf
x≥0

(−ϕ(λ, x)) = Φ(λ) = pλ− 1

2
σ2λ2 − β

[
B̂(λ)− 1

]
, λ ≥ 0, x ∈ R.

The rate of exponential convergence follows from

k = max
{λ≥0 ; B̂(λ)<∞}

Φ(λ).

The function λ 7→ Φ(λ) is strictly concave as

Φ′′(λ) = −σ2 − βB̂′′(λ) < 0 for all λ ∈ {λ ≥ 0 ; B̂(λ) <∞}.

It follows that
λ∗ := argmax

{λ≥0 ; B̂(λ)<∞}
Φ(λ) (27)

is solution of the equation
p− σ2λ− βB̂′(λ) = 0,

under the constraint λ∗ ∈ {λ ≥ 0 ; B̂(λ) < ∞}. The rate of exponential convergence
is then given by

k = Φ(λ∗) = pλ∗ −
1

2
σ2λ2

∗ − β
[
B̂(λ∗)− 1

]
.

In this example, we compare the rate of convergence k for three claim sizes distribution:
the Gamma distribution Gamma(α, δ) with associated probability density function

p(x;α, β) =

{
δα

Γ(α)x
α−1e−δx, for t > 0

0, Otherwise,

the exponential distribution Exp(δ) = Gamma(1, δ), and the mixture of exponential
distributions MExp(p, δ1, δ2) with associated probability density function

p(x; p, δ1, δ2) =

{
pδ1e

−δ1x + (1− p)δ2e−δ2x, if x > 0,

0, otherwise.

Let the claim size be distributed as Gamma(2, 1). Table 1 gives the rate of exponential
convergence for various combinations of values for the safety loading and the volatility.
For a given value of the safety loading, the rate of convergences decreases when the
volatility increases. Conversely, for a given volatility level, the rate of convergence
increases with the safety loading. The first row of Table 1 contains the rates of
convergence when σ = 0, associated to the compound Poisson risk model. Figure 1
displays the rates of exponential convergence depending on the volatility level for
different values of the safety loading: η = 0.1, 0.2, 0.3.

Remark 4.1. Consider the compound Poisson risk model perturbed by a diffusion
under constant interest force i > 0 by assuming that p(x) = p + ix, the function
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Safety loading

Volatility η = 0.05 η = 0.1 η = 0.15 η = 0.2 η = 0.25 η = 0.3

σ = 0 0.00082 0.00319 0.00704 0.01227 0.01881 0.02658

1 0.0007 0.00277 0.00613 0.01073 0.01653 0.02345

2 0.0005 0.00197 0.00439 0.00775 0.01201 0.01716

3 0.00033 0.00132 0.00297 0.00526 0.00819 0.01174

4 0.00023 0.00091 0.00204 0.00361 0.00563 0.0081

5 0.00016 0.00064 0.00145 0.00257 0.00402 0.00578

6 0.00012 0.00048 0.00107 0.0019 0.00297 0.00427

7 0.00009 0.00036 0.00082 0.00145 0.00227 0.00327

8 0.00007 0.00029 0.00064 0.00114 0.00178 0.00257

9 0.00006 0.00023 0.00052 0.00092 0.00144 0.00207

10 0.00005 0.00019 0.00042 0.00075 0.00118 0.0017

Table 1: Rate of exponential convergence in the compound Poisson risk model perturbed by
a diffusion, with Gamma(2, 1) distributed claim sizes, and different values for σ and η.

η=0.1

η=0.2

η=0.3

2 4 6 8 10
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k

Figure 1: The rate of exponential convergence in the compound Poisson risk model perturbed
by a diffusion depending on the volatility, for η = 0.1, 0.2, 0.3.

ϕ(λ, x) then becomes

ϕ(λ, x) = −(p+ ix)λ+
1

2
σ2λ2 + β

[
B̂(λ)− 1

]
, λ ≥ 0, x ∈ R.

Although the function ϕ(λ, x) depends on x, it is easily seen that

inf
x≥0

(−ϕ(λ, x)) = Φ(λ) = pλ− 1

2
σ2λ2 − β

[
B̂(λ)− 1

]
, λ ≥ 0, x ∈ R.

The maximization problem is the same as for the compound Poisson risk model per-
turbed by a diffusion and will lead to the same rate of convergence.

Let us turn to the study of rate of convergence for different claim sizes distributions. We
assume that the claim sizes are either exponentially distributed Exp(1/2), gamma dis-
tributed Gamma(2, 1), or mixture of exponential distributed MExp(1/4, 3/4, 1/4, 3/4).
The mean associated to the claim sizes distributions is the same, but the variance
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differs:

Var [Gamma(2, 1)] < Var [Exp(1/2)] < Var [MExp(3/4, 3/4, 1/4)] .

