Parametric estimation of hidden Markov models by least squares type estimation and deconvolution - Archive ouverte HAL
Article Dans Une Revue Statistical Papers Année : 2022

Parametric estimation of hidden Markov models by least squares type estimation and deconvolution

Résumé

This paper develops a simple and computationally efficient parametric approach to the estimation of general hidden Markov models (HMMs). For non-Gaussian HMMs, the computation of the maximum likelihood estimator (MLE) involves a high-dimensional integral that has no analytical solution and can be difficult to approach accurately. We develop a new alternative method based on the theory of estimating functions and a deconvolution strategy. Our procedure requires the same assumptions as the MLE and deconvolution estimators. We provide theoretical guarantees about the performance of the resulting estimator; its consistency and asymptotic normality are established. This leads to the construction of confidence intervals. Monte Carlo experiments are investigated and compared with the MLE. Finally, we illustrate our approach using real data for ex-ante interest rate forecasts.
Fichier principal
Vignette du fichier
param_estim.pdf (831.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01598922 , version 1 (30-09-2017)
hal-01598922 , version 2 (01-03-2019)
hal-01598922 , version 3 (13-06-2020)
hal-01598922 , version 4 (23-11-2020)
hal-01598922 , version 5 (20-10-2021)
hal-01598922 , version 6 (28-01-2022)

Identifiants

Citer

Christophe Chesneau, Salima El Kolei, Fabien Navarro. Parametric estimation of hidden Markov models by least squares type estimation and deconvolution. Statistical Papers, 2022, 63 (5), pp.1615-1648. ⟨10.1007/s00362-022-01288-x⟩. ⟨hal-01598922v6⟩
1099 Consultations
1006 Téléchargements

Altmetric

Partager

More