Table 2 contains the values of the rate of exponential convergence over the three claim
size distributions. The fastest convergence occurs in the gamma cases and the slowest

Claim Sizes Distributions

Volatility Safety Loadings Exp(1/2) Gamma(2, 1) MExp(3/4, 3/4, 1/4)

σ = 0 η = 0.1 0.00238 0.00319 0.00177

0.2 0.00911 0.01227 0.00668

0.3 0.01965 0.02658 0.01426

σ = 1 η = 0.1 0.00214 0.00277 0.00163

0.2 0.00824 0.01073 0.00621

0.3 0.01791 0.02345 0.01335

σ = 2 η = 0.1 0.00163 0.00197 0.00132

0.2 0.00638 0.00775 0.00511

0.3 0.01405 0.01716 0.01114

σ = 3 η = 0.1 0.00116 0.00132 0.001

0.2 0.0046 0.00526 0.00392

0.3 0.01024 0.01174 0.00865

σ = 4 η = 0.1 0.00083 0.00091 0.00074

0.2 0.0033 0.00361 0.00294

0.3 0.00737 0.0081 0.00654

σ = 5 η = 0.1 0.0006 0.00064 0.00056

0.2 0.00241 0.00257 0.00222

0.3 0.00541 0.00578 0.00496

σ = 6 η = 0.1 0.00045 0.00048 0.00043

0.2 0.00181 0.0019 0.0017

0.3 0.00407 0.00427 0.00382

σ = 7 η = 0.1 0.00035 0.00036 0.00033

0.2 0.0014 0.00145 0.00134

0.3 0.00315 0.00327 0.003

σ = 8 η = 0.1 0.00028 0.00029 0.00027

0.2 0.00111 0.00114 0.00107

0.3 0.0025 0.00257 0.0024

σ = 9 η = 0.1 0.00022 0.00023 0.00022

0.2 0.0009 0.00092 0.00087

0.3 0.00202 0.00207 0.00196

σ = 10 η = 0.1 0.00019 0.00019 0.00018

0.2 0.00074 0.00075 0.00072

0.3 0.00167 0.0017 0.00162

Table 2: Rate of exponential convergence in the compound Poisson risk model perturbed by
a diffusion for different claim size distribution.

in the mixture of exponential case. Figure 2 displays the evolution of the rate of
exponential convergence depending on the safety loading and the diffusion parameter
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for the different assumption over the claim sizes. In the wake of this numerical

Exp(1/2)

Gamma(2,1)

MExp(3/4,3/4,1/4)
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η

0.001

0.002

0.003

0.004

0.005

0.006

k

(a) The rate of exponential convergence depend-
ing on the safety loading and diffusion σ = 2.

Exp(1/2)

Gamma(2,1)

MExp(3/4,3/4,1/4)

2 4 6 8 10
σ

0.0005
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0.0015

k

(b) The rate of exponential convergence depend-
ing on the volatility and safety loading η = 0.1.

Figure 2: The rate of exponential convergence in the compound Poisson risk model perturbed
by a diffusion for different claim sizes distributions

study, we may conclude that the speed of convergence depends on the variance of
the process. Increasing the variance through the claim sizes distribution or via the
diffusion component makes the convergence toward the stationary distribution slower.

4.2. Lévy driven risk process

In this subsection, we compare the rate of exponential convergence of the ruin
probabilities when the liability of the insurance company is modeled by a gamma
process and an inverse Gaussian Lévy process. The Lévy measure of a gamma process,
GammaP(α, β), is given by

µ(dx) =
αe−βx

x
, for x > 0, (28)

where α, β > 0. Its Lévy exponent is

κ(λ) = α ln

(
β

β − λ

)
, for λ ∈ [0, β). (29)

Note that in this case, an explicit expression for finite-time and infinite-time ruin
probabilities can be found in [22]. However, [TBD] The function Φ(·) is strictly concave
as

Φ′′(λ) = −σ2 − α

(β − λ)2
< 0.

It follows that λ∗ is the solution of the equation

p− σ2λ− α

β − λ
= 0.

The rate of exponential convergence is then given by

k = Φ(λ∗) = pλ∗ −
1

2
σ2λ2

∗ − α ln

(
β

β − λ∗

)
.
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The Lévy measure associated to the inverse Gaussian Lévy process, IGP(γ), is defined
as

µ(dx) =
1√

2πx3/2
e−xγ

2/2, for x > 0. (30)

where γ > 0. Its Lévy exponent is

κ(λ) = γ −
√
γ2 − 2λ, for λ ∈ [0, γ2/2). (31)

The function Φ is strictly concave as

Φ′′(λ) = −σ2 − (γ2 − 2λ)−3/2 < 0

It follows that λ∗ is the solution of the equation

p− σ2λ− 1√
γ2 − 2λ

= 0,

The rate of exponential convergence is then given by

k = Φ(λ∗) = pλ∗ −
1

2
σ2λ2

∗ − γ +
√
γ2 − 2λ∗.

We set γ = 1, α = 1/2, β = 1/2, to match the first moment of the liabilities in both
risk model at time t = 1. The premium rate is then given by

p = (1 + η)E(L(1)) = (1 + η)
α

β
= (1 + η)

1

γ
. (32)

Table 3 contains the value of the exponential rate of convergence when the liability of
the insurance company is governed by a gamma process or an inverse Gaussian Lévy
process depending on the safety loading and the volatility of the diffusion. Figure
3(a) displays the rates of exponential convergence for the considered Lévy driven
risk models. We observe that the impact of the volatility and the safety loading on

Gamma process

IG Process

0.05 0.10 0.15 0.20 0.25 0.30
η

0.005

0.010

0.015

0.020

k

(a) The rate of exponential convergence depend-
ing on the safety loading, and volatility σ = 1.

Gamma process

IG Process

2 4 6 8 10
σ

0.05

0.10

0.15

0.20

0.25

k

(b) The rate of exponential convergence depend-
ing on the volatility and safety loading η = 0.2.

Figure 3: The rate of exponential convergence for Lévy driven risk processes.

the convergence rate remains the same as in the compound Poisson case. The rate
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Lévy processes

Volatility Safety Loadings GammaP(1/2,1/2) IGP(1)

σ = 0 η = 0.1 0.02617 0.05

0.2 0.05442 0.1

0.3 0.08441 0.15

σ = 1 η = 0.1 0.01809 0.0271

0.2 0.03882 0.05806

0.3 0.06189 0.09238

σ = 2 η = 0.1 0.00921 0.01104

0.2 0.02013 0.02412

0.3 0.03272 0.03923

σ = 3 η = 0.1 0.00503 0.00552

0.2 0.01101 0.01207

0.3 0.01794 0.01965

σ = 4 η = 0.1 0.00307 0.00324

0.2 0.00671 0.00709

0.3 0.01094 0.01153

σ = 5 η = 0.1 0.00204 0.00212

0.2 0.00447 0.00463

0.3 0.00727 0.00753

σ = 6 η = 0.1 0.00145 0.00149

0.2 0.00317 0.00325

0.3 0.00516 0.00529

σ = 7 η = 0.1 0.00108 0.0011

0.2 0.00236 0.0024

0.3 0.00384 0.00391

σ = 8 η = 0.1 0.00083 0.00085

0.2 0.00182 0.00185

0.3 0.00296 0.00301

σ = 9 η = 0.1 0.00066 0.00067

0.2 0.00145 0.00146

0.3 0.00236 0.00238

σ = 10 η = 0.1 0.00054 0.00054

0.2 0.00118 0.00119

0.3 0.00192 0.00193

Table 3: Rate of exponential convergence in Lévy driven risk models.

of exponential convergence is noticeably greater when the liability of the insurance
company follows an inverse Gaussian Lévy process.

5. Proof of Theorem 3.1

If Y was a reflected jump-diffusion with a.s. finitely many jumps in finite time,
and with positive diffusion coefficient, then we could directly apply [30, Theorem 4.1,
Theorem 4.3], and complete the proof of Theorem 3.1. However, we might have: (a)
zero diffusion coefficient σ(x) = 0 for some x; (b) infinite Lévy measure µ, that is,
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infinitely many jumps in finite time horizon.

In the proof of [30, Theorem 3.2], we used the following property: for all t > 0,
x ∈ R+, and A ⊆ R+ of positive Lebesgue measure, we have Qt(x,A) > 0. This
property might not hold for the case σ(x) = 0 for some x ∈ R+. We bypass this
difficulty via the following method: approximating the reflected jump-diffusion Y by a
“regular” reflected jump-diffusion, where σ(x) > 0 for x ∈ R+, and the Lévy measure
is finite.

For an ε > 0, let Yε = (Yε(t), t ≥ 0) be the reflected jump-diffusion on R+, with drift
coefficient p∗, diffusion coefficient σε(·) = σ(·) + ε, and jump measure µε(·) = µ(· ∩
[ε, ε−1]). Note that this is a reflected jump-diffusion with positive diffusion coefficient
σε(y) > 0 for all y ∈ R+, and with finite Lévy measure µε(R+) < ∞. Therefore, we
can apply the results of [30] to this process. For x ∈ R+, let

ϕε(x, λ) := p∗(x)λ+
1

2
σ2
ε(x)λ2 +

∫ ε−1

ε

(
eλy − 1

)
µε(dy).

For every x ≥ 0, we have that

ϕ(x, λ)− ϕε(x, λ) = −
[
εσε(x) +

1

2
ε2

]
λ2 +

(∫ ε

0

+

∫ ∞
ε−1

)(
eλy − 1

)
µ(dy). (33)

Recall also that ∫ ∞
0

(
eλy − 1

)
µ(dy) <∞. (34)

Combining (33) with (34) and the boundedness of σ from Assumption 1, we have:

sup
x≥0
|ϕε(x, λ)− ϕ(x, λ)| → 0, ε ↓ 0. (35)

By our assumptions,
sup
x≥0

ϕ(x, λ) = −Φ(λ) < 0. (36)

From (35), we have:
− sup
x≥0

ϕε(x, λ) =: Φε(λ)→ Φ(λ). (37)

From (37) and (36), we conclude that there exists an ε0 > 0 such that for ε ∈ [0, ε0],
Φε(λ) > 0. Apply [30, Theorem 4.3] to prove the statement of Theorem 3.1 for the
process Yε. For consistency of notation, denote Y0 := Y . There exists a unique
stationary distribution πε for Yε, which satisfies (πε, Vλ) < ∞; and the transition
kernel Qtε(x, ·) of this process Yε satisfies

‖Qtε(x, ·)− πε(·)‖Vλ ≤ [Vλ(x) + (πε, Vλ)] e−Φε(λ)t. (38)

We would like to take the limit ε ↓ 0 in (38). To this end, let us introduce some
new notation. Take a smooth C∞ function θ : R+ → R+ which is nondecreasing, and
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satisfies

θ(x) =

{
0, x ≤ s−;

x, x ≥ s+;
θ(x) ≤ x,

for some fixed s+ > s− > 0. The function θ is Lipschitz on R+: there exists a constant
C(θ) > 0 such that

|θ(s1)− θ(s2)| ≤ C(θ)|s1 − s2| for all s1, s2 ∈ R+. (39)

Next, define
Ṽλ(x) = Vλ(θ(x)) = eλθ(x).

The process Yε has the generator Lε, given by the formula

Lεf(x) = p∗(x)f ′(x) +
1

2
σ2
ε(x)f ′′(x) +

∫ ε−1

ε

[f(x+ y)− f(x)] µ(dy),

for f ∈ C2(R+) with f ′(0) = 0. Repeating calculations from [30, Theorem 3.2] with
minor changes, we get:

LεṼλ(x) ≤ −Φε(λ)Ṽλ(x) + cε1[0,s+](x), x ∈ R+, (40)

with the constant
cε := max

x∈[0,s+]

[
LεṼλ(x) + ϕε(λ, x)Ṽλ(x)

]
. (41)

Lemma 7. limε↓0(πε, Vλ) <∞.

Proof. The functions Vλ and Ṽλ(x) are of the same order, in the sense that

0 < inf
x≥0

Ṽλ(x)

Vλ(x)
≤ sup

x≥0

Ṽλ(x)

Vλ(x)
<∞. (42)

Therefore, it suffices to show that

lim
ε↓0

(πε, Ṽλ) <∞. (43)

Apply the probability measure πε to both sides of the inequality (40). This probability
measure is stationary; therefore, the left-hand side of (40) becomes (πε,LεṼλ) = 0.
Therefore,

−Φε(λ)
(
πε, Ṽλ

)
+ cε

(
πε, 1[0,s+]

)
≥ 0.

Since (πε, 1[0,s+]) = πε([0, s+]) ≤ 1, we get:(
πε, Ṽλ

)
≤ cε

Φε(λ)
. (44)

From (37) and (44), to show (43), it suffices to show that

lim
ε↓0

cε <∞. (45)
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This, in turn, would follow from (41), (37), and the following relation:

LεṼλ(x)→ LṼλ(x), uniformly on [0, s+]. (46)

We can express the difference of generators as

LεṼλ(x)− LṼλ(x)

=
1

2

(
σ2
ε(x)− σ2(x)

)
f ′′(x)−

(∫ ε

0

+

∫ ∞
ε−1

)[
Ṽλ(x+ y)− Ṽλ(x)

]
µ(dy).

(47)

The first term in the right-hand side of (47) is equal to 1
2 (2εσ(x) + ε2)f ′′(x). Since σ

is bounded, this term converges to 0 as ε ↓ 0 uniformly on [0, s+]. It suffices to prove
that the second term converges to zero as well. For all x, y ≥ 0, using (39), we have:

0 ≤ Ṽλ(x+ y)− Ṽλ(x) = eλθ(x+y) − eλθ(x)

= eλθ(x)
[
eλ(θ(x+y)−θ(x)) − 1

]
≤ Ṽλ(x)

[
eλC(θ)y − 1

]
.

(48)

Changing the parameter s− and letting s− ↓ 0, we have: θ(x) → x uniformly on R+.
Therefore, we can make the Lipschitz constant C(θ) as close to 1 as necessary. Also,
note that for λ′ in some neighborhood of λ, we have:∫ ∞

0

(
eλ
′x − 1

)
µ(dx) <∞. (49)

Combining (49) with (48), using that supx∈[0,s+] Ṽλ(x) < ∞, and making C(θ) close
enough to 1, we complete the proof that the second term in the right-hand side of (47)
tends to 0 as ε ↓ 0. This completes the proof of (46), and with it that of (45) and
Lemma 7. �

Now, we state a fundamental lemma, and complete the proof of Theorem 3.1 assuming
that this lemma is proved. The proof is postponed until the end of this section.

Lemma 8. Take a version Ỹε of the reflected jump-diffusion Yε, starting from yε ≥ 0,
for ε ≥ 0. If yε → y0, then we can couple Ỹε and Ỹ0 so that for every T ≥ 0,

lim
ε↓0

E sup
0≤t≤T

∣∣Ỹε(t)− Ỹ0(t)
∣∣2 = 0.

Since Vλ(∞) =∞, Lemma 7 implies tightness of the familly (πε)ε∈(0,ε0] of probability

measures. Now take a stationary version Y ε of the reflected jump-diffusion Yε: for
every t ≥ 0, let Y ε(t) ∼ πε. Take a sequence (εn)n≥1 such that εn ↓ 0 as n → ∞,
and πεn ⇒ π0 (where ⇒ stands for weak convergence) for some probability measure
π0 on R+. It follows from Lemma 8 that for every t ≥ 0, we have: Y εn(t)⇒ Y 0(t) as
n → ∞, where Y 0 is a stationary version of the reflected jump-diffusion Y0: that is,
Y 0(t) ∼ π0 for every t ≥ 0. In other words, we proved that the reflected jump-diffusion
Y0 has a stationary distribution π0.

Next, take a measurable function g : R+ → R such that |g(x)| ≤ Vλ(x) for all x ∈ R+.
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Lemma 9. (πεn , g)→ (π0, g) as n→∞.

Proof. The function Φ is a supremum of a family of functions −ϕ(·, x), which are
continuous in λ. Therefore, Φ is lower semicontinuous, and the set {λ > 0 | Φ(λ) > 0}
is open. Apply Lemma 7 to some λ′ > λ (which exists by the observation above).
Then we get:

lim
ε↓0

(πεn , Vλ′) <∞.

Note also that |g(x)|λ′/λ ≤ [Vλ(x)]
λ′/λ

= Vλ′(x) for all x ≥ 0. Therefore, the
family (πεg

−1)ε∈(0,ε0] of probability distributions is uniformly integrable. Uniform
integrability plus a.s. convergence imply convergence of expected values. Thus we
complete the proof of Lemma 9. �

For all ε ≥ 0, take a copy Y ε of Yε starting from the same initial point x ∈ R+.

Lemma 10. For every t ≥ 0, we have: Eg(Y ε(t))→ Eg(Y 0(t)) as ε ↓ 0.

Proof. Following calculations in the proof of [30, Theorem 3.2], we get:

EṼλ(Y ε(t))− Ṽλ(x) ≤
∫ t

0

[
−Φε(λ)Ṽλ(Y ε(s)) + cε1[0,s+](s)

]
ds ≤ cεt. (50)

Therefore, from (50) we have:

lim
ε↓0

EṼλ(Y ε(t)) <∞. (51)

From (42), (51) holds for Vλ in place of Ṽλ. This is also true for λ′ > λ slightly larger
than λ. Applying the same uniform integrability argument as in the proof of Lemma 9,
we complete the proof of Lemma 10. �

Finally, let us complete the proof of Theorem 3.1. From (38), we have:

|Eg(Y ε(t))− (πε, g)| ≤ [Vλ(x) + (πε, Vλ)] e−Φε(λ)t. (52)

Taking ε = εn and letting n→∞ in (52), we use Lemma 9 and 10 to conclude that∣∣Eg(Y 0(t))− (π0, g)
∣∣ ≤ [Vλ(x) + (π0, Vλ)] e−Φ(λ)t. (53)

Take the supremum over all functions g : R+ → R which satisfy |g(x)| ≤ Vλ(x) for all
x ∈ R+, and complete the proof of Theorem 3.1 for Lipschitz p∗.

5.1. Proof of Lemma 8

Let us take a probability space with independent Brownian motion W and Lévy
process L, and let Lε be a subordinator process with Lévy measure µε, obtained from
L by eliminating all jumps of size less than ε and greater than ε−1. For consistency of
notation, let L0 := 0. For every ε ≥ 0, we can represent

Ỹε(t) = yε +

∫ t

0

p∗(Ỹε(s)) ds+

∫ t

0

σε(Ỹε(s)) dW (s) + Lε(t) +Nε(t), t ≥ 0. (54)
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Here, Nε is a nondecreasing right-continuous process with left limits, with Nε(0) = 0,
which can increase only when Ỹε = 0. We can rewrite (54) as

Ỹε(t) = Xε(t) +

∫ t

0

p∗(Ỹε(s)) ds+

∫ t

0

σ(Ỹε(s)) dW (s) +Nε(t), t ≥ 0. (55)

Here, we introduce a new piece of notation:

Xε(t) = yε + Lε(t) + εW (t), t ≥ 0. (56)

The process L(·)−Lε(·) is nondecreasing. By Assumption 3 as ε ↓ 0, for every T > 0,

E sup
0≤t≤T

|L(t)− Lε(t)|2 = E (L(T )− Lε(T ))
2

= T

(∫ ε

0

+

∫ ∞
ε−1

)
x2 µ(dx)→ 0. (57)

From (56) and (57), we have:

E sup
0≤t≤T

|X0(t)−Xε(t)|2 → 0, ε ↓ 0. (58)

Fix time horizon T > 0, and consider the space ET of all right-continuous adapted
processes Z = (Z(t), 0 ≤ t ≤ T ) with left limits such that

‖Z‖22,T := E sup
0≤t≤T

Z2(t) <∞.

This is a Banach space with norm ‖·‖2,T . Fix an X ∈ ET . Let us introduce two
mappings PX , S : ET → ET : The mapping PX is given by

PX (Z)(t) = X (t) +

∫ t

0

p∗(Z(s)) ds+

∫ t

0

σ(Z(s)) dW (s), 0 ≤ t ≤ T.

Whereas S is the classic Skorohod mapping:

S(Z)(t) = Z(t) + sup
0≤s≤t

(Z(s))−, 0 ≤ t ≤ T,

where (a)− := max(−a, 0) for any a ∈ R. For any X ∈ ET , let RX := S ◦ PX . Then
we can represent (55) as

Yε = (S ◦ PXε(Yε)) = RXε(Yε). (59)

It is straightforward to show, using Lipschitz properties of p∗ and σ, that these
mappings indeed map ET into ET . Moreover, a classic result is that S is 1-Lipschitz.
See, for example, [36]. Assume C(p∗) and C(σ) are Lipschitz constants for functions
p∗ and σ respectively.

Lemma 11. For X ,X ′,Z,Z ′ ∈ ET , the following Lipschitz property

‖RX (Z)−RX ′(Z ′)‖2,T ≤ CT ‖Z − Z ′‖2,T + ‖X − X ′‖2,T . (60)
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holds with constant
CT := C(p∗)T + 2C(σ)T 1/2. (61)

Proof. Since S is 1-Lipschitz, it suffices to show (60) for PX instead of RX . We can
express the difference between PX (Z) and PX ′(Z ′) as follows: for t ∈ [0, T ],

PX (Z)(t)− PX ′(Z ′)(t) = X (t)−X ′(t)

+

∫ t

0

[p∗(Z(s))− p∗(Z ′(s))] ds+

∫ t

0

[σ(Z(s))− σ(Z ′(s))] dW (s).
(62)

Denoting by I and M the second and third terms in the right-hand side of (62), we
have:

‖PX (Z)(t)− PX ′(Z ′)(t)‖2,T ≤ ‖X − X ′‖2,T + ‖I‖2,T + ‖M‖2,T . (63)

The norm ‖I‖2,T is estimated in a straightforward way using the Lipschitz property of
σ:

‖I‖22,T = E sup
0≤t≤T

I2(t) ≤ E sup
0≤t≤T

(∫ t

0

C(p∗) [Z(s)−Z ′(s)] ds

)2

≤ T 2C2(p∗) · E sup
0≤s≤T

[Z(s)−Z ′(s)]2 = T 2C2(p∗)‖Z − Z ′‖22,T .
(64)

Finally, the norm ‖M‖2,T can be estimated using the martingale inequalities:

‖M‖22,T = E sup
0≤t≤T

M2(t)

≤ 4EM2(T )

= 4

∫ T

0

[σ(Z(s))− σ(Z ′(s))]2 ds

≤ 4C2(σ)T · E sup
0≤t≤T

(Z(t)−Z ′(t))2

= 4C2(σ)T‖Z − Z ′‖22,T .

(65)

Combining (63), (64), (65), we complete the proof of (60). �

For small enough T , the constant CT from (61) is strictly less than 1. Assume this
is the case until the end of the proof. Then for every X ∈ ET , the mapping RX is
contractive. Therefore, it has a unique fixed point, which can be obtained by successive
approximations:

Y(X ) = lim
n→∞

RnX (Z).

In particular, the equation (59) has a unique solution, which is obtained by successive
approximations:

Yε = lim
n→∞

RnXε(Z).

We can take Z = 0 as initial condition, or any other element in ET . Applying the
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mappings in Lemma 11 once again, we have:

‖R2
X (Z)−R2

X ′(Z ′)‖2,T ≤ C2
T ‖Z − Z ′‖+ (1 + CT )‖X − X ′‖.

By induction over n = 1, 2, . . . we get:

‖RnX (Z)−RnX ′(Z ′)‖2,T ≤ CnT ‖Z − Z ′‖2,T +
(
1 + CT + . . .+ Cn−1

T

)
‖X − X ′‖2,T .

(66)

Let n→∞ in (66). If CT < 1, then

‖Y(X )− Y(X ′)‖2,T ≤
1

1− CT
‖X − X ′‖2,T . (67)

Letting X = X0 and X ′ = Xε in (67), and using (58), we complete the proof of
Lemma 8.

6. Concluding remarks

We showed that the convergence of ruin probabilities in a rather broad class of
risk processes is achieved exponentially fast. This rate is easy to compute (at least in
the examples considered in Section 4), and happened to be sharp when the premium
rate and its variability are independent from the current wealth of the insurance
company. A natural question relies on the practical implication of having access to
the value of the rate of exponential convergence; in particular, whether this leads to
an numerical approximation of the finite time ruin probability. This issue has been
discussed in Asmussen [2], the answer was negative. In the case of constant premium
rate and diffusion parameter, one may approximate the actual gap between the ruin
probabilities using numerical integration techniques based, for instance, on the formulas
derived in Michna et al. [23]. Another direction is to relax the condition upon the
tail of the claim size. It is of practical interest to let the claim size distribution be
heavy tailed. An extension of the early work of Asmussen and Teugels [4] could be
envisaged. For example, in the work of Tang [35], a compound Poisson risk model under
constant interest force with sub-exponentially distributed claim size is considered.
When comparing the asymptotics provided by Tang [35, (2.5), (3.2)], it seems that
exponential convergence holds for large initial reserves. Yet another direction for future
research might be to relax the Lipschitz property of the drift.
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Appendix A. Proof of Lemma 1

As a preliminary step, we claim that

E
[
e
λ0 sup

0≤s≤t
L(s)

]
= E

[
eλ0L(t)

]
<∞. (68)

This follows from plugging λ := −λ0 into (8) and from monotonicity of L. Turning to
the proof of the main statement, we first claim that for all functions f ∈ C∞(R) which
satisfy (11), the function N f is well-defined, and satisfies for some constant Df :

|N f(x)| ≤ Dfe
λ0x, x ≥ 0, (69)

Indeed, for y ∈ [0, 1] and x ≥ 0, |f(x+ y)− f(x)| ≤ sup |f ′| · y. Thus∫ 1

0

(f(x+ y)− f(x)) dµ(y) ≤ sup |f ′| ·
∫ 1

0

y dµ(y) <∞. (70)

But for y ≥ 1 we have:∣∣∣∫ ∞
1

[f(x+ y)− f(x)] µ(dy)
∣∣∣ ≤ f(x)µ[1,∞) + Cfe

λ0x

∫ ∞
1

eλ0y µ(dy)

≤ Cfeλ0x

[
µ[1,∞) +

∫ ∞
1

eλ0y µ(dy)

]
.

(71)

Combining (70) and (71), we get (69) for

Df := Cf

[
µ[1,∞) +

∫ ∞
1

eλ0y µ(dy)

]
+ sup |f ′| ·

∫ 1

0

y dµ(y).

Combining (68) with (69), we get:

E [f(L(t))| <∞, sup
0≤s≤t

E |(N f)(L(s))| <∞, t > 0. (72)

By the standard stopping argument, we can show that the following process is a local
martingale:

f(L(t))− f(L(0))−
∫ t

0

(N f)(L(s)) ds, t ≥ 0. (73)

Using (72) we get that the process (73) is an actual martingale. Taking expectation
and letting t ↓ 0, we get:

lim
t↓0

1

t
(E[f(L(t))]− f(x)) = (N f)(x), if x := L(0).

Appendix B. Proof of Lemma 2

From Assumption 3 it follows that∫ ∞
1

xµ(dx) <∞, (74)



24 Pierre-Olivier Goffard, Andrey Sarantsev

and from (7) we conclude that ∫ 1

0

xµ(dx) <∞. (75)

Condition (13) then immediately follows from (74) and (75).

Appendix C. Proof of Lemma 3

Similar to the proof of Lemma 4, but without reflection; therefore we can take an
identity map instead of RX , which is of course 1-Lipschitz. The rest of the proof works
verbatim.

Appendix D. Proof of Lemma 4

Using the notation similar to the proof of Lemma 8, we need to find the fixed point
of the mapping RL. From Lemma 11, this mapping RL is CT -Lipschitz with CT taken
from (61). For small enough T , we have CT < 1, and therefore the fixed point exists
and is unique by the classic theorem. Thus we can prove strong existence and pathwise
uniqueness on the time interval [0, T ], and then on [T, 2T ], [2T, 3T ], etc. The form of
the generator then follows from straightforward application of Itô’s formula.

Appendix E. Proof of Lemma 5

Consider two copies X1 and X2 of this process, starting from X1(0) = x1 and
X2(0) = x2, where x1 > x2 ≥ 0. Let us couple them: that is, we create their copies
on a common probability space, using the same driving Brownian motion W and Lévy
process L. We can do this by Lemma 3. Next, we aim to prove that X1(t) ≥ X2(t)
for all t ≥ 0 simultaneously, with probability 1. This would automatically imply that
P(X1(t) ≥ c) ≥ P(X2(t) ≥ c) for all t, c ≥ 0, which is the property (b) in Theorem 1.

Assume there exists a t > 0 such that X1(t) < X2(t). Let τ := inf{t ≥ 0 | X1(t) <
X2(t)}. By right-continuity of X1 and X2, we must have X1(τ) ≤ X2(τ). But we
cannot have X1(τ) = X2(τ), because then by strong Markov property we would have
X1(t) = X2(t) for all t ≥ τ (recall that τ is a stopping time). Therefore,

X1(τ) < X2(τ), but X1(τ−) ≥ X2(τ−). (76)

Thus, τ is a jump time for both X1 and X2, that is, for the Lévy process L. The
displacement during the jump must be the same for X1 and X2:

X1(τ)−X1(τ−) = − [L(τ)− L(τ−)] = X2(τ)−X2(τ−). (77)

The contradiction between (76) and (77) completes the proof of Lemma 5.

Appendix F. Proof of Lemma 6

We start by stating the duality between an absorbed and reflected diffusion, then
we show that duality still holds after superimposing jumps on top of the diffusions.
The construction ressembles that of [10, Example 4.1], used to establish the duality
between an absorbed and a reflected random walk.
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Let X be a jump-diffusion process with drift coefficients p and diffusion coefficient σ,
absorbed at 0 and satisfying Assumptions 1 - 3. Consider X̃ a version of X without
jumps, that is with Lévy measure µ = 0. The dual process Ỹ , associated to X̃, is a
reflected diffusion on R+ with drift coefficients p∗ = −p + σσ′ and σ∗ = σ, see [33,
Proposition 4.3]. In view of [10, Definition 4.2, Proposition 4.4], since X̃ and Ỹ are
Siegmund dual they are also pathwise dual: for every initial conditions X̃(0) = x̃ and
Ỹ (0) = ỹ, we can couple (define on a common probability space) X̃ and Ỹ up to time
T ≥ 0, so that a.s.

{X̃(0) ≤ Ỹ (T )} and {X̃(s) ≤ Ỹ (T − s)}, for all 0 ≤ s ≤ T. (78)

Assume that the Lévy measure of X is finite. Let η1, η2, . . . be i.i.d. exponential
random variables Exp(µ(R+)) and ξ1, ξ2, . . . be i.i.d. non-negative random variables
distributed according the normalized measure µ. For k = 1, 2, . . ., ηk represents the
time between the kth and the (k + 1)th jump, and ξk corresponds to the displacement
during the kth jump. This jump occurs at time τk = η1 + . . .+ ηk. Assume that there
exists an m ≥ 0 such that τm < T < τm+1 for some T ≥ 0, with τ0 = 0 by convention.
We build X from X̃ by inserting the jumps. For t ≤ τ1, run X(t) as X̃(t) starting from
X̃(0) = X(0), and let X(τ1) := (X(τ1−)− ξ1)+. If X(τ1) > 0, then for t ∈ [τ1, τ2) run

X(t) as X̃(t − τ1) with X̃(0) = X(τ1), and let X(τ2) = (X(τ2−)− ξ2)+. We iterate
these steps until X is defined on [0, T ]. We now turn to the construction of a reflected
jump-diffusion process Y .

Consider the (increasing) sequence of random variables

τ ′k = T − τm+1−k, k = 1, . . . ,m.

Conditionnaly on τm < T < τm+1, the joint distribution of (τ1, . . . , τm) is the same as
the joint distribution of the order statistics of m uniform random variables on [0, T ].
A change of variables allows to state the following equality of conditional distributions

(T − τm, . . . , T − τ1)
∣∣τm < T < τm+1

D
= (τ1, . . . , τm)

∣∣τm < T < τm+1.

For every k, τ ′k will be the time of the kth jump, with the displacement ξm+1−k, of
the reflected jump-diffusion process Y defined in the sequel. For t ≤ τ ′1, define Y (t) as
Ỹ (t) starting from Ỹ (0) = Y (0), and let Y (τ ′1) = Y (τ ′1−) + ξm. For t ∈ [τ ′1, τ

′
2), define

Y (t) as Ỹ (t− τ ′1) with Ỹ (0) = Y (τ ′1) and let Y (τ2) = Y (τ ′2−) + ξm−1. We iterate these
steps until Y is defined on [0, T ].

We are now in presence of an absorbed jump-diffusion process X and a reflected jump-
diffusion Y . By induction over k, it is straightforward to prove that, for t ∈ [τk, τk+1),
the property (78) holds. The process X and Y are pathwise dual and therefore
Siegmund dual in virtue of [10, Lemma 4.3].

The general case reduces to the case of a finite Lévy measure µ by an argument similar
to that of Lemma 8. Namely, for every ε > 0, consider versions X(ε) and Y (ε) of the
processes X and Y , but with measure µε(·) = µ(· ∩ [ε,∞)), starting from the same
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initial conditions x and y. Then, similarly to Lemma 8, we prove that, as ε ↓ 0,
X(ε) ⇒ X and Y (ε) ⇒ Y in D[0, T ], for every T > 0. By Siegmund duality, we have

P(X(ε)(t) ≥ y) = P(Y (ε)(t) ≤ x), for all t ≥ 0,

and letting ε ↓ 0 leads to P(X(t) ≥ y) = P(Y (t) ≤ x).
